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Abstract—This paper presents a novel data-driven sigmoid-
based PI for tracking of angular velocity of dc motor powered
by a dc/dc buck converter. A global simultaneous perturbation
stochastic approximation (GSPSA) is employed to find the
optimum sigmoid-based PI parameters such that the angular
velocity error is minimized. The merit of the proposed approach
is that it can produce fast PI parameter tuning without using
any plant model by measuring the I/O data of the system.
Moreover, the proposed PI parameters that are varied based on
sigmoid function of angular velocity error has great potential in
improving the control performance compared to the conventional
PI controller. A well-known buck converter powered DC motor
model is considered to validate our data-driven design. In
addition, the performances of the proposed method are examined
in terms of angular velocity trajectory tracking and duty cycle in
comparison with other existing approaches. Numerical example
shows that the data-driven sigmoid-based PI approach provides
better control performances as compared to existing methods.

Index Terms—Data-driven, variable structure PI, buck con-
verter powered dc motor, tracking control.

I. INTRODUCTION

Nowadays, many applications of dc motors require a high
precision motion, such as rolling mills, electric cranes, con-
veyor belts and liquid carriers. Generally, many researchers
apply conventional pulse width modulation (PWM) signals
to drive the dc motor. However, this approach provides an
unsatisfactory dynamic behavior due to hard switching strat-
egy, which causing sudden changes in the current and voltage
of the dc motor [1]. In order to solve this issue, a dc/dc
buck converter is utilized, which allows to control the step-
less velocity and smoothness. In particular, it can track both
desired angular velocity and position trajectory by adjusting
the required motor input voltage.

So far, a large number of methods have been widely reported
in controlling buck-converter powered dc motor. In [2], a
classical proportional-integral (PI) controller is utilized to
regulate the the dc motor angular velocity. Here, they apply
the controller to a fourth-order mathematical model of buck
converters with a dc motor. Likewise, for the same mathemat-
ical model, a feedback controller based on damping injection
and energy shaping has been synthesized in [3]. In [1], [4]
and [5], a flatness based approach is employed for a smooth
tracking of angular velocity of dc motor driven by dc/dc buck
converter. The controller in [1] and [4] was obtained through

a fourth-order model deduced in [2], while the controller in
[5] was designed based on simplified second-order model.
Note that in the second-order model, it is assumed that the
converter capacitor current and the motor armature inductance
to be negligible. Furthermore, a GPI control based on sliding
mode-delta modulation is proposed in [6]. Here, they used
the simplified mathematical model in [5]. Moreover, in [7], a
backstepping controller with both adaptive and non-adaptive
versions were derived from fourth-order mathematical model.
Their numerical simulation show that the adaptive version
provides better performance with load torque variations. Other
control approaches for dc/dc buck converter powered dc mo-
tors include PI and LQR controllers [8], PI-Fuzzy controller
[9], neural network controller [10], H∞ controller [11], robust
control law based on active disturbance rejection [12], and
two-stage control based on differential flatness [13].

As shown in the above, most of the designed approaches
has focused on the model-based controllers, which are derived
from second or fourth-order mathematical model. However,
it is difficult to apply the traditional model-based controller
in real buck-converter powered dc motor systems due to
several reasons, such as, the inaccuracy of simplified model,
unmodeled dynamic problems, and huge gap between con-
trol theory and real applications. As a results, a data-driven
controller will be more convincing solution. In particular, the
data-driven controller is designed based on input-output data
of the systems without using explicit or implicit information
of the plants. Here, the data-driven controller based on PID
structure is highly preferable due to its simplicity in design
and implementation [14]. Furthermore, the performance of
conventional PID controller can be improved by modifying it
to variable structure PID (VS-PID), which has been widely
reported in many literatures [15]–[17]. Hence, it is worth
evaluating the capability of data-driven VS-PID controller
for tracking of angular velocity trajectory of buck-converter
powered dc motor.

