Fabrication, Characterization and In Vitro Biocompatibility of Electrospun Hydroxyethyl Cellulose/poly (vinyl) Alcohol Nanofibrous Composite Biomaterial for Bone Tissue Engineering

Click here for a simple search.
[feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
 
 

Chahal, Sugandha and Jahir Hussain, Fathima Shahitha and Kumar, Anuj and Mohammad Syaiful Bahari, Abdull Rasad and M. M., Yusoff (2016) Fabrication, Characterization and In Vitro Biocompatibility of Electrospun Hydroxyethyl Cellulose/poly (vinyl) Alcohol Nanofibrous Composite Biomaterial for Bone Tissue Engineering. Chemical Engineering Science, 144 . pp. 17-29. ISSN 0009-2509

[img]
Preview
PDF
175Kb

Official URL: http://dx.doi.org/10.1016/j.ces.2015.12.030

Abstract

Development ofnovel scaffold materials that mimic the extracellular matrix, architecturally and func- tionally, is becoming highly important to meet the demands of the advances in bone tissue engineering. This paper reports, the fabrication of natural polymer cellulose derived hydroxyethyl cellulose(HEC) based nanostructured scaffolds with uniform fiber morphology through electrospinning. Poly(vinyl alcohol) (PVA) was used as anionic solvent for supporting the electrospinning of HEC. Scanning electron microscopy and ImageJ analysis revealed the formation of non-woven nanofibers with well-defined porous architecture. The interactions between HECandPVA in the electrospun nanofibers were studied by differential scanning calorimetry, X-raydiffraction, dynamic mechanical analysis thermo-gravimetric analysis; Fourier transform-infrared spectroscopy,X-ray photoelectronspectroscopy and tensiletest. The mechanical properties of scaffolds were significantly altered with different ratios of HEC/PVA. Further, the biocompatibility of HEC/PVAscaffolds was evaluated using human osteosarcomacells. TheSEM images revealed favorable cellsattachment and spreading on the nanofibrous scaffolds and MTS assay showed increased cell proliferation afterdifferent time periods. Thus, these results indicate that HEC based nanofibrous scaffolds will be a promising candidate for bone tissue engineering.

Item Type:Article
Uncontrolled Keywords:Hydroxyethyl cellulose; Electrospinning; Thermo-mechanical properties; Bone tissue engineering
Subjects:Q Science > QD Chemistry
Divisions:Faculty of Industrial Sciences And Technology
ID Code:16970
Deposited By: Dr. Fathima Shahitha
Deposited On:06 Mar 2017 11:54
Last Modified:16 Aug 2017 15:39

Repository Staff Only: item control page

 

 

 

 

 

 

Introduction

An Institutional Repository is an online focus for collecting, preserving, and disseminating any University publication in the digital form for the intellectual sharing.
The UMP Institutional Repository (UMP IR) provides access of University publication such as journal article, conference paper, research paper, thesis and dissertations.


Any Enquiries

Please email or call Knowledge Management staff:-

Pn. Noorul Farina (09-424 5605) OR
Cik Ratna Wilis Haryati (09-424 5612)

Any correspondence concerning this specific repository should be sent to umplibrary@ump.edu.my