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ABSTRACT 

 

Heating hybrid nanofluids by the mixing of solid nanoparticles suspended in liquid 

represents a new class of heat transfer enhancement. To enhance heat transfer for many 

industrial applications, a computational fluid dynamics modelling simulation using the 

finite volume method and adopting the SIMPLE algorithm was performed. The mixture 

of aluminium nitride nanoparticles into ethylene glycol which acts as a base fluid is 

considered as a new concept of hybrid nanofluids that can increase heat transfer. The 

hybrid nanofluid was prepared experimentally with a volume fraction range of 1% to 4%. 

The size diameter of nanoparticles, heat flux around a horizontal straight tube, and 

Reynolds number is approximately 30 nm, 5000 w/m2 and 5,000 to 17,000, respectively. 

The computational method had been successfully validated using available experimental 

data reported in the literature. It was found that 1% to 3% Aluminum nitride hybrid 

nanofluids can significantly affect efficiency, while more than 3% volume fraction are 

insignificant as they obtain less than one efficiency. Results show that a combination of 

aluminium nitride nanoparticles with the EG base fluid tends to augment heat transfer 

performance significantly.  

 

Keywords: Nanofluid; hybrid; ethylene glycol; turbulent; CFD. 

 

INTRODUCTION 

 

Heat transfer enhancement using hybrid nanofluids is a new trend [1-3]. An experimental 

investigation was conducted by passing a hybrid nanofluid through a double pipe heat 

exchanger as shown in [4]. It was found that the hybrid nanofluid performance was 

enhanced up to 35% in comparison with liquids at high volume concentrations. 

Experimental studies using other  types of nanofluids such as Cu, CuO, Fe2O3, Al2O3, 

CNT, SiO2, TiO2, SiC, Ag, and zirconia through a tube have been conducted by many 

researchers [5-13]. Choi [14] prepared a nanofluid by engineering colloids made of a base 

fluid and nanoparticles. Nanoparticles have thermal conductivities at typically an order 

of magnitude higher than those of the base fluids and with sizes significantly smaller than 

100 nm [15-18]. The benefit of thermal fluid properties plays an important role in 

improving equipment heat transfer performance. Nanofluids are a new class of working 

fluids with the capability to enhance suspension stability and conductivity for various 

industrial applications [19-22]. Recent interesting discussions have focused on 

nanocomposite materials in order to find new hybrid nanofluids that give the highest heat 
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transfer rates [23, 24]. Cu-Al2O3/water hybrid nanofluids were synthesized using a two-

step method by adopting the hydrogen reduction technique by Suresh et al. [25]. The 

hybrid nanofluids’ volume fractions from 0.1% to 2% were prepared by dispersing the 

synthesized nanocomposite powder in deionized water. Results indicated that both 

thermal conductivity and viscosity of the prepared hybrid nanofluids increase as the 

nanoparticles’ volume fraction increases. It was found that the increase in viscosity is 

higher than the increase in the thermal conductivity of hybrid nanofluids. A fully 

developed laminar convective heat transfer and pressure drop characteristics investigation 

using a uniformly heated circular tube and Cu-Al2O3/water hybrid nanofluid has been 

carried out by Suresh et al. [25]. The results showed that the Nusselt number was 

enhanced by 13.56% at a Reynolds number of 1730, compared to the Nusselt number of 

water. The regression equations between the input and output parameters were in good 

agreement with the experimental data.  

The convective heat transfer of hybrid nanofluid flow through a tubular heat 

exchanger was experimentally studied on by Madhesh et al. [26]. The hybrid nanofluid 

was prepared by dispersing copper-titanium nanocomposite in water at 0.1% to 1.0% 

volume fractions. Results showed that the convective heat transfer coefficient increased 

by 48.4% for up to 0.7% of the volume fraction of the hybrid nanofluid. The effect of the 

functionalisation method on the stability and thermal conductivity of CNT- Alumina 

hybrid nanofluid was investigated on by Abbasi et al. [27]. The thermal conductivities of 

different hybrid nanofluids were measured using a modified transient hot wire method. 

