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Abstract-- This paper presents the modeling of a leg of Quadruped with Parallel Actuation Leg (QPAL) robot. QPAL leg designed 

with 3 Degree of Freedom (DOF) configuration with indirect or parallel actuation for each joint mimicking a muscle of life form 

creature such as insect and bugs classified into shoulder, thigh and shank parts. Indirect actuation configuration on its leg makes this 

robot has different perspective on joint rotational drive and control. Therefore, this project has taken initiative to identify and 

modeling this indirect actuation joint by using system identification (SI) in order to obtain a mathematical model of each joint of 

QPAL robot’s leg. A system identification approach was implemented by employing a Hammerstein-Wiener (HW) model as model 

structure. The state-space model and the transfer function are designed and generated using Hammerstein-wiener modeling 

procedures start with experiment setup and data collection from experiment. Continue with data processing, selecting model 

structure, estimation and validation of the model using system SI toolbox in MATLAB®. The best percentage fits for Joint 1, Joint 2 

and Joint 3 are 71.06%, 79.14% and 71.35% respectively, meaning that the estimated model is almost tracking the real output data 

from the experiments. The model for Joint 1 is ideally acceptable and highly applicable since the correlation curves lie between the 

confidence interval. While the model for Joint 2 and Joint 3 are considered well and acceptable as the correlation curves are almost 

lies between the confidence interval. The balances 28.94%, 20.86%, and 28.65% are losses due to nonlinear factor such as friction, 

backlash, torque, and external disturbance. 

 

Index Terms—Parallel actuation leg, nonlinear Hammerstein-wiener, Joint identification model.

I.  INTRODUCTION 

obots are mainly used to replace human workers in 

dangerous tasks, high precision or in routine and 

repetitive works. Research and development in robotics 

had explored tremendous foundation towards mimicking life 

form creature especially human. In robotics control point of 

view, the imprecision will occur along the robot movement or 

operation and it may be caused by the structural or control 

algorithms. Due to the imprecision, the robot dynamics 

parameters also will not able to be brought together into the 

robot model. On the other hand, knowledge on the parameter 

values robot must comply with the robot system in detail to 

get a good robot model[1]. 

However, the uncertainties in modeling a robot will cause 

difficulties in forming a good model. Therefore, SI is often 

required to take uncertainty into the robot model. Thus, SI is 

widely used in engineering and non-engineering areas as it 

offers the possibility to build a model from experimental 

data[1]. 

Today, robot motion control is a major concern among 

robot developers, and current development is focusing on 

improving the performance of the robot, minimizes 

development costs, improves security, and introduces new 

functions. Thus, the modeling and identification of a robot 

system is required in order to control and simulate the system 

accurately. Generally, the objective of modeling and 

identification for a robot system is to obtain a suitable 

mathematical model of the robot system. Hence, the main 

problem studied in this thesis is the identification of unknown 

parameters that will be used in the mathematical modeling of 

QPAL’s leg system. 

Therefore, this paper presents the modeling of an indirect 

actuation joint by using SI in order to obtain a mathematical 

model of each joint of QPAL robot’s leg. The SI technique 

was applied by using a HW as the model structure. The 

technique concerned on the modeling of the joints of QPAL 

robot leg is based on the experimental data. The experimental 

data are obtained from the robot leg real system, which then 

be used in HW model to build a black-box identification 

model. This joint-by-joint modeling gives flexibility to the 

parameterization of nonlinear models of QPAL’s leg. The 

modeling is generated by using SI toolbox of MATLAB® 

software. 

II.  RELATED RESEARCH REVIEW  

A. Parallel Actuated Robot 

Parallel robots have been used over the years, including in 

the field of astronomy until the flight simulator and is 

becoming increasingly popular, especially in the machine tool 

industry. J.-P. Merlet mentioned that, a parallel robot can be 

defined as a closed loop kinematic chain mechanism with 

R 
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excellent performance in terms of accuracy, rigidity, and the 

capability to handle large loads. A parallel robot is made up of 

an end-effector with (n) DOF, and a permanent base 

connected together by at least two independent kinematics 

chains and the actuation takes place through (n) simple 

actuators[2]. 

The first parallel robot industrial was designed and patented 

by Willard L. V. Pollard as shown in Figure 1[3]. A parallel 

actuated robot development began in the early 1960s, when 

the first six-linear jack system that functions as a universal tire 

testing machine is invented by Gough and Whitehall. Years 

later, in 1965, a platform manipulator called Stewart platform 

was developed by D. Stewart, which serves as a flight 

simulator. Since then, there is growing interest in the 

development of parallel actuated robots[4]. 

In addition, the closed kinematic chain mechanism has an 

inverse kinematics easier than the conventional open 

kinematic chain mechanism. A part from that, the closed 

kinematic chain manipulator has a better application where the 

needs of work space and movability is low but require extreme 

dynamic loads, high speeds and great precision motion[5]. 

