Statistical Analysis of Deep Drilling Processs Conditions Using Vibrations and Force Signals

Hazwan, Syafiq and A. R., Yusoff and A. M. N., Kamarizan and M. F., Ghazali (2015) Statistical Analysis of Deep Drilling Processs Conditions Using Vibrations and Force Signals. In: International Conference On Mechanical Engineering Research (ICMER2015), 18-19 August 2015 , Kuantan, Pahang. . (Unpublished)

[img] PDF
Statistical Analysis Of Deep Drilling Processs Conditions Using Vibrations And Force Signals.pdf
Restricted to Repository staff only

Download (569kB) | Request a copy

Abstract

Cooling systems is a key point for hot forming process of Ultra High Strength Steels (UHSS). The process lies in cooling capability offered by the tools with cooling systems. For the time being, cooling systems is made using deep drilling technique. Although deep twist drill is better than other drilling techniques in term of higher productivity however its main problem is premature tool breakage, which affects the production quality. It is needed a clear understanding regarding deep twist drill phenomena is highly important. In this paper, analysis of deep twist drill process parameters such as cutting speed, feedrate and depth of cut by using statistical analysis to identify the tool condition is presented. The comparisons between different two tool geometries are also studied. Measured data from vibrations and force sensors are being analyzed through several statistical parameters such as root mean square (RMS), mean, kurtosis, standard deviation and skewness. Based on the analysis, it was found that kurtosis and skewness value are the most appropriate parameters to represent the deep twist drill tool conditions behaviors from vibrations and forces data. The condition of the deep twist drill process been classified according to good, blunt and fracture. It also found that the different tool geometry parameters affect the performance of the tool drill. It believe the results of this study are useful in determining the suitable analysis method to be used for developing online tool condition monitoring system to identify the tertiary tool life stage and helps to avoid mature of tool fracture during drilling process.

Item Type: Conference or Workshop Item (Lecture)
Uncontrolled Keywords: Deep Drilling, Drill tool, Tool Condition Monitoring, Acceleration, force
Subjects: T Technology > TJ Mechanical engineering and machinery
T Technology > TS Manufactures
Faculty/Division: Faculty of Manufacturing Engineering
Faculty of Mechanical Engineering
Depositing User: Mrs. Neng Sury Sulaiman
Date Deposited: 02 Oct 2015 02:17
Last Modified: 12 Jan 2018 01:16
URI: http://umpir.ump.edu.my/id/eprint/10591
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item