This paper aims to explore the capability of the data-
driven sigmoid-based PI for tracking of angular velocity
trajectory of buck-converter powered dc motor. Note that, the
sigmoid-based PI, which is in the family of VS-PID, has
been introduced in [17]. It offers great potential to improve
the control performance by varying the PI parameters based



on angular velocity error. However, the work in [17] does
not contains a clear explanation of data-driven controller
tuning. Here, a global simultaneous perturbation stochastic
approximation (GSPSA) [18] is utilized to find the sigmoid-
based PI parameters such that the angular velocity error is
minimized. Furthermore, the GSPSA algorithm was known
to be a promising tool for controller tuning problems. This
is because this algorithm, which is mainly derived from the
conventional SPSA method [19], is capable to solve variety
of optimization problems with less number of evaluated ob-
jective functions even for high-dimensional parameter tuning
[20]–[22]. In particular, it has been shown that the GSPSA
algorithm can achieve better local optimal values compared
to the standard SPSA in PID tuning of MIMO systems [14].
Our data-driven controlled design is then validated using a
well-known buck-converter powered dc motor model in [2].
Next, the performances of the proposed controller are analyzed
in terms of angular velocity trajectory tracking and duty
cycle input energy. Here, the convergence speed is recorded
based on the number of evaluated objective functions. Finally,
a comparative assessment between the proposed data-driven
sigmoid-based PI and conventional PI [8] and PI-Fuzzy [9] is
presented.

The organization of this paper is presented as follows. In
Section II, the problem of data-driven sigmoid-based PI in
minimizing the angular velocity trajectory tracking error of
buck-converter powered dc motor is formulated. In Section III,
the methodology of GSPSA-based algorithm, which is used
for sigmoid-based PI tuning, is summarized. The proposed
controller is then validated to a given buck-converter powered
dc motor model in Section IV. The analysis and performances
comparison between the proposed controller and other existing
control methods are also demonstrated. Finally, the summary
of this paper is presented in Section V.

Notation: The symbol R represents the real numbers set
and the symbol R+ represents the positive real numbers set.
Let V be the random variable. Then, the probability of event
V = E is given by P(V = E). For γ ∈ R+, satγ : Rn → Rn
is the saturation function whose ith element is represented as
follows:

Each element of sat
γ

(x) =

 γ if γ < xi,
xi if −γ ≤ xi ≤ γ,
γ if γ < xi,

where xi ∈ R is the ith element of x ∈ Rn.

II. PROBLEM STATEMENT

Consider the sigmoid-based PI controller of buck-converter
powered dc motor system in Figure 1 where r(t) is the
reference, u(t) is the control input, y(t) is the angular velocity
and e(t) is error between the reference and the angular
velocity. The buck-converter powered dc motor is denoted as
a plant G. The sigmoid-based PI controller is given by

KPI(s) = K̃P +
K̃I

s
(1)

Fig. 1. Sigmoid-based PI control system

where

K̃P = KP min +
|KP max −KP min|
1 + e−αP (e(t)−βP )

(2)

and

K̃I = KImin +
|KImax −KImin|
1 + e−αI(e(t)−βI)

. (3)

In (2) and (3), KP min ∈ R and KP max ∈ R are lower and
upper bounds of K̃P , respectively, KImin ∈ R and KImax ∈
R are lower and upper bounds of K̃I , respectively, αP ∈ R
and αI ∈ R are coefficients to adjust the curve sharpness
between lower and upper bounds of K̃P and K̃I , respectively,
and βP ∈ R and βI ∈ R are coefficients to shift the center
of curve between lower and upper bounds of K̃P and K̃I ,
respectively. For simplicity of design parameter tuning, we
define ∆P = |KP max−KP min| and ∆I = |KImax−KImin|.
Note that the values of K̃P and K̃I are now varied according
to e(t) signal, instead of using fix proportional and integral
gains in conventional PI controller. Please see [17] for the
detail structure of sigmoid-based PI controller.

Remark 2.1. Our proposed sigmoid-based PI is different from
[17] in several ways. Firstly, we consider a unique value of
curve sharpness coefficient (i.e., αP and αI ) for each K̃P

and K̃I . Secondly, we also introduce a new coefficient (i.e.,
βP and βI ) to allow the shifting of the curve center. Both
modifications are expected to provide more flexibility and
variation to our sigmoid-based PI controller. Finally, we don’t
give any restriction to error signal e(t) in (2) and (3), such
as |e(t)| (as proposed by [17]), to avoid any limitation to the
sigmoid function.