 

 
Fig. 1. An illustration of the first spatial industrial parallel robot in 1942[6] 

B. Underactuated Robot 

Underactuated robot can be described as a robot that 

composed of  underactuated manipulators which made up of 

active and passive joints in serial chain mechanism[7]. The 

term called underactuated in robotics means, is to have the 

number of actuators less than the number of DOF or joints[8]. 

Moreover, for a robot which a has large redundancy is 

available for dexterity, large number of DOF and particular 

task completion such as snake-like robots and multi-legged 

mobile robots, the underactuated construction enables a more 

convenient design, simple control mechanism and 

communication system, weightless and consume less energy 

compared to a fully-actuated robot. Bergman et al mentioned 

that when working in dangerous areas or handling hazardous 

materials, the underactuated robot is very advantageous in the 

terms of reliability or fault-tolerant design of fully-actuated 

manipulators. Thus if one or more of the joint actuators fails, 

means that one or more DOF of the manipulator is also fails. 

In this case, the failed (passive) joint can still be controlled 

using the dynamic coupling with the functioning (active) 

joints, hence the manipulator can still use all of its DOF as 

initially planned. In addition, there are several advantages of 

using underactuated system in robotics. As stated earlier, the 

underactuated robot has less number of actuators than the 

number of DOF, thus reduced the quantity of actuators for a 

robot manipulator will reduce energy utilization, and useful to 

the field in which the energy efficiency is a main factor, like 

space robots. Next, reducing several actuators enable a more 

compact design leads to total size and weight minimization. 

Therefore, this will eventually decrease the development cost 

and running power[9]. 

C. System Identification and Its Types 

SI is the field of mathematical modeling of dynamic 

systems from experimental input and output data. In order to 

make the data extremely informative about the system 

properties, the input and output data are typically collected 

from a test or experiment of a real-world system are designed 

and executed to generate this data[1]. The process of system 

identification can be outlined in a few steps as follows with 

reference to Figure 2: 

 

 
Fig. 2. Process flow of SI modeling 

 

 Experiment design - prepare the experiment setup, 

decide what signals to measure, choice of sampling 

time and of excitation signals. 

 Data collection and processing – collecting input and 

output data from the experiment setup and process the 

data. Eliminating biases, trends, outliers, etc. 

 Structural identification - selection of model structure 

that is required for observation. 

 Parameter estimation - executing an identification 

algorithm and defining the best model criteria to 

represent the real system. 

 Model validation - validating the performance 

capability of the model in defining the real systems. 

 

Generally, the selection of identification model is based on 

the available information. Therefore, a better model and more 

similarities between the system and the model can be 

constructed if there is more information available from the 
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system. There are three types of identification models are 

common in system identification: White Box Modeling, Black 

Box Modeling and Grey Box Modeling. The white box 

modeling assumes that the structure and the parameters of the 

system are completely known and all the complete physical 

knowledge is available. White box models can be constructed 

from that information alone without any observations[10]. 

Meanwhile, if the model construction is based on the 

experimental data, then it is an input-output or behavioral 

model. The input-output model can also be described as the 

black box model because the model is characterized only with 

its input-output behavior without any detailed information 

about the system structure. In the black box modeling, the 

model structure does not define the structure of the physical 

system, therefore structural elements of the model have no 

physical meaning. On the other hand, the structure of the 

model has to be selected that is flexible enough to represent a 

large class of systems[10]. 

Actual system usually lies anywhere in between the white 

box and the black box model. Some physical information is 

available, but it is not completed, this type of modeling is 

called the grey-box modeling. The structure of the model of is 

selected based on the available physical insight, thus the 

structure of the model will correspond to the physical system. 

At the same time, the parameters of the model are unknown or 

only partly known, so they must be obtained from the 

observed data of the system. The model will be fitted 

empirically using observations. The common example of grey-

box modeling is a physical modeling. The more complete the 

physical insight the "lighter" grey box model can be 

constructed and vice versa. The "darkness" of model is based 

on the unknown and known information of the system to be 

modeled, as shown in Figure 3[10]. 

 

 
Fig. 3. Identification models based on the prior information 

D. Nonlinear Model Identification 

SI is an essential tool in technical field where most physical 

systems are nonlinear processes. Almost all of the systems are 

nonlinear where the output is a nonlinear function of the input 

elements. On the other hand, the linear model is always 

adequate to precisely define the system dynamics, usually via 

fitting the system with the experimental suitable linear models. 

Hussain et al in their paper indicated that, the SI technique of 

the dynamics models are represented by mathematical 

relations between the system’s inputs ( u ) and outputs ( y ) at 

time ( t ). These mathematical relations will be applied to 

estimate the current output from previous inputs and outputs. 

The equation of nonlinear model for discrete time can be 

expressed below, where the function ( f ) is a nonlinear model 

that contain nonlinear elements represent the arbitrary 

nonlinearities of the systems[11]. 

