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ABSTRACT 

 

Developing one-dimensional (1D) simulation of two stroke hydrogen direct injection 
linear generator free-piston engine (2-stroke H2-DI LGFPE) is a low cost approach and 
it can avoid errors. A 1D simulation 2-stroke H2-DI LGFPE has been developed using 
GT-POWER software. The performance parameters of a 2-stroke H2-DI LGFPE have 
been investigated through various bore and stroke configurations. The performance 
parameter is also obtained by identifying 2-stroke H2-DI LGFPE at various start of fuel 
injection (SOF), start of ignition (SOI) and fuel per cycle (FPC). The modeling of 2-
stroke H2-DI LGFPE in GT-POWER requires different technique than the conventional 
engine since the crank slider mechanism is absent. The results from the simulation are 
compared with Fathallah, 2009, Maher, 2004 and Mikalsen, 2008c. From the analysis, 
the optimum performance is obtained when bore-stroke (B/S) ratio is 0.86. For the SOF, 
the optimum performance gain at piston position of 65.17 mm before TDC (bTDC). The 
optimum time for SOI is when piston position at 66.32 bTDC in order to get a better 
performance of 2-stroke H2-DI LGFPE. The operation at high engine speed of 6000 
RPM, the optimum performance gains at FPC 100 mg which is a rich operation for 2-
stroke H2-DI LGFPE simulated. At engine speed within the range of 1000 RPM until 
4000 RPM, lean operation should be chosen in order to reduce brake specific fuel 
consumption (BSFC). However, the lean operation will result in reducing the brake 
power of the LGFPE.  
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ABSTRAK 

 

Simulasi satu dimensi (1D) enjin dua lejang hidrogen suntikan terus penjana lelurus 
omboh bebas (2-stroke H2-DI LGFPE) adalah sebuah pendekatan kos rendah dan dapat 
mengelakkan ralat. Sebuah 1D simulasi 2-stroke H2-DI LGFPE telah dibangunkan 
menggunakan perisian GT-POWER. Parameter prestasi suatu 2-stroke H2-DI LGFPE 
telah dikaji selidik melalui pelbagai saiz diameter silinder dan lejang. Parameter prestasi 
juga diperoleh dengan mengenalpasti 2-stroke H2-DI LGFPE pelbagai di permulaan 
mengisi bahan bakar (SOF), permulaan pembakaran (SOI) dan bahan bakar per kitaran 
(FPC). Pemodelan 2-stroke H2-DI LGFPE di GT-POWER memerlukan teknik yang 
berbeza dari mesin konvensional kerana ketiadaan aci engkol. Hasil dari simulasi 
dibandingkan dengan Fathallah, 2009, Maher, 2004 dan Mikalsen, 2008c. Dari hasil 
analisis tersebut, prestasi optimum diperoleh pada nisbah dimeter silinder dan lejang 
(B/S) 0.86. Untuk SOF, prestasi yang optimum pada kedudukan diperoleh pada 
kedudukan omboh 65.17 mm sebelum takat paling atas (bTDC). Waktu optimum untuk 
SOI adalah ketika posisi omboh 66.32 bTDC untuk mendapatkan prestasi yang lebih 
baik untuk 2-stroke H2-DI LGFPE. Untuk operasi pada kelajuan enjin 6000 RPM, 
prestasi optimum diperoleh pada FPC 100 mg yang nisbah udara-bahan bahan adalah 
rendah berbanding FPC lain untuk 2-stroke H2-DI LGFPE yang disimulasi. Pada 
kelajuan enjin 1000 RPM sehingga 4000 RPM, operasi kurang bahan bakar harus 
dipilih untuk mengurangkan penggunaan bahan bakar khusus (BSFC). Namun, operasi 
kurang bahan bakar akan mengakibatkan kuasa brek LGFPE berkurangan. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 PROJECT BACKGROUND 

 

Nowadays, the use of fossil fuel is increasing and the emission of carbon dioxide 

(CO2) is hurting the environment. It is illustrated in Figure 1.1 that vehicles lead to 

significant amount of carbon dioxide emission and other pollutions. The Figure 1.1 

shows that the emission of pollution caused by fossil fuel is increasing from 1850 until 

2009. The emission of CO2 and pollutions brings to the development of a more 

environmental friendly fuel chains and the development of hybrid vehicles that stands 

out as a promising technology for the future. 

 

 

 

 

 

 

 

 

 

Figure 1.1: Global carbon emissions from fossil fuels. 

 

Source: Climate Progress and Climate Feedback 2008 

 

Besides, rising of global fossil fuel prices also leads to significant research on hybrid 

vehicle which will reduce the reliability on fossil fuels. Furthermore, power also 
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degrades as a result of the high friction in conventional engine. Hence, these problems 

have put the research and development of free-piston engine to intensity. 