Results showed that functional groups have a significant influence on the thermal 

conductivity of hybrid nanofluids. Thermal conductivity improved up to 20.68% at a 

0.1% volume concentration of hybrid nanofluid. Mosayebidorcheh et al. [28] studied the 

turbulent nanofluid heat transfer in the presence of a magnetic field. Results illustrated 

that the Nusselt number increases linearly with the Reynolds number, nanoparticle 

volume fraction and turbulent Eckert number, while it is inversely proportional with the 

Hartmann number and turbulent parameter. Labib et al. [29] selected a two-phase mixture 

model to study hybrid nanofluid convective heat transfer. They employed two different 

base fluids individually to investigate their effect on convective heat transfer mixing of 

Alumina nanoparticles. Results indicated that the use of EG as base fluid gives better heat 

transfer augmentation than that of water. A comparison of the computational model for 

CNTs/water nanofluid was conducted in order for it to be validated using available data 

in the literature. Sundar et al. [30] studied turbulent heat transfer of hybrid nanofluids 

flowing through a circular tube. The Fe3O4/MWCNT nanocomposites were prepared by 

in-situ method which included the dispersion of carboxylated carbon nanotubes in 

distilled water and the mixing of ferrous chloride and ferric chloride. Results showed that 

heat transfer was enhanced by 31.10% with a penalty of 1.18-times increase of pumping 

power for a particle loading of 0.3% at a Reynolds number of 22,000 as compared to base 

fluid data. The correlation equations proposed for the input and output parameters were 

in good agreement with the experimental data. Baby and Ramaprabhu [31] synthesized 

Fe3O4/MWNTs and Fe3O4-SiO2/MWNTs using a simple chemical reduction technique 

and dispersed it in water using ultrasonication. It was observed that Fe3O4/MWNTs with 

surfactant and Fe3O4-SiO2/MWNTs without surfactant at 0.03% volume concentrations 

of a magnetic field improve thermal conductivity by 20% and 24.5%, respectively.  

The present article studies the heat transfer and pressure drop characteristics of 

hybrid nanofluids under turbulent flow conditions in a circular tube. This article proves 

the heat transfer enhancement and pressure drop of hybrid nanofluids using CFD analysis 
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by commercial software. The two nanocomposites used in this work are aluminium and 

nitride from 1% to 4% volume fractions dispersed in EG as a base fluid. 

 

METHODS AND MATERIALS 

 

Nanofluid Preparation 

The nanofluids were prepared in a thermal laboratory of the Faculty of Mechanical 

Engineering, University Malaysia Pahang. Nanopowders were purchased from US 

Research Nanomaterials, Inc. (NovaScientific Resources (M) Sdn. Bhd). Measured 

quantities of nanoparticles were dispersed in EG to obtain mass concentration nanofluids. 

A mechanical stirrer was used to achieve a homogenously dispersed solution. This 

method was done according to [32] and then subjected to ultrasonic for at least 3 hrs to 

break up any residual agglomerations. The mass of the nanoparticles (mp) and EG (mf) 

were measured accurately (0.001 g). The sedimentation of nanoparticles at the bottom of 

the samples showed the changes in physical properties of the bulk nanofluids with time 

[33]. In the case undertaken, the measurement of nanofluids’ thermal properties require 

many individual measurements for at least one month in order to check for sample 

stability. Samples were checked after the conclusion of each test was finished but no 

visible sedimentation was found. The transient hot-wires method shown in Figure 1(a) 

was used to measure the thermal conductivity of nanofluids experimentally. The wire was 

placed along the axis of a container and surrounded by the nanofluid in order to measure 

the nanofluid’s thermal conductivity. Platinum has a high electrical resistivity; i.e., 1.06 

× 10−7Ω m (at 20 ◦C), an order of magnitude higher than that of other metals.  

 

          
(a) Schematic diagram of physical model                                   

 

        
        

(b) Meshing surfaces 

 

Figure 1. Geometry and grid computational model. 