 

( ) (u( 1), ..., ( 1), u(t 2), y(t 2), ...)y t f t y t      (1) 

 

In addition, there are several types of nonlinear models 

available to describe a system dynamic, such as nonlinear 

autoregressive exogenous model (NLARX), Hammerstein 

model, Wiener model and HW model. However, HW model 

had proven is the best to describe the nonlinear dynamic 

systems. In order to estimate HW models a uniformly sampled 

time-domain data are needed where the data are contains of 

single-input and single-output (SISO) channels[11]. 

Therefore, the goals of SI are to acquire the best suitable 

mathematical model for the real system by using the actual 

data. The best fitting model will be useful for getting a good 

understanding on the real dynamic system and also to predict 

or simulate the behavior of the system, especially to act as 

control mechanism for the design and analysis of the 

controller that is depend on the actual system model[11]. 

E. Nonlinear Arx Model 

A nonlinear ARX (NLARX) model is the extended of 

linear ARX models to the nonlinear situation as shown in 

Figure 4 and expressed in Eq. (2). According to Lennart 

Ljung, the function ( f ) depending on the finite number of 

previous inputs ( u ) and outputs ( y ), where ( an ) is the 

number of past output terms, ( bn ) is the number of past input 

terms used to predict the current output and ( kn ) is the delay 

from the input to the output (the number of samples)[12].  

 

( ) (y(t 1), ..., y(t n ), u(t n ), ..., u(t n n 1))
a k k b

y t f         (2) 

 

Therefore, this model is used to describe the nonlinear 

extensions of linear models. The structure enables complex 

nonlinear behavior to be modeled using flexible nonlinear 

functions, such as wavelet and sigmoid networks. The 

NLARX model is usually used as a black-box identification 

model because the nonlinear function of the NLARX model is 

a flexible nonlinearity estimator with parameters that need not 

have physical significance[12]. 

 

 
Fig. 4. The structure of a NLARX model 
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F. Nonlinear Hammerstein-Weiner Model 

Lennart Ljung stated that, the HW models can be used to 

defined the dynamic systems that using one or two static 

nonlinear blocks in series with a linear block, where the linear 

block is a discrete transfer function and epitomizes the 

dynamic component of the model[12]. Figure 5 shows the 

structure of HW Model that represents the dynamic system 

using input and output static nonlinear blocks in between 

dynamic linear blocks which is distorted by static 

nonlinearities. Furthermore, the HW structure can also be used 

to capture the physical nonlinear effects in the system that will 

affect the input and output of the linear system[11]. 

 

 
Fig. 5. The fundamental structure of a HW model 

 

Since the applications of HW Model depending on 

the inputs, thus if the output of the system depends nonlinearly 

on the input, it can break down the input and output 

relationship of two or more elements that are interconnected. 

This structure is recommended because they have a simpler 

block representation, transparent relationship to linear 

systems, and is easier to be carryout than heavy-duty nonlinear 

models. With reference to Figure 2.5, the HW model can be 

outlines as a combination of three series blocks that can be 

expressed as Eq. (2.3) where ( )u t  is an input data which has 

the same dimension as w( )t [13]. 

 

                                ( ) (u(t))w t f                                       (3) 

 

For the second block: 

                             ( ) ( )
B

x t w t
F

                                (4) 

Meanwhile, Eq. (4) is a linear transfer function and ( )x t has 

the same dimension as ( )y t , where ( B ) and ( F ) are similar 

to polynomials in the linear Output-Error model. For 
yn  

outputs and un   inputs, the linear block is a transfer function 

matrix containing entries[13, 14]: 

 

( ),

( ),

B qj i

F qj i

  

 

where: 

1, 2, ...,

1, 2, ...,

j ny

i nu




  

 

For the third block: 

                                   ( ) (x(t))y t h                                  (5) 

 

On the other hand, Eq. (5) is defined as a nonlinear function 

that maps the output of the linear block to the system output, 

which ( )w t and ( )x t are internal variables that define the 

input and output of the linear block, respectively. As ( f ) 

acting as an input port of the linear block, this function is 

called the input nonlinearity. Since ( h ) also acting as an 

output port of the linear block, this function is called the 

output nonlinearity. Thus if a system consists of more than one 

inputs and outputs, the functions ( f ) and ( h )  must be define 

for each input and output signal[13, 14]. 

 

However, it is not compulsory to contain both the 

input and the output nonlinearity in the model structure. If a 

model consists only the input nonlinearity ( f ), then it is a 

Hammerstein model. In the same way, when the model 

consists only the output nonlinearity ( h ), thus it is a Wiener 

model. Therefore, the nonlinearities ( f ) and ( h ) can be 

defined as a scalar function, meaning that one nonlinear 

function for each input and output channel. Hence the process 

of HW model estimates the output ( )y t can be summarize 

into three steps as follows[13, 14]: 

 

 Evaluates Eq. (3) from the input data, where, ( )w t is 

the input to the linear transfer function
B

F
. The input 

nonlinearity is a static (memoryless) function, where 

the value of the output at given time ( t ) depending to 

the input value at time ( t ). The input nonlinearity 

can be defined as a sigmoid network, wavelet 

network, saturation, dead zone, piecewise linear 

function, one dimensional polynomial, or a custom 

network. It is possible to remove the input 

nonlinearity. 

