1. ABSTRACT
A user friendly interface (prediction model) is constructed by using Microsoft Visual C Sharp (C#) to predict the persistency and permanency properties of two stages splicing languages as well as the relations between the families of stage one and stage two splicing languages. Up to two stages DNA splicing system, this system works based on the developed mathematical theorems by using a Yusof-Goode (Y-G) approach. On the biological side, this software is replaced with wet-lab, which optimize time and money.

3. THEOREMS

Theorem 1: If each of the initial strings in a Y-G splicing system has only one recognition site, then no distinct splicing languages will be produced at stage two.

Theorem 2: If each of the initial strings in a Y-G splicing system has two recognition sites, then the set of stage two splicing languages always contain the set of stage one splicing languages.

Theorem 3: The set of two stages splicing languages which is produced by a Y-G splicing system consisting two initial strings (with one cutting site) and two rules with disjoint crossing sites and palindromic sequences is persistent.

Theorem 4: The set of two stages splicing languages which is produced by a Y-G splicing system consisting two initial strings (with one cutting site) and two rules with disjoint non-palindromic crossing sites (or sequences) is persistent.

Theorem 5: The set of two stages splicing languages which is produced by a Y-G splicing system consisting two initial strings (with one cutting site) and two rules where the whole sequences of one rule is palindromic and the other is non-palindromic is persistent.

Theorem 6: The set of two stages splicing languages that is produced by a Y-G splicing system consisting two initial strings (with two cutting sites) and two rules with disjoint crossing sites and non-palindromic sequences is persistent.

Theorem 7: The set of two stages splicing languages that is produced by a Y-G splicing system consisting two initial strings (with two cutting sites) and two rules where the whole sequences of one rule is palindromic and the other is non-palindromic is persistent.

Theorem 8: The set of two stages splicing languages that is produced by a Y-G splicing system consisting two initial strings (with two cutting sites) and two rules where the sequence of first rule is palindromic and the sequence of the second rule is non-palindromic is persistent.

2. INTRODUCTION

DNA Cut
DNA Ligase

Figure 1: Test Tube of Recombination Process

4. FLOWCHART OF USER FRIENDLY INTERFACE

CONCLUSION
As a conclusion, this system works on predicting the persistency and permanency of DNA splicing languages as well as relations between two stages DNA splicing languages which is applicable in DNA recombination process. Besides, it benefits to certain organization such as NEB.

ACKNOWLEDGEMENT
All authors would like to thank Research and Innovation Department of UMP for funding this research through Research Grant RDU Vote: 130354 and RAGS RDU Vote: 131404.