 

Free-piston engines are characterized by a purely linear piston motion that is not 

restricted by a crank mechanism (Mikalsen, 2007a). The interaction of the components 

of the free-piston engines are coupled, through a � free� piston which is a significant 

feature for the engine. The absence of kinematic constraints has made the piston to be 

�free� where the piston motion will result in an im balance of forces acting on the piston 

(Aichlmayr, 2002). Unlike conventional engine which uses the rotation motion and 

more complex component that causes the high friction and resulting less engine 

efficiency, free-piston engine uses the linear motion and fewer components that improve 

engine efficiency and reduce friction as stated by Mikalsen, 2009a, Xiao, 2008 and 

Mikalsen, 2008a. Several designs of free-piston engine concept have been proposed. 

Generally, there are four types of free-piston engine applications which are free-piston 

air compressor, free-piston gas generator, free-piston hydraulic pump and free-piston 

engine generator (Aichlmayr, 2002).  

 

The free-piston engine generator consists of free-piston coupled to a linear 

electric machine. Figure 1.2 illustrates the free-piston engine generator prototype 

configurations. 

 

 

 

Figure 1.2: Illustration of the free-piston engine generator prototype configurations. 

 

Source: Nandkumar 1998 
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There are many advantages of a free-piston linear generator engine (LGFPE) 

compared to conventional engines such as high power to weight ratio, multi-fuel 

capability and low manufacturing cost and low maintenance due to less components and 

mechanical simplicity (Razali, 2008). 

 

Throughout this thesis, the simulation of two-stroke hydrogen direct injection 

free-piston linear generator engine prototype using GT-Power will be developed. The 

importance of this project is to improve the performance of LPGE. 

 

1.2 PROBLEM STATEMENT 

 

Conventional engines used the rotation motion and have more complex 

component that causes high frictions resulting in less engine efficiency. Compared to 

the LGFPE where it uses the linear motion and has fewer components that improve 

engine efficiency and reduces friction. Developing LGFPE can either be done by real 

prototype of the engine or through design and simulation by using GT-POWER. The 

downside of developing a real engine is that it is costly and more error prone compared 

to the simulation by using GT-POWER. By using GT-POWER, various configurations 

of bore and stroke are needed to investigate and to get the optimum performance of the 

LGFPE. Besides, it is required to identify the optimum time for start of fuel injection 

(SOF), start of ignition (SOI) and mass of fuel per cycle (FPC) in order to obtain 

optimum performance parameters. 

 

1.3 OBJECTIVES OF THE PROJECT 

 

The objectives of this research are: 

 

1. To develop 1-Dimensional model of two-stroke hydrogen direct injection 

linear generator free-piston engine using GT-POWER. 

2. To investigate the two-stroke hydrogen direct injection linear generator free-

piston engine performance for various bore and stroke configurations. 
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3. To obtain performance parameters identifying two-stroke hydrogen direct 

injection linear generator free-piston engine at various setting of start of fuel 

injection, start of ignition and fuel per cycle.  

 

1.4 SCOPE OF STUDY 

 

The scopes of this project are: 

 

1. The system of free-piston two-stroke hydrogen direct injection linear 

generator free-piston engine is developed by using GT-POWER software. 

2. Limited to the two-stroke hydrogen direct injection linear generator free-

piston engine specifications as reported by Razali, 2008. 

3. P-V diagram, in-cylinder pressure, brake power from 1000 RPM to 6000 

RPM and BSFC from 1000 RPM to 6000 RPM are the performance 

parameters investigated at no load condition. 

 

1.5 SUMMARY 

 

Chapter  1  has discussed  briefly  about  project  background,  problem 

statement,  objective  and  scope  of  the  project  on developing a two-stroke hydrogen 

direct injection free-piston linear generator by using GT-POWER software for different 

performance parameters at various bore and stroke configurations, SOF, SOI and FPC. 

This chapter is a fundamental for the project and act as a guideline for project research 

completion. 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 TWO-STROKE ENGINE 

 

Four-stroke cycle creates only one power stroke every two revolutions. This 

leads to a cycle giving one power stroke per revolution. The solution is to exhaust the 

cylinder as the piston approached and passed the bottom, or outer, dead center, and to 

use the depression caused by the inertia of the high speed flow of the outgoing gases to 

assist the induction process. The induction process must be timed to begin shortly 

before the exhaust ports close and to continue for a brief period during the subsequent 

upstroke of the piston. The objective is to complete both induction and exhaust within 

the period that the piston was swinging over BDC, and that will result to a small amount 

of detraction from the exhaust or compression strokes. This is not too difficult because 

the piston dwells momentarily at BDC, from 45° befo re to 45° after represents less than 

one-eighth of its displacement from the bottom end of its stroke (Garrett, 2001). In a 

two-stroke engine, the burnt gas is exhausted from the cylinder primarily by the 

pressure difference between it and atmosphere, rather than by the motion of the piston.  