 Determines the output of the linear block using ( )w t

with Eq. (4) as the initial conditions, where the 

configuration of the linear block will be done by 

defining the numerator ( B ) and denominator ( F ) 

orders. 

 Estimates the model output by transforming the 

output of the linear block using the nonlinear 

function ( h ), as it mentioned in Eq. (5). 

III. QPAL ROBOT SYSTEMS & CONFIGURATION 

A. QPAL Robot System Overview 

QPAL Robot was designed and developed in February 

2014. The robot was designed for medium capacity multi-

purpose applications such as advanced firefighting systems, 

mine detection, simple tunnel system studies etc. In addition to 

the statically stable and active suspension (multi- joints) robot 

system configuration, this robot can be used for various 

difficult tasks and uneven terrain. As its name implies, the 

robot was designed with four legs, each with a 3-DOF and it is 
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driven by entirely by electrical energy. On the control panel, a 

special computer-based control with single board design 

namely QBoard uses a relatively microcontroller unit (MCU) 

that is placed in the center of the robot body[15], as shown in 

Figure 6. 

The body frame was minimized in order to maintain the 

overall size and weight of the robot down. Framework for the 

design of the body is made of aluminum rod with dimensions 

of 0.44m length, 0.21m width and height of 0.12 m. In order to 

reduce the quantity of hardware required to attach the whole 

assembly, the body frame share its hardware attachment with 

the shoulder. The electronics devices are installed as close as 

possible to the center of the body frame to be easily covered 

by a shell and reduce the quantity of wires wiring[15]. 

 

 
Fig. 6. QPAL robot system configuration 

B. QPAL Leg Design and Configuration 

The shoulder of the robot was intended to hold the motor 

for each leg and to ensure that all attachments for the legs and 

motor can be connected in the same assembly. The movement 

of the shoulder are directly controlled to enable the horizontal 

rotation clockwise and anti-clockwise direction meanwhile an 

indirectly control system with a parallel actuation were used to 

control the other joints. On top the motors; there is another 

surface to hold the potentiometer for measuring the rotation of 

the shaft. Shaft potentiometers help support the end of the 

motor shaft to prevent the shaft from fully cantilevered[15]. 

In order to control the movement of the leg, a DC linear 

actuator M1 and M2 are mounted as shown in Figure7. The 

same DC linear actuator is used to control the height of the 

thigh from the axle on the thigh joint to the axle on the shank; 

the structure should not interfere with the wires. Both the DC 

linear actuator is completed by using an indirect control 

system to cause a different direction either clockwise or 

counter-clockwise. This allows the leg to perform a motion. 

The shank of the quadruped robot was designed by the need of 

what the robot required to move properly. The legs should be 

kept as close as possible to the robot body to minimize the 

amount of torque on each joint. The design of the leg is 

intended to be one piece to make the assembly of the robot 

easier. Another DC linear actuator is used to allow the leg to 

be pulled in both clockwise and counter clockwise directions. 

To reduce the friction when the leg contacted with the ground, 

a semi-sphere rubber ball are used at the end effector as shown 

in the green circle in Figure 7[15]. 

 

 
Fig. 7. QPAL robot leg structure 

C. QPAL Leg Coordination and Kinematics 

QPAL Robot was designed with three degree of freedom 

(3-DOF) since it has three different links for each leg in order 

to mimic the leg structure of a quadruped creature through the 

shoulder, thigh and shank links, as shown in Figure 8. The 

calculation of kinematics for this robot is based on the 

shoulder point known as shoulder coordinate system (SCS) as 

shown in Figure 9. Meanwhile, the calculations of kinematics 

based on the body coordinate system (BCS) are determined 

from SCS for each leg, as shown in Figure 3.4. For the inverse 

kinematics calculation the configuration of angle for each 

DOF is used[15], as shown in Figure 10.  

 

 
Fig. 8. A 3-DOF QPAL robot leg with shoulder, thigh and shank links 

 

 
Fig. 9. Coordinate system used for QPAL robot 
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Fig. 10. QPAL geometrical-based coordination system for one leg 

D. QPAL Robot Control System Overview 

As mentioned in before, QPAL robot is a computer-based 

control with single board design namely QBoard. The control 

system mechanism of the QPAL robot is designed with 

QBoard, digital multiplexer and full bridge drivers to 

manipulating a single leg, as shown in Figure 11. Through the 

study of QPAL robot control system, it can be separated into 

two different categories which are the low-level I/O port 

read/write operations and high-level locomotion to allow the 

robot walking on the flat ground surface. Due to QPAL’s 

complexity, this method has some weaknesses. As a solution, 

Arduino Mega is selected to overcome the weaknesses and 

MATLAB® software is used to build the system architecture 

for operating the robot. QPAL robot made up of 12 

controllable joints, where each leg consists of three sources of 

feedback from the potentiometer to make a closed-loop 

control system for the robot. Thus, the QBoard system control 

system is designed to allow dual driver controllers for each leg 

for testing purpose, where the main microcontroller runs the 

complete operating system, while the dual driver software is 

fully application specific and the leg position of QPAL’s is 

controlled by using an individual dual driver[15]. 