Let the design parameter is denoted by θ =
(KP min,∆P ,KImin,∆I , αP , αI , βP , βI)

T ∈ R8. Then,
the performance of the control system in Figure 1 is evaluated
based on the objective function

J(θ) = w1

∫ tf

t0

e(t)2dt+ w2

∫ tf

t0

u(t)2dt, (4)

where w1 and w2 are weighting factors that are decided by the
designer. Here, the first term and the second term in the right
hand-side of (4) corresponds to the tracking error and control
input, respectively. Moreover, the interval [t0, tf ] represents
the duration of control performance assessment, where t0 ∈
0∪R+ and tf ∈ R+. Then, the data-driven sigmoid-based PI
for angular velocity tracking problem is given as follows:

Problem 2.1. The buck-converter powered dc motor control
system in Figure 1 is given. Then, find a sigmoid-based PI



controller KPI(s), which minimizes J(θ) with respect to θ
by using the input data u(t) and output data y(t).

III. DESIGN OF SIGMOID-BASED PI CONTROLLER USING
GSPSA

This section explains the key method to the solution of Prob-
lem 2.1. First, we briefly explain the GSPSA algorithm [18].
Then, we show the implementation of the data-driven sigmoid-
based PI controller design based on the GSPSA algorithm for
minimizing the error of angular velocity trajectory tracking for
buck-converter powered dc motor.

A. Review on GSPSA

GSPSA is a stochastic approximation algorithm that find the
design parameters such that a pre-specified objective function
is minimized. We define a general optimization problem by

min
z∈Rn

h(z), (5)

where z ∈ Rn is the design parameter and h : Rn → R is the
objective function.

In the GSPSA algorithm [18], the design parameter is
iteratively updated to find a local optimal solution z∗ ∈ Rn of
(5). The updated equation is expressed by

z(k + 1) = z(k)− â(k)v(z(k), r1(k)) + b̂(k)r2(k) (6)

for k = 0, 1, . . ., where v(z(k) is the approximation of the
gradient between two perturbations, which is defined as

v(z(k), r1(k))

=


h(z(k) + ĉ(k)r1(k))− h(z(k)− ĉ(k)r1(k))

2ĉ(k)r11(k)
...

h(z(k) + ĉ(k)r1(k))− h(z(k)− ĉ(k)r1(k))

2ĉ(k)r1n(k)

 , (7)

â(k) and b̂(k) are the gain, r1(k) ∈ Rn and r2(k) ∈ Rn are
random vectors that are produced independently. In (7), ĉ(k)
is another gain and r1i(k) is the ith element of a random
vector r1(k) ∈ Rn. The detail of the GSPSA algorithm
and also the information to select â(k), b̂(k), ĉ(k) and the
random vectors, r1(k) and r2(k) is reported in [18] and
[19]. In the algorithm, an example of termination criterion
is based on the maximum number of iterations, i.e., the
algorithm terminates after a user-determined number of iter-
ation kmax. Then, the algorithm terminates with the solution
z∗ := arg min

z∈{z(0),z(1),...,z(k+1)}
h(z).

B. Data-driven sigmoid-based PI design

The GSPSA algorithm in the previous section (Section
III-A) is adopted for data-driven sigmoid-based PI tuning.
In order to obtain a fast design parameter searching, a
logarithmic scale is employed to each element of θ by
setting [θ1 θ2 · · · θ8]T := [10z1 10z2 · · · 10z8 ]T with
J([10z1 10z2 · · · 10z8 ]T ). Finally, the data-driven design
procedure is explained in the following steps:

Step 1: Set the maximum iteration numbers kmax and zi =
log θi for i = 1, 2, . . . , 8. Then, set the initial design parameter
z(0).
Step 2: Compute the GSPSA algorithm in (6) based on the
objective function in (4).
Step 3: After kmax iterations, the optimal design param-
eter z∗ := z(kmax) ∈ R8 is obtained. Then, θ∗ :=
([10z

∗
1 10z

∗
2 · · · 10z

∗
8 ]T ) is adopted to the sigmoid-based PI

controller KPI(s) in Figure 1.