 

In addition, platinum has a temperature coefficient of resistance of 0.0003925 ◦C−1 

(for pure platinum) which is much higher than that of other metals available to be chosen 

as wire material. The wire was also used as a line heat source, thus the wire’s diameter 

was kept within 100 µm. The length of the wire was kept to just a few centimetres 
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compared to the wire’s diameter which represents an infinitely long line heat source so as 

to assure a directional (radial) heat transfer. Calibration was conducted using a standard 

fluid (glycerine) which was already brought with the device. The error between reading 

data and the standard was 0.0023. After verification was performed using pure EG and 

compared with the standard, the error between them was 0.0014 [2]. Viscosity is an 

important indication in evaluating the thermal properties of nanofluids. A commercial 

Brookfield DV-I prime viscometer was used to measure viscosity at different 

temperatures and rotor RPMs as shown in Figure 1(b). Base fluid ethylene glycol (EG) 

was used to measure viscosity for calibration purposes. After that, the experimented 

nanofluid was used to measure viscosity. 

 

Thermal properties 

The masses of nanoparticles (mp) and EG (mf) were measured accurately (0.001 g) to 

estimate the weight percentage (𝜑) by using Eq. (1) [34, 35]: 
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Equation (2) was used to estimate the volume fraction of the nanofluid  

depending on the nanoparticles’ density (p) and base fluid density (f) at 25 oC. 
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The pH values of the nanofluid were measured using an OAKTON device for the 

nanofluid volume fractions of 1% to 4%. The pH values before and after experimental 

tests refer to the nanofluids stability and changes in thermophysical properties. If the pH 

values of a suspension decrease, the force among particles will increase and the 

movement of the nanoparticle suspension enhances the heat transfer process. In order to 

augment heat transfer for many applications, the pH of the nanofluids should be kept at 

low values [36]. The hybrid mixture of aluminium nanopowders and nitrides suspended 

in EG nanofluids were considered as a single-phase flow incompressible Newtonian 

fluid. The isotropic and thermal properties of aluminium and nitride nanopowders are 

shown in Table 1.  

 

Table 1. Thermal properties. 

 

Property EG Aluminum nitride (AlN) 

Density (kg/m3) 1101 3260 

Specific heat (J/kg.K) 2382 735 

Thermal conductivity (W/m.K) 0.256 180 

Viscosity (kg/m.s) 0.0095 - 
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Simulation Process 

The forced convection of a hybrid nanofluid consisting of EG and AlN nanopowders 

through a straight horizontal tube with 27 nm size diameter and 5000 W/m2 uniform 

heat flux around the tube wall was employed under turbulent conditions. The schematic 

diagram of the physical model shown in Figure 2 represents a two-dimensional 

nanofluid flow through a circular horizontal tube with a length of 2000 mm. In this 

study, rectangular cells were used as the meshing surfaces of the tube wall as shown in 

Figure 2.  

 

 
 

Figure 2. Grid independent test. 

 

The diameter and thickness of the tube is 19 mm and 2 mm, respectively. It is 

similar in geometry to the numerical work used by [34] who numerically investigated the 

turbulent convective heat transfer and pressure drop characteristics of TiO2/water 

nanofluid inside a circular tube. The model assumed that the flow is steady, turbulent, and 

symmetrical with respect to the horizontal plane passing through the circular tube. For all 

these assumptions, the dimensional conservation equations are the continuity, 

momentum, and energy equations [35]: 
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A high Reynolds number was included as an input parameter, the pressure 

treatment adopted used the SIMPLE scheme, and a turbulent viscous k- model was also 

used. The solutions were considered to be converged at residuals lower than 10−6. The 

simulation results were compared to equations for the friction factor (8) and Nusselt 

number (9) correlated by Blasius and Dittus-Boelter respectively [6, 35]: 
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𝑓 =
0.316

𝑅𝑒0.25                                               (6) 

𝑁𝑢 = 0.023 × 𝑅𝑒0.8 × 𝑃𝑟0.4                                (7) 

 
The percentages of heat transfer enhancement and efficiency depending on the 

nanofluid and base fluid used were evaluated as [35]: 

 

𝐸% =
𝑁𝑢𝑛𝑓−𝑁𝑢𝑓

𝑁𝑢𝑛𝑓
× 100                                     (8) 