 

 
Fig. 11. QPAL robot control system design 

III.  QPAL ROBOT LEG’S IDENTIFICATION AND 

MODELING 

A. Introduction 

The experiment setup for this project consists of one leg of 

QPAL robot with computer-based controller QBoard[15] 

connected with the personal computer (PC) with embedded  

SIMULINK MATLAB® software. The SIMULINK program 

as shown in Figure 12 is selected as the software platform for 

control and monitoring QPAL robot’s leg movement. Figure 

13 shows the real experiment setup for QPAL leg system. The 

project use voltage input signal to each joints and the output is 

the angle of the joints, with sampling time of 0.1s for model 

estimation and validation. The identification and modeling 

technique is performed by using Figure 2 as a reference. 

 

 
Fig. 12. Block diagram of control system for QPAL robot leg 

 

 
Fig. 13.  Experimental Setup 

B. Data Preprocessing 

The raw data collected during the experiment need to be 

preprocessed before starting the identification process. Since 

measured data frequently have offsets, slow drifts, outliers, 

missing values, and other irregularities, thus SI toolbox will 

eliminate such irregularities by executing process such as 

detrending, filtering, resampling, and reconstruction of 

missing data. Moreover, the toolbox can analyze the 

appropriateness of data for identification and provide 

diagnostics on the persistence of excitation, existence of 

feedback loops, and presence of nonlinearities[16]. The data 

preprocessing can be done by selecting the ‘Quick Start’ 

option in SI App, which is the pre-processing shortcut process 

for the experimental data. The ‘Quick Start’ option 

instantaneously performs the following four actions: removes 

the means from the experimental data (input and output data), 

it splits the data (detrended data) into two parts, specify the 

first part as estimation data for models (or working data) and 

specify the second part as validation data[12]. 

C. Selecting Model Structure 

Selecting the right model structure is prerequisite before its 

estimation and the selection of model structure is based upon 

understanding of the physical systems. Since the leg system is 

a nonlinear system, nonlinear SI is used as the model 

structure. There are two types of nonlinear model structure in 

SI: NLARX model and HW model. Therefore, the selection 

between these two models is decided based on the comparison 

of the highest best fits results for Joint 1, Joint 2 and Joint 3. 

The estimation for selecting between the NLARX and HW 

model with respect to the raw data was generated with by 

using the default setting of both model. 
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D. Selecting Model Structure 

SI Toolbox offers a few scalar nonlinearity estimators 

( )f x  for HW models, where nonlinearity estimators are 

available for both the input and output nonlinearities  

( f ) and ( h ), respectively[17]. Every nonlinearity estimator 

resembles to an object class in SI toolbox. As the HW model 

is estimated in the app, SI toolbox will generate and constructs 

objects based on these classes. In addition, the nonlinearity 

estimators can also be created and configured at the command 

line[12].  

In addition, there are six types of numerical search method 

used for iterative parameter estimation of HW model provided 

in SI toolbox: auto (default), Gauss-Newton (gn), Adaptive 

Gauss-Newton (gna), Levenberg-Marquardt (lm), Trust-

Region Reflective Newton (lsqnonlin) and Gradient Search 

(grad)[12]. Therefore, for this project, the estimation of 

nonlinearity for the input and output channel together with 

varying of linear order and the search method is done by using 

the trial and error methods. Then, SI toolbox GUI will 

generate the best fits to the experimental data for each joints of 

QPAL leg system.  

E. Model Validation 

SI toolbox provides feature to validate the accurateness of 

identified models using independent sets of experimental data 

from a real system. For a given set of input data, the toolbox 

will generates the output of the identified model and compare 

the output with the experimental output data from a real 

system. Additionally, the toolbox can also computes the 

prediction error and produce time-response and frequency-

response plots with confidence bounds to visualize the effect 

of parameter uncertainties on model responses. Moreover, the 

toolbox also able to analyze the identified model using time-

response and frequency-response plots, such as step, impulse, 

Bode plots, and pole-zero maps by dragging the identified 

model into the LTI viewer[16]. 

F. Linearization  

Since the control design and linear analysis methods using 

Control System Toolbox software require linear models, thus 

the estimated nonlinear model in SI toolbox must be linearize 

so that the model can be used for control design and linear 

analysis purpose. According to Lennart Ljung, there are two 

techniques to determine a linear approximation of nonlinear 

models: linear approximation for a given input signal and 

tangent linearization. In MATLAB® software, linapp 

command is used to generate a linear approximation of a 

nonlinear model for a given input signal, which the resulting 

model is only valid for the same input that is used to generate 

the linear approximation. Meanwhile, the linearize command 

is used to computes tangent approximation of the nonlinear 

dynamics that is accurate near the system operating point, 

where the resulting model is a first-order Taylor series 

approximation for the system about the operating point, which 

is defined by a constant input and model state values[12].  