Remark 3.1. In the conventional GSPSA algorithm in (6), it
is not guarantee that the algorithm consistently yields a stable
convergence during the iterative tuning. This is because there
is a case that the design parameters may become very huge
and subsequently produces unstable condition. Therefore, we
adopt a modified GSPSA algorithm to avoid this problem,
which has been proposed in [23]. In particular, a saturation
function satγ(·) has been used in (6). That is,

z(k+1) = z(k)−sat
γ

(â(k)v(z(k), r1(k))+ b̂(k)r2(k)). (8)

In this study, we use the modified updated law in (8) instead
of (6).

IV. NUMERICAL EXAMPLE

The performance investigation of the data-driven sigmoid-
based PI controller based on GSPSA is presented in this
section. We firstly describe the model of buck-converter pow-
ered dc motor in [2]. Then, the GSPSA based algorithm is
implemented to the given model.

A. Buck-converter powered dc motor model

An electro-mechanical circuit of buck-converter powered dc
motor system is shown in Figure 2. The switching mechanism
is indicated by the multiplication of input voltage Ue with the
duty ratio δ ∈ [0, 1]. The ohmic resistance of coil windings
in the model is denoted by RL. The dc motor parameters
are represented by an inductance LM , ohmic resistance RM ,
and electromagnetic source ωKE where ω is angular velocity.
Other parameters of the system are inductor L and capacitor
C. For the input u(t) := δ and the output y(t) := ω, the
complete model of buck-converter powered dc motor system
[2] is given by

G =

[
A B
C D

]
, (9)

where

A =


−RL

L − 1
L 0 0

1
C 0 − 1

C 0
0 1

LM
−RM

LM
−KE

LM

0 0 KM

JM
0

 , B =


Ue

L
0
0
0

 ,
C =

[
0 0 0 1

]
, D = 0.

In (9), JM and KM are defined as moment of inertia and
tachogenerator of the motor, respectively. Furthermore, the
amplifier resistances R4 and R6 are neglected in the model
since their values are very small.



Fig. 2. Buck-converter powered dc motor system [2]

TABLE I
PARAMETERS OF THE BUCK-CONVERTER POWERED DC MOTOR

Parameter Value Unit
LM 8.9×10−3 H
RM 6 Ω

KE 0.0517 V-s/rad
KM 0.0517 N-m/A
JM 7.95×10−6 kg-m2

Ue 24 V
L 1.33×10−6 H
RL 0.2 Ω

C 470×10−6 F

B. Numerical results

Consider a buck-converter powered dc motor system as a
plant G with its mathematical model in (9). Although the
model is given, it is important to stress that our proposed
method did not use any knowledge of the model to design
the controller. The system parameters is depicted in Table
I, which are obtained from [2]. Next, we employ a smooth
desired trajectory tracking of angular velocity given by

r(t) = 75(tanh(30(t− 0.1)) + 1), t0 ≤ t ≤ tf , (10)

which is same as the desired trajectory tracking reported in
[9]. The corresponding design parameters of sigmoid-based
PI controller KPI(s) are tabulated on Table II. The objective
is to find z ∈ R8, which minimizes the objective function J
in (4) for w1 = 10 and w2 = 1, t0 = 0 and tf = 0.25. Based
on preliminary experiments, we select the gains of the GSPSA
based algorithm as â(k) = 0.2/(k+21)0.5, ĉ(k) = 0.005/(k+
1)0.101, b̂(k) = 0.005/(((k+ 1)0.5) ln((k+ 1)0.5 + 1000))0.5,
and kmax = 250. The random vector r1(k) ∈ R8 is generated
based on the Bernoulli distribution{

P(r1i(k) = −1) = 1/2,
P(r1i(k) = 1) = 1/2,

(11)

and r1i(k), (i = 1, 2, . . . , 8) is its ith component. Meanwhile,
each element of r2i(k), (i = 1, 2, . . . , 8) is randomly selected
from the uniform distribution on the interval (0, 1). We assume
that the initial design parameter z(0) as presented in Table II
provides a stable closed-loop system during interval [t0, tf ].

