Tribological Behaviour Improvement of Lubricant Using Copper (II) Oxide Nanoparticles as Additive

Click here for a simple search.
[feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
 
 

M. A., Hassan and Sakinah, Muhamad Hisham and K., Kadirgama and D., Ramasamy and M. M., Noor and M. M., Rahman (2016) Tribological Behaviour Improvement of Lubricant Using Copper (II) Oxide Nanoparticles as Additive. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 10 (2). pp. 363-371.

[img]
Preview
PDF
538Kb

Official URL: http://waset.org/publications/10003861/tribologica...

Abstract

Tribological properties that include nanoparticles are an alternative to improve the tribological behaviour of lubricating oil, which has been investigated by many researchers for the past few decades. Various nanostructures can be used as additives for tribological improvement. However, this also depends on the characteristics of the nanoparticles. In this study, tribological investigation was performed to examine the effect of CuO nanoparticles on the tribological behaviour of Syntium 800 SL 10W−30. Three parameters used in the analysis using the wear tester (piston ring) were load, revolutions per minute (rpm), and concentration. The specifications of the nanoparticles, such as size, concentration, hardness, and shape, can affect the tribological behaviour of the lubricant. The friction and wear experiment was conducted using a tribo-tester and the Response Surface Methodology method was used to analyse any improvement of the performance. Therefore, two concentrations of 40 nm nanoparticles were used to conduct the experiments, namely, 0.005 wt % and 0.01 wt % and compared with base oil 0 wt % (control). A water bath sonicator was used to disperse the nanoparticles in base oil, while a tribo-tester was used to measure the coefficient of friction and wear rate. In addition, the thermal properties of the nanolubricant were also measured. The results have shown that the thermal conductivity of the nanolubricant was increased when compared with the base oil. Therefore, the results indicated that CuO nanoparticles had improved the tribological behaviour as well as the thermal properties of the nanolubricant oil.

Item Type:Article
Uncontrolled Keywords:Concentration, improvement, tribological, Copper (II) oxide, nanolubricant
Subjects:T Technology > TJ Mechanical engineering and machinery
Divisions:Faculty of Mechanical Engineering
ID Code:15480
Deposited By: Noorul Farina Arifin
Deposited On:23 Nov 2016 14:02
Last Modified:14 Aug 2017 09:55

Repository Staff Only: item control page

 

 

 

 

 

 

Introduction

An Institutional Repository is an online focus for collecting, preserving, and disseminating any University publication in the digital form for the intellectual sharing.
The UMP Institutional Repository (UMP IR) provides access of University publication such as journal article, conference paper, research paper, thesis and dissertations.


Any Enquiries

Please email or call Knowledge Management staff:-

Pn. Noorul Farina (09-424 5605) OR
Cik Ratna Wilis Haryati (09-424 5612)

Any correspondence concerning this specific repository should be sent to umplibrary@ump.edu.my