As for this project, the linear approximation for a given input 

signals technique is used to linearize the HW model of the 

joints of QPAL leg system. The linapp command will generate 

the best linear approximation of a NLARX or HW model for a 

given input or a randomly generated input in a mean-square-

error sense, where the resulting linear model might only be 

valid for the same input signal as the one that is used to 

computes the linear approximation. The linapp command also 

determines the best linear model that is structurally similar to 

the original nonlinear model and delivers the best fit between 

a given input and the corresponding simulated response of the 

nonlinear model. In order to generate a linear approximation 

of a nonlinear model for a given input, the necessary variables 

are as follows[12, 18]:  

 

 Nonlinear ARX model (idnlarx object) or 

Hammerstein-Wiener model (idnlhw object). 

 Input signal for which needed to obtain a linear 

approximation, specified as a real matrix or an iddata 

object. 

The specified input signal used by linapp command to 

compute a linear approximation can be outlined as 

follows[12]:  

 

 For nonlinear ARX models, linapp estimates a linear 

ARX model using the same model orders ,a bn n  and 

kn  as the original model. 

 For Hammerstein-Wiener models, linapp estimates a 

linear Output-Error (OE) model using the same 

model orders ,b fn n  and kn . 

 

    Generally, the idnlhw object can be generated by importing 

the identified HW model from the SI App into the 

MATLAB® workspace. The HW model is then linearized by 

using the following syntax in the MATLAB® command 

window: 

 
[X,U] = findop(sys,'steady',InputLevel,OutputLevel) 
SYS = linearize(NLSYS,U0,X0) 
t_fsys = tf(sys) 

 
where, 

[X,U] = findop(sys,'steady',InputLevel,OutputLevel) returns 

the operating-point state values, (X), and input values, (U), for 

the idnlarx model, (sys), by using steady-state input and 

output specifications[19]. 

 

SYS = linearize (NLSYS,U0,X0) linearizes the idnlhw model 

(NLSYS) around the operating point specified by the input 

(U0) and state values (X0), where, (X0) must not  

contain equilibrium state values[20]. 

 

tf_sys = tf(SYS) transforms the idnlhw model (SYS) into 

transfer function form. The output (tf_sys) is a (tf) model 

object representing (SYS) as a discrete time transfer  

function[21]. 

http://www.mathworks.com/help/ident/ref/idnlarxfindop.html#outputarg_X
http://www.mathworks.com/help/ident/ref/idnlarxfindop.html#outputarg_U
http://www.mathworks.com/help/ident/ref/idnlarxfindop.html#inputarg_sys
http://www.mathworks.com/help/ident/ref/idnlarxfindop.html#inputarg_InputLevel
http://www.mathworks.com/help/ident/ref/idnlarxfindop.html#inputarg_OutputLevel
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IV.  RESULTS AND ANALYSIS 

A. Experiment Setup and Running Procedure 

Figure 14 to 16 shows the running procedure for each joints 

of the QPAL’s leg system. The experimental data is obtained 

via moving the joints from its minimum to its maximum angle 

to make the data very informative about the leg system by 

using Figure 12 as the software platform to control QPAL’s 

leg movement. The data is obtained by using sampling time of 

0.1s. 

 

 
Fig. 14. Joint 1 running procedure, (a) minimum angle position (b) maximum 

angle position 

 

 
Fig. 15. Joint 2 running procedure, (a) minimum angle position (b) maximum 

angle position 

 

 
Fig. 16. Joint 3 running procedure, (a) minimum angle position (b) maximum 

angle position 

B. The Preprocessed Data 

The raw data are preprocessed to remove the means before 

the estimation process. The data also splits into estimation and 

validation data. The input and output data obtained from the 

experimental data for each joints of QPAL leg as shown from 

Figure 17 to 19. On the other hand, Figure 20 to 22 shows the 

experimental data after the data preprocessing process. 

 

 
(a) 

 

 
(b) 

 
Fig.17. The experimental data for Joint 1(sample for first 30 seconds); (a) 

input data, (b) output data 

 

 
(a) 

 

 
(b) 

Fig. 18. The experimental data for Joint 2 (sample for first 30 seconds); (a) 
input data, (b) output data 
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(a) 

 

 
(b) 

Fig. 19. The experimental data for Joint 3 (sample for first 30 seconds); (a) 

input data, (b) output data 

 

 
Fig. 20. The preprocessed experimental data for Joint 1 

 