 

 The two-stroke cycle, starting at top, or inner, dead center firing stroke, 

compromises first the combined power and exhaust stroke as the piston moves down, 

and then the induction and compression as it moves up again. A slight over-

simplification has made the function at BDC to overlap. Doubling the number of power 

strokes per revolution does not offer more potential for a power output double that of 

the four-stroke engine. The outputs of two-stroke engines range from only about 10 to 

40% above those of equivalent four-stroke units that will result in the pumping losses in 

the two-stroke engine becomes generally higher (Garrett, 2001). It is not possible to 
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develop such high mean effective pressure as with the two-stroke cycle because both 

induction and exhaust occur around BDC, the inlet and exhaust ports cab be situated 

near the bottom end of the cylinder and can be covered and uncovered by the piston. 

This obviates the need for valves and their actuating gear, so one of the major 

attractions of a two-stroke engine of this layout is its extreme simplicity, and therefore 

low cost (Garrett, 2001). 

 

 It also, however, leads to one of its principal disadvantages, which is that its fuel 

consumption is high because over most, if not all, of its speed range some of the 

incoming charge inevitably is lost through the exhaust ports during the overlap period. 

Although both efficiency and specific power output can be improve by measures such 

as injection of the fuel after the exhaust port are closed, incorporating poppet type 

exhaust valves into the head, scavenging the exhaust gases more effectively by 

supercharging or even incorporating extra cylinders for scavenging by providing extra 

air, all involve in the increment of the complexity of the engine, which reduces its 

attractiveness relative to a four-stroke unit (Garrett, 2001). The advantages of the two-

stroke consists of mechanical simplicity, low cost, mechanical silence, smooth torque 

owing to the shortness of the interval between combustion impulses, and consequently 

the mall flywheel and light weighted. If it is valid, it would still have to be set against 

the apparently inescapable disadvantages which is greater noise due to the sudden 

uncovering of the ports by the pistons, high specific fuel consumption, excessive 

hydrocarbon content of the exhaust gas, difficulty of starting and irregular firing at 

idling and light load with some types of two-stroke engine (Garrett, 2001).  

 

2.2 DIRECT INJECTION SYSTEM FOR SI ENGINE 

 

Injection of fuel is done during the compression stroke and is similar to fuel 

injection in a CI engine. Because of the very short time available for vaporization and 

mixing with air, very fine droplets of fuel are required, as are high turbulence and bulk 

mass motion within the combustion chamber. The injector pressure must be higher than 

the pressure required for port injection. This is the result of the high pressure into which 

the fuel is being injected, and because if the requirement for finer droplets of fuel.  

There are two stages of injection which is a pilot injection for ignition followed by the 
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main injection. Injection of air with fuel will vaporize and mixed time can be greatly 

reduced. This method also makes possible the stratification of the air-fuel mixture, 

which is the way these engines operate. In stratified charge combustion, a rich mixture 

is established around the sparkplug, while a very lean mixture fills the rest of the 

combustion chamber. Overall fuel ratio as high of 50:1 will not ignite if it were 

homogeneous. By operating with a very lean mixture combustion temperature is 

reduced, and this reduces heat loss which will give higher thermal efficiency 

(Pulkrabek, 1997).  

 

The fuel-rich mixture near the sparkplug readily ignites and burns with a fast 

flame speed. After that, the ignition of the lean mixture in the rest of the combustion 

chamber occurs. As stated by Pulkrabek, 1997, to establish this stratified air-fuel 

distribution, a sequence of injections is required;  

 

i. Some fuel is injected very early, during the intake stroke. This establishes 

the lean homogenous mixture that fills the combustion chamber. Only low 

injection pressure is required.  

ii. During the compression stroke additional fuel is injected at very high 

pressure to create the rich fuel-air mixture near the sparkplug. Pressures can 

be as high as 10 MPa or greater, which much higher pressures being tested in 

experimental development work.  

iii. The sparkplug is spark for ignition. 

 

2.3 HOMOGENOUS AND STRATIFIED COMBUSTION 

 

 This stratified charge consists of a region of fuel-rich mixture and pure air or a 

mixture of air and recycled burnt gases in the remaining volume that is shown if the 

Figure 2.1. This stratified charge is achieved by a late injection during the compression 

stroke. The combustion and energy release only take part inside the mixture region. A 

further advantage of the DI process due to stratification where the reactive zone is 

separated from the wall by the non-reacting part of the cylinder charge and the heat 

losses to the engine walls will be reduced (Baumgarten, 2005).  
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Figure 2.1: Homogenous (early injection) and stratified-charge mode (late injection) 

 

Source: Baumgarten 2006 

 

The main advantage of the direct injection is the fact that in the case of part load 

throttling can be eliminated and thus pumping losses are minimized as illustrated in 

Figure 2.2. The reduction of load can be achieved by reduction of the injected fuel 

quantity, while the airflow is not throttled. This approach of qualitative load control is 

well known from the DI diesel engine (Baumgarten, 2006). There is no homogenous 

fuel-air mixture inside the whole cylinder; instead there will be a stratified charge.  

 

 

 

Figure 2.2: Reduction of throttle losses, stratified-charge combustion 

 

Source: Baumgarten 2006 
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