𝜂 = (
𝑁𝑢𝑛𝑓

𝑁𝑢𝑓
) (

𝑓𝑛𝑓

𝑓𝑓
)

1 3⁄

⁄                                       (9)                                                                                                

 

Boundary Conditions 

The volume fractions of the AlN-EG hybrid nanofluid used as the input fluid were 1, 2, 

3, and 4% with an inlet temperature of 30 oC. EG was used as the working fluid for 

comparison purposes and a CFD analysis was performed with a uniform velocity profile 

at the inlet and a pressure outlet condition at the outlet regions. The tube was assumed to 

have perfectly smooth walls and the Reynolds number was varied from 5000 to 17000 at 

each iteration step as input data. 

 

Grid Independence Test 

The grid independence test was performed using the ANSYS software and it was found 

that 20000 cells (2000×10) was the best size of mesh, thus was adopted as the optimum 

meshing size. Four different meshing sizes were considered; 10000 cells (1000×10), 

20000 cells (2000×10), 30000 cells (1000×30) and 40000 cells (2000×20) for EG to check 

grid sizing. A comparison of the Nusselt number for all four meshing sizes using the 

Dittus-Boelter Eq. (9) showed good agreement with a maximum deviation of not more 

than 5% (see Figure 2). It can be seen that all of the meshing sizes chosen could have 

been used but the 20000 cells meshing size was considered the optimum meshing size 

due to its best accuracy. 

 

CFD Analysis 

CFD simulations were performed using the ANSYS software with solver strategy. The 

governing single-phase conservation equations were solved using the control volume 

approach. The simulation results were compared to the predicted results of [28-30] and 

[34]. The simulation study consisted of building a geometry construction of a circular 

tube and meshing to create a physical model, choosing boundary conditions, and finally 

setup and solving. All scalar values and velocity components of the problem were 

calculated at the centre of the control volume interface where grid schemes were used 

intensively. Residuals appeared throughout the iterative process. Finally, the results were 

obtained when the solution converged, defined by a set of convergence criteria. The 

Nusselt number and pressure drop inside the circular tube were determined throughout 

the computational domain in the post-process stage. 

 

RESULTS AND DISCUSSION 

 

Validation  

The CFD analysis was successfully validated with experimental data reported by Hejazian 

et al. [36] and Sundar & Sharma [37] for Al2O3/water under turbulent flow conditions as 

shown in Figure 3. Likewise, the CFD results were compared to the numerical data of 
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Bianco et al. [38] and Bianco et al. [39] under turbulent flow conditions for Al2O3/water 

nanofluid through a circular tube. It can be seen that the maximum deviations between 

the experimental and numerical results of the friction factor and Nusselt number did not 

exceed 8%. 

 

 
(a) Friction factor 

 
(b) Nusselt number 

Figure 3. Validation of the friction factor and Nusselt number. 

 

Pressure Drop 

In order to apply hybrid nanofluids in industrial applications, pressure drop should be 

investigated with Nusselt number inherently. The CFD data of pressure drop against 

Reynolds number are illustrated in Figure 4. It can be noted that the pressure drop 

increased by 13% with an increase in Reynolds number due to the increase of velocity 

inside the tube. Likewise, the pressure drop increased by 14% with an increase of the 

hybrid nanofluid volume fraction due to the increase in viscosity of the hybrid nanofluid. 

Meanwhile, the hybrid nanofluid incurred a little penalty in the pressure drop. The 

numerical data on pressure drop in this study are in good agreement with [36] and [40]. 
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Figure 4. The friction factor ratio at different Reynolds numbers. 

 

 
 

Figure 5. Nusselt number at different Reynolds numbers. 