 
Fig. 21. The preprocessed experimental data for Joint 2 

 
Fig. 22. The preprocessed experimental data for Joint 3 

C. Selected Model Structure 

As stated in Section 4.3, the selection between NLARX model 

and HW model is decided based on the comparison of the 

highest best fits results for Joint 1, Joint 2 and Joint 3. Thus, 

the estimation of NLARX model with respect to the raw data 

is generated with 𝑛𝑎 = 2,  𝑛𝑏 = 2,  𝑛𝑘 = 1 while ( f ) is 

applied as a wavelet network. These values are the default 

setting for NLARX model. Meanwhile, the estimation of HW 

model is computed with 𝑏𝑛 = 2,  𝑓𝑛 = 3,  𝑘𝑛 = 1 , where input 

and output nonlinearity estimators is a piecewise linear. These 

values are also the default setting for HW model. From Figure 

23 to 25 shows the best fits of both model structures obtained 

with the default setting. From the results, it can be concluded 

that for the joints of QPAL leg system, the HW model provide 

a better result compared to the NLARX model. Thus, HW 

model is selected as the model structure for this project to 

obtain the mathematical model for these joints of QPAL leg 

system. 

 

 
Fig. 23. Model output for Joint 1 using (a) NLARX Model, (b) HW Model 

 

 
Fig. 24. Model output for Joint 2 using (a) NLARX Model, (b) HW Model 
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Fig. 25. Model output for Joint 3 using (a) NLARX Model, (b) HW Model 

D. Estimated Model Output Analysis  

After the selection of model structure is finalized, the 

estimation of the model continued with the estimation of the 

nonlinearity estimator for the input and output  

together with varying the linear order by using the trial and 

error technique since there is no information available 

regarding the joints system.  

The estimation process continues until it achieves the 

highest possible best fits for the model. After an uncountable 

of estimation trials, the model that provide the best fits yield 

the linear order of 𝑏𝑛 = 3,  𝑓𝑛 = 3,  𝑘𝑛 = 1 , estimated with  

sigmoid network as the input nonlinearity and piecewise linear 

as the output nonlinearity. The validation data shows 71.06% 

best fits with low Final prediction error (FPE) = 0.054 and loss 

function = 0.04841 by using Levenberg-Marquardt (lm) 

algorithm, meaning that the estimated model nearly tracking 

the real output data from the experiments, as shown in Figure 

26, while Figure 27 shows the close-up for the first upper peak 

and the lower peak waveform of the data. 

 

Fig. 26. Measured versus simulated model outputs for Joint 1(sample for first 

5 seconds) 

 

 
Fig. 27. Joint 1 model output close-up; (a) upper peak (b) lower peak 

 

The estimated model must undergo the linearization 

process to obtain the mathematical model for the system. As 

results, the state-space model and the transfer function 

representing the estimated model for joint 1 in the form of 

discrete-time function can be shown in Eq. (6) and Eq. (7) 

below. In addition, the step response result from the SI 

toolbox shows a good oscillatory reaction to the final steady 

value for the estimated model, as shown in Figure 28. 

Meanwhile, Figure 29 proved that the estimated model system 

is stable since all the poles of the transfer function lies within 

the unit circle of the z-plane. 

 

Joint 1 discrete-time state-space model: 
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Joint 1 discrete-time transfer function: 
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Fig. 28.  Estimated model step response for Joint 1 

 
Fig. 29.  Estimated model zero and pole output for Joint 1 
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Figure 30 shows the estimated model output computed 

using HW model after varying the nonlinearity estimator of 

input and output channel together with varying of linear order 

for trial and error methods. The best fit of 79.14% is obtained 

for the experimental data of Joint 2 with low Final prediction 

error (FPE) = 0.101 and loss function = 0.09762. The model is 

estimated with linear order of 𝑏𝑛 = 2,  𝑓𝑛 = 2,  𝑘𝑛 = 1 , with 

saturation as the input nonlinearity and piecewise linear as the 

output nonlinearity by using default search method. Since the 

validation data shows 79.14% best fits, it can be concluded 

that the estimated model is very nearly tracking the real output 

data from the experiments. The lower and upper peak 

waveform close-up can be shown as in Figure 31. 

 

Fig. 30. Measured versus simulated model outputs for Joint 2 (Sample for first 

30 seconds) 
 

 
Fig. 31. Joint 2 model output close-up; (a) upper peak (b) lower peak 

 

The discrete-time state-space model and the discrete-time 

transfer functions that represents the estimated model for Joint 

2 after the linearization was performed is shown in Eq. (8) and 

Eq. (9). Figure 32 shows the step response result from the SI 

toolbox shows a good oscillatory reaction to the final steady 

value for the estimated model, while Figure 33 proved that the 

estimated model system is stable since all the poles of the 

transfer function lies within the unit circle of the z-plane. 