Fig. 3. Response of the objective function

Figure 3 depicts the objective function response for 250
iterations while Table II depicts the optimum design param-
eters z∗ ∈ R8. These results clarify the effectiveness of
GSPSA-based method in minimizing the objective function
and produces optimal sigmoid-based PI parameters.

Furthermore, the y(t) and u(t) responses are demonstrated
in Figures 4 and 5, respectively. Here, both of the responses are
compared with other existing results, which are conventional
PI [8] and PI-Fuzzy [9]. In these figures, the dot black line
represents the reference, the thick grey line represents PI
controller, the dash black line represents the PI-Fuzzy con-
troller and the thick black line represents the sigmoid-based PI
controller. It demonstrates that the data-driven sigmoid-based
PI achieves better angular trajectory tracking as compared
to PI and PI-Fuzzy. In particular, the proposed data-driven
sigmoid-based PI provides closer angular velocity response
to the reference r(t) with smoother tracking than PI and PI-
Fuzzy as shown in Figure 4. This fact is also supported from∫ tf
t0
e(t)2dt values in Table III. Here, we can clearly see that

the data-driven sigmoid-based PI controller produces a slightly
smaller values of

∫ tf
t0
e(t)2dt than other controllers during the

given time interval.
Meanwhile, the control input u(t) response of each con-

troller shows a similar correlation with the obtained angular
velocity response. In particular, the PI-Fuzzy and data-driven
sigmoid PI achieve higher duty cycle than PI during transient
response to provide better angular tracking. This fact is also
proven from

∫ tf
t0
u(t)2dt values in Table III. It shows that

the control input energy of PI controller still not enough to
regulate the angular tracking error. However, PI and data-
driven sigmoid PI obtain more smooth duty cycle than PI-
Fuzzy during steady state response. Here, we can clearly see
that data-driven sigmoid PI controller produces slightly better
control input than other controllers during the given time inter-
val. Thus, we can confirm that the proposed PI parameters that
are varied based on sigmoid function of angular velocity error
has a good potential in improving the control performance of



TABLE II
SIGMOID-PI PARAMETERS

θ Sigmoid-PI parameters z(0) θ computes from z(0) z∗ θ∗ computes from z∗

θ1 KP min −2.1612 0.0069 −1.5200 0.0302

θ2 ∆P 0.0000 1.0000 −0.0210 0.9528

θ3 KI min −0.4014 0.3968 0.9563 9.0425

θ4 ∆I 0.0000 1.0000 0.6434 4.3998

θ5 αP 1.0000 10.0000 1.4353 27.2438

θ6 αI 1.0000 10.0000 0.9303 8.5165

θ7 βP 1.0000 10.0000 1.0166 10.3906

θ8 βI 1.0000 10.0000 −0.6022 0.2499

Fig. 4. Angular velocity responses

buck converter powered dc motor system.

TABLE III
PERFORMANCE INDEX COMPARISON

Controller PI [8] PI-Fuzzy [9] Sigmoid-PI∫ tf
t0
e(t)2dt 6.5190 0.0338 0.0278∫ tf

t0
u(t)2dt 0.0156 0.0162 0.0162

V. CONCLUSION

In this paper, we presents a performance investigation of
a novel data-driven sigmoid-based PI for angular velocity
trajectory tracking of buck-converter powered dc motor. The
proposed method is validated on a buck-converter powered dc
motor model in [2]. The numerical example results show that
the data-driven sigmoid-based PI, which is tuned using global
simultaneous perturbation stochastic approximation, yields a
better angular velocity tracking as compared to conventional PI
and PI-Fuzzy. In particular, by adopting PI parameters that are
varied based on sigmoid function of angular velocity error, it
provides the lowest angular tracking error with smooth angular

Fig. 5. Duty cycle responses

velocity and duty cycle responses. Thus, we can confirm the
superiority of the data-driven sigmoid-based PI in angular
velocity tracking performance of buck-converter powered dc
motor.
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