 

Nusselt Number 

Figure 5 shows the ratio of the hybrid nanofluid’s Nusselt number to that of the base fluid 

at different Reynolds numbers. It can be seen that there was a significant increase of 

Nusselt number with the increase in Reynolds number. In this CFD analysis, the 

maximum heat transfer enhancement achieved was about 1.5 for 3% of hybrid 

nanopowder volume fraction in EG at a Reynolds number of 17000. The Nusselt number 

values for the hybrid nanofluid were up to 50% higher than the values gained for EG 

flows in the circular tube. The results are similar to the Nusselt number enhancement of 

Al2O3/water nanofluid at different volume fractions achieved by Hejazian et al. [36] and 

Heyhat et al. [40]. It can be said that heat transfer enhancement using hybrid nanofluid 

volume fractions agree with the literature results of [36] and [40]. A numerical study by 
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[34] reported an increase in Nusselt number at 13.6% for TiO2/water using the same 

geometry. The benefit of using AlN hybrid nanofluids in a horizontal circular tube is 

significantly clear compared to using the TiO2/water nanofluid.    

  

Heat transfer enhancement 

Figure 6 shows the heat transfer enhancement with the nanofluid volume fractions. It was 

observed that the heat transfer enhancement obtained ranged from 28% to 50% at hybrid 

nanoparticles’ volume fractions of 1% to 3%, respectively, whereas, 33% of heat transfer 

enhancement was observed at the 4% hybrid nanofluid volume fraction. The CFD 

analysis of the heat transfer enhancement appeared to have slightly closer results to the 

experimental data of [36]and [40] for the Al2O3/water nanoparticle volume fractions 

under turbulent flow conditions inside a circular tube.  

 

 
 

Figure 6. The heat transfer enhancement at different hybrid nanofluid volume fractions. 

 

 
 

Figure 7. The efficiency of hybrid nanofluids at different Reynolds numbers. 

 

Efficiency 
Both the friction factor and Nusselt number do enhance heat transfer. Therefore, the 

overall efficiency of heat transfer enhancement for various volume fractions of the hybrid 
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nanofluid against their Reynolds numbers is shown in Figure 7. It can be seen that there 

is a net energy gain for cases where the heat transfer enhancement is greater than one. 

Therefore, it can be said that the use of 1% to 3% hybrid nanofluids is significant with 

respect to both heat transfer and friction factor, while using more than 3% volume 

fractions gives insignificant results as the readings obtained less than one efficiency. The 

reason for the insignificance is due to the pressure drop which needs a high pumping 

power through the circular tube. The study’s thermal efficiency results are in agreement 

with Darzi et al.’s [41] results for heat transfer augmentation using Al2O3/water 

nanoparticles which is higher than the pressure drop penalty.  

 

CONCLUSIONS 

 

In this study, a CFD analysis was conducted to investigate the effect of AlN hybrid 

nanopowders on heat transfer and pressure drop inside a horizontal circular tube. A grid 

independence test was performed using the ANSYS/FLUENT software, and the 20000 

cells (2000x10) mesh was adopted as the optimum meshing size. The CFD analysis was 

successfully validated with experimental and numerical results reported in the literature 

[36-39]. Obviously, the pressure drop grew as the Reynolds number and nanofluid 

volume fractions increased. It was observed that the maximum values of Nusselt number 

ratio for the 3% hybrid nanofluid were up to 50% higher than the values gained for EG 

flows through the circular tube, whereas low values of Nusselt number were observed for 

the 4% hybrid nanofluid volume fraction. The heat transfer enhancement obtained was 

from 28% to 50% at the 1% to 3% AlN nanoparticle volume fractions respectively, 

whereas 33% heat transfer enhancement was observed for the 4% hybrid nanofluid 

volume fraction. It was found that the use of 1% to 3% AlN hybrid nanofluids was 

significant with respect to efficiency, while more than 3% volume fraction was 

insignificant due to obtaining less than one efficiency. 
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NOMENCLATURES 

 

C -     specific heat capacity [J/ kg K]  

D -    diameter [m]  

E -     enhancement  

f -      friction factor  

h -     convection heat transfer coefficient [W/m2. K]  

k -     thermal conductivity [W/m. K]  

Nu -  Nusselt Number [hD/k]  

P -    Pressure [N/m2]  

Pr -  Prandtle Number [C/k]  

Re -  Renolds Number [Du/]  

u -    Velocity [m/s]  

-    Viscosity [N.s /m2]  

-    Density [kg/m3]  

 -   Volume concentration  

 -   efficiency  

Subscripts  

f       liquid phases  

p      solid particle  

eff    effective nanofluid  