Joint 2 discrete-time state-space model: 
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Joint 2 discrete-time transfer function: 
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Fig. 32. Estimated model step response for Joint 2 

 

 
Fig. 33. Estimated model zero and pole output for Joint 2 

 

Figure 34 shows the model output for Joint 3 estimation 

using HW model. The upper and lower peak close-up for the 

estimated output can be shown as in Figure 35. Through 

numerous of estimation trials, the highest best fits for Joint 3 

point to 71.35% by using Adaptive Gauss-Newton (gna) 

algorithm with low Final prediction error (FPE) = 0.1271 and 

loss function = 0.1228. This model is obtained with linear 

order of 𝑏𝑛 = 3, 𝑓𝑛 = 1, 𝑘𝑛 = 3, estimated with saturation as 

the input nonlinearity and piecewise linear as the output 

nonlinearity. As the validation data shows 71.35% best fits, it 

can be concluded that the estimated model is almost tracking 

the real output data from the experiments. As a result from the 

linearization, the state-space model and the transfer function 

representing the estimated model for joint 3 in the form of 

discrete-time function can be specified as in Eq. (10) and Eq. 

(11). Figure 36 shows the step response result from the SI 

toolbox shows a good oscillatory reaction to the final steady 

value for the estimated model. Whereas, Figure 37 proved that 

the estimated model system is stable since all the poles of the 

transfer function lies within the unit circle of the z-plane. 

 

Joint 3 discrete-time state-space model: 
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Joint 3 discrete-time transfer function: 
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Fig. 34. Joint 3 model output, original output (black) and estimated output 

(blue) for the same input signal 

 

 
Fig. 35. Joint 3 model output close-up; (a) upper peak (b) lower peak 

 

 
Fig. 36. Estimated model step response for Joint 3 

 

 
Fig. 37. Estimated model zero and pole output for Joint 3 

E. Residual Analysis Results 

Figure 38 to 40 shows the autocorrelation of output (angle) 

residuals along with the cross-correlation between input 

(voltage) and output (angle) residuals. In order to obtain the 

residual analysis for these three models the confidence interval 

(dashed lines) for this estimation is set to 100%. The top axis 

shows the autocorrelation of residuals for the output 

(whiteness test) and the bottom axis shows the cross-

correlation between input and output residual (independence 

test). The horizontal scale (the number of lags) is the time 

difference (in samples) between the signals at which the 

correlation is estimated[17, 22]. The whiteness test for all 

three models indicates that the output residuals are 

uncorrelated since they fall within the confidence interval. 

Moreover, the independence test also shows that there is no 

correlation between the input and the output residual as they 

also fall within the confidence interval. Therefore, both tests 

proved that the all three models are good and acceptable. 
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Fig. 38. Autocorrelation of residual and cross correlation analysis of estimated 

model for Joint 1 model 

 

 
Fig. 39. Autocorrelation of residual and cross correlation analysis of estimated 

model for Joint 2 model 

 

 
Fig. 40. Autocorrelation of residual and cross correlation analysis of estimated 

model for Joint 3 model 

V.  CONCLUSION 

As for conclusion the system identification technique 

successfully applied to each joints of QPAL leg system to 

obtain the best representation of mathematical model for the 

system. With reference to all the candidate structure models 

studied, HW models represent the behavior for each joints of 

QPAL leg system quite well. HW model offers a greater 

reproduction of the actual data on the entire analyzed period. 

Another interesting feature of the HW model lies in its 

simplicity to consider the nonlinearities and the possibility to 

add new nonlinearities, and also its easy execution. These 

good results show that the black-box model can easily 

estimate the joints system of QPAL leg.  

There are seven nonlinearity estimators for both input and 

output have been studied throughout this project, which are 

the piecewise linear, sigmoid network, wavelet network, 

saturation, dead zone, one-dimensional polynomial, and unit 

gain. As well as six search methods that is used for this 

project, which are the auto, Gauss-Newton, Adaptive Gauss-

Newton, Levenberg-Marquardt, Trust-Region Reflective 

Newton and Gradient Search. Through the trial and error 

methods by varying the nonlinearity estimators, search 

methods and the linear order, the HW model will result in the 

highest best fits percentage with low prediction errors and loss 

function. 

All three models are considered well and highly applicable 

since they pass the whiteness test and the independence test.  

The stability of the estimated model is proved as the poles for 

all the models lies within the unit circle of the z-plane. Also, 

the step response results show that the models have a good 

oscillatory reaction to the final steady state value. It can be 

concluded that, the balances 28.94%, 20.86%, and 28.65% are 

losses due to nonlinear factor such as friction, backlash, 

torque, and other external disturbance. The best fits percentage 

can give better percentage if the nonlinear factors are also 

considered. Meanwhile, the search method, nonlinearity 

estimators and the linear order involved in this project can be 

further studied to improve the results. 

The mathematical models obtained from this project can 

contribute to the method for development and implementation 

of other controller for QPAL leg system. Thus, this project 

will provide greater opportunities for future work such as 

development of robust controllers, validation process, and 

comparing result with real system. Future research includes 

the identification for the other leg of QPAL robot and the 

development of robust controller for QPAL leg system also 

can be done by using the mathematical model obtained from 

this project to provide sophisticated control system for QPAL 

robot. 
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