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ABSTRACT 

The purpose of this study is to investigate the effect of different reflux ratio 

on separation of azeotropic mixtures.  The azeotropic mixtures used were 

Ethanol/Water, MTBE/Methanol and IPA/Water.  The experimental studied were 

conducted using Bubble Cap Distillation with 10 numbers of stages at 1 atm.  The 

composition of feed mixtures used were 40:60 v/v.  In terms of reflux ratios it was 

set at 1.1, 1.2, 1.3 and 1.4.  The product was collected from each experiment and 

analyzed using refractometer to determine its concentration.  The standard curve of 

binary mixtures of each mixtures were used for quantifying the composition in the 

collecting samples.  From the results obtained, best reflux ratio for Ethanol/Water is 

1.1 (95.8%), 1.2 for IPA/Water ( 57.64 mol%) and 1.2 for MTBE/Methanol 

(47.57%).  The results obtained were compared with the vapour composition of 

binary mixtures for ordinary distillation process which are without reflux ratio.  By 

comparing the result with the data of the vapor composition for ordinary distillation, 

the best reflux ratio was determined.  These binary mixtures cannot be separated 

completely by ordinary distillation because of closed boiling point between each 

component which formed the azeotrope.  When two mixtures were mixed, the 

intermolecular attraction forces in all liquid may cause the mixture to form certain 

inseparable composition (where vapour and liquid composition) at equilibrium are 

equal.  Further separation can be achieved by controlling the reflux ratio of the 

distillation process to improve the separation efficiency.  This study verified that 

reflux ratio influence the efficiency of the column.  
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ABSTRAK 

 Tujuan kajian ini ialah untuk mengkaji kesan nisbah refluks yang berbeza 

kepada pemisahan campuran-campuran azeotrop.  Campuran azeotrop yang 

digunakan adalah Ethanol/Water, MTBE/Methanol dan IPA/Water.  Kajian 

dijalankan menggunakan Penyulingan Berperingkat “Bubble Cap” dengan 10 

nombor peringkat-peringkat pada 1 atm.  Komposisi campuran-campuran masuk 

yang digunakan adalah 40:60 v/v.  Dari segi nisbah refluks, ia telah diset pada 1.1, 

1.2, 1.3 and1.4.  Produk yang diperoleh bagi setiap ujikaji dikumpulkan dan dianalis 

dengan menggunakan refraktometer.  Lengkungan piawai bagi setiap campuran 

binari telah digunakan untuk menentukan komposisi sampel yang telah dikumpulkan.  

Daripada keputusan-keputusan diperolehi, nisbah refluks terbaik bagi Ethanol/Water 

ialah 1.1 (95.8%), 1.2 untuk IPA/Water (57.64mol%) dan 1.2 untuk MTBE/Methanol 

(47.57%).  Keputusan-keputusan ini telah dibandingkan dengan kandungan wap 

setiap campuran binari untuk proses penyulinagan biasa iaitu tanpa nisbah refluks 

untuk menentukan  nisbah refluks yang terbaik.   Campuran binari ini tidak boleh 

dipisahkan oleh penyulingan biasa kerana penutupan takat didih antara setiap 

komponen yang membentuk azeotrop.  Ketika dua campuran ini dicampurkan, 

kekuatan daya tarikan antara molekul dalam semua cecair boleh menyebabkan 

campuran untuk membentuk komposisi tertentu  yang tak boleh dipisahkan 

(komposisi wap dan cecair) pada keseimbangan adalah sama.  Pemisahan lebih lanjut 

dapat dicapai dengan mengawal nisbah beserta refluks daripada proses penyulingan 

untuk meningkatkan kecekapan pemisahan.  Kajian ini ditentusahkan yang nisbah 

refluks mempengaruhi kecekapan lajur. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Distillation is defined as a process in which a liquid or vapor mixture of two 

or more substances is separated into its component fractions of desired purity, by the 

application and removal of heat (Tham, 2006).  Distillation is the most widely used 

separation method in the chemical and petrochemical industries. Some 

environmental applications of distillation are the separation of organic solvent/water 

mixtures and water removal for volume reduction prior to disposal of hazardous 

waste mixtures (Richard and Patricia, 2004). 

Distillation is an equilibrium-limited separation which uses heat as an energy-

separating agent.  It is applied when two or more relatively volatile liquids, that 

vaporize at different temperatures, need to be separated or fractionated into almost 

pure product streams.  Distillation separates components of a liquid mixture based on 

their different boiling points.  When the boiling points of the entering species are 

significantly different, distillation can easily separate the feed into almost pure 

product streams of each component.  However, as the boiling points become closer, 

distillation requires a large number of equilibrium stages to perform the separation 

(Richard and Patricia, 2004). 

The separation in a distillation process is governed by a difference in the 

composition of a liquid and vapor phase.  The difference is usually characterized by a 

difference in actual vapor pressures, or volatilities, of the liquid-phase components 

(Richard and Patricia, 2004). 
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There are many types of distillation columns, each designed to perform 

specific types of separations, and each design differs in terms of complexity.  One 

way of classifying distillation column type is to look at how they are operated 

whether in batch or continuous columns.  In batch operation, the feed to the column 

is introduced batch-wise.  That is, the column is charged with a batch and then the 

distillation process is carried out.  When the desired task is achieved, a next batch of 

feed is introduced.  In contrast, continuous columns process a continuous feed 

stream.  No interruptions occur unless there is a problem with the column or 

surrounding process units.  They are capable of handling high throughputs and are 

the most common of the two types (Tham, 2006). 

In mixtures containing two or more components where their concentrations 

are compared in the vapor and liquid phase, concentrations of each component are 

often expressed as mole fractions.  A mole fraction is number of moles of a given 

component in an amount of mixture in a phase divided by the total number of moles 

of all components in the amount of mixture in that phase.  Binary mixtures are those 

having two components while three component mixtures could be called ternary 

mixtures (Richard and Patricia, 2004). 

Commercially, distillation has a number of uses.  It is used to separate crude 

oil into more fractions for specific uses such as transport, power generation and 

heating.  Water is distilled to remove impurities, such as salt from seawater.  The 

application of distillation can roughly be divided in four groups which are for 

laboratory scale, industrial distillation, distillation of herbs for perfumery and 

medicinals (herbal distillate), and food processing.  The latter two are distinctively 

different from the former two in that in the processing of beverages the distillation is 

not used as a true purification method but more to transfer all volatiles from the 

source materials to the distillate (Richard and Patricia, 2004). 

Because it is prevalent throughout industry, there are numerous advantages to 

distillation as a separation technology.  The process flow sheets are relatively simple 

and no mass-separating agent is required.  The capital costs are low as is the risk 

associated with lesser known technologies.  There is an abundance of data describing 

vapor-liquid equilibrium for many systems.  Usually, distillation can be designed 
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using only physical properties and vapor-liquid equilibrium (VLE) data, so scale-up 

is often very reliable (Richard and Patricia, 2004). 

The primary disadvantage of distillation is its lack of energy efficiency.  It is 

not a useful technique for systems containing an azeotrope or those with close 

boiling points.  An azeotrope occurs when the vapor and liquid compositions of a 

system become identical such that, without altering the system, no further separation 

is possible.  Distillation also cannot be applied to feed streams which are sensitive to 

thermal degradation or that polymerize at elevated temperatures.  Operating the 

column under vacuum, however, can reduce or eliminate these problems (Richard 

and Patricia, 2004). 

  

1.2 Problem Statement 

Industrial production of chemicals involves purification and recovery of the 

products, by-products and unreacted raw materials.  Distillation is clearly the 

dominating separation process, accounting for more applications than all the others 

combined (extraction, adsorption, crystallization, membrane-based technologies and 

so forth).  In fact, distillation columns consume more than 95% of the total energy 

used in separations in chemical process industries. 

All liquid mixtures have forces of intermolecular attraction.  That is why they 

form liquids and not gases.  The molecular interactions when two or more 

components are mixed may cause the mixture to form certain “inseparable” 

compositions where the vapor and liquid compositions at equilibrium are equal 

within a given pressure and temperature range.  These specific mixture compositions 

are called azeotropes. Azeotropy is not a rare phenomena in distillation.  The 

existence of azeotropes complicates the structure of this operating envelope, and the 

resulting distillation behavior of multicomponent azeotropic mixtures may be very 

complex (Hilmen and Eva-Katrine, 2000).   

Optimizing batch distillation operations can have a significant economic 

impact, especially when the separation of high value chemicals involved.  The 
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control variable for optimizing a batch distillation product is the reflux ratio policy 

which is the variation of the reflux ratio with time.  The alternative is to optimize the 

reflux ratio policy to maximize the amount of product with a specified composition 

in a given length of time or minimize the distillation time required to produce a given 

amount of product with a specified composition.  The optimum operation of column 

is one that maximizes an overall objective function, such as annual profit (Fouad, 

2005). 

Reflux used to enhance the separation process.  In simple terms, refluxing is 

causing the liquid to condense and re-evaporate in the column prior to finally exiting 

via the condenser.  The number of times that cause the vapor to reflux before exiting 

the column is called the reflux ratio.  Careful control of the reflux ratio through 

control of the heat input and the speed of cooling water allows you control over the 

purity of your distillate.  Operating the column at a constant reflux rate results in a 

distillate with a continuously changing the composition.  The composition profile 

over time is determined by the reflux rate and the distillate rate while the sharpness 

of the separation is determined by the reflux ratio.  It is important to remember that a 

slower distillation by increasing the reflux ratio will result in a more pure finished 

product (Fouad, 2005). 

 

1.3 Objective 

The main objective of this study is to investigate the effect of reflux ratio on 

separation of azeotropic mixtures.    
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1.4 Scopes of Study 

In order to achieve the objective, the scopes of study are set as follows: 

i. To perform separation of Ethanol/Water, MTBE/Methanol and 

IPA/Water using Bubble Cap Distillation with 10 numbers of stages at 1 

atm. 

ii. To study the effect of difference reflux ratios at 1.1, 1.2, 1.3 and 1.4 to 

separation efficiency of azeotropic mixtures. 

  

1.5 Rationale and Significance 

Distillation is one of the primary tools that chemists and chemical engineers 

use to separate mixtures into their constituents.  Because distillation cannot separate 

the constituents of an azeotrope, the separation of azeotropic mixtures (azeotrope 

breaking) is a topic of considerable interest.  Reflux Distillation, in contrast, offers a 

very high degree of purity.  This is because a longer column is used, where many of 

the components will not reach the top of the column.   

As vapor rises in the distillation column, the temperature gradually decreases.  

This causes components with higher boiling points to reach a certain level in the 

column where they fall below their vaporization temperature, condense back into 

liquid, and descend in the column.  This separates these components from the vapor 

with a lower boiling point as it continues to rise in the column.  Each component 

separates from the rising vapor in this manner until, at the top of the column, have a 

single remaining product.  

Nowadays, Ethanol, MTBE and IPA are the chemicals that usually used in 

industry and will involve separation process to get the purest product.  But, mixtures 

of this chemicals with certain chemicals will form an azeotrope which can stop the 

separation process.  This happened because of the effect of many factors and can be 

adjusted to encounter this problem.  Reflux ratio is chosen to minimize the running 
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costs of the column.  The total running cost consists of the cost of the reboiler steam 

and condenser cooling water plus the capital costs (interest) on the money spent 

building the column. 

 

 

 



 

 

   

CHAPTER 2 

LITERATURE REVIEW 

2.1  Distillation 

Distillation is the most widely used separation process in the chemical 

industry. It is also known as fractional distillation or fractionation. It is normally used 

to separate liquid mixtures into two or more vapor or liquid products with different 

compositions. Distillation is defined as a process in which a liquid or vapour mixture 

of two or more substances is separated into its component fractions of desired purity, 

by the application and removal of heat (Tham, 2006).  The separation requires that a 

second phase be formed so that both liquid and vapor phases are present and can 

contact each other on each stage within a separation column, the components have 

different volatilities so that they will partition between the two phases to different 

extents and the two phases can be separated by gravity or other mechanical means 

(Seader and Ernest, 2006). 

Distillation is an equilibrium stage operation. In each stage, a vapor phase is 

contacted with a liquid phase and mass is from vapor to liquid and from liquid to 

vapor. The less volatile(heavy or high boiling) components concentrate in the liquid 

phase  and the more volatile(light) components concentrate in the vapor. By using 

multiple stages in series with recycle, separation can be accomplished (Price, 2003). 

The feed to a distillation column may be liquid, vapor, or a liquid-vapor 

mixture.  It may enter at any point in the column, although the optimal feed tray 

location should be determined and used.  More than one stream may be fed to the 

system, and more than one product may be drawn.  A column is divided into a series 
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of stages.  These correspond to a cascade of equilibrium stages.  Liquid flows down 

the column from stage to stage and is contacted by vapor flowing upward.  

Traditionally, most columns have been built from a set of distinct trays or plates, so 

these terms end up being essentially interchangeable with stages.  Each tray in a 

distillation column is designed to promote contact between the vapor and liquid on 

the stage.  Stages may be numbered from top down or bottom up (Price, 2003). 

 

Figure 2.1: Distillation Column Schematic Diagram 

As illustrated in Figure 2.1, the product leaving the top of the column are 

called the overhead product, the overhead, the top product, the distillate and also 

distillate product.  Distillate product may be liquid or vapor (or occasionally both) 

depending on the type of condenser used.  Most of the time the distillate flow rate is 

assigned the symbol D, and the composition XD or YD.  The product leaving the 

bottom of the column are called the bottom product or bottoms and given the symbol 
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B, with composition XB.  Vapor leaving the top of the column passes through a heat 

exchanger, the condenser, where it is partially or totally condensed.  The liquid 

which results is temporarily held in the accumulator or reflux drum.  A liquid stream 

is withdrawn from the drum and returned to the top tray of the column as reflux (R or 

L) to promote separation (Price, 2003). 

The portion of the column above the feed tray is called the rectification 

section.  In this section, the vapor is enriched by contact with the reflux.  The portion 

of the column below the feed tray is called the stripping section.  The liquid portion 

of the feed serves as the reflux for this section.  The operating pressure of the column 

is typically controlled by adjusting heat removal in the condenser.  There are two 

main categories of condenser, differentiated by the extent of condensation.  In the 

total condenser, all of the vapor leaving the top of the column is condensed and the 

composition of the vapor leaving the top tray is the same as that of the liquid 

distillate product and reflux, XD.  But, the vapor is only partially liquefied and the 

liquid produced is returned to the column as liquid, and a vapor product stream is 

removed in a partial condenser (Price, 2003).  A total condenser is used to obtain 

saturated liquid reflux and liquid distillate at a bubble-point temperature (Seader and 

Ernest, 2006).  The base of the column is typically used as a reservoir to hold liquid 

leaving the bottom tray.  A heat exchanger, the reboiler, is used to boil this liquid.  

The vapor which results, the boilup (V) is returned to the column on one of the 

bottom three or four trays (Price, 2003).   

In normal operation, there are five handles that can be adjusted to manipulate 

the behavior of a distillation column which are the feed flow, two product flows, the 

reflux flow and the boilup flow (or reboiler heat input).  A normal column has a 

temperature gradient and a pressure gradient from bottom to top.  Distillation is 

based on the fact that the vapour of a boiling mixture will be richer in the 

components that have lower boiling points.  Therefore, when this vapour is cooled 

and condensed, the condensate will contain more volatile components.  At the same 

time, the original mixture will contain more of the less volatile material.  Distillation 

columns are designed to achieve this separation efficiently (Tham, 2006).   

Distillation have the important aspects that seem to be missed from the 

manufacturing point of view which are it is the most common separation technique, 
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it consumes enormous amounts of energy (both in terms of cooling and heating 

requirements) and it can contribute to more than 50% of plant operating costs.  The 

best way to reduce operating costs of existing units, is to improve their efficiency and 

operation via process optimization and control.  To achieve this improvement, a 

thorough understanding of distillation principles and how distillation systems are 

designed is essential (Tham, 2006). 

 

2.2  Azeotrope 

 An azeotrope is a mixture of two or more chemicals where the equilibrium 

vapor and liquid compositions are equal and cannot be changed by simple distillation 

at a given temperature and pressure.  More specifically, the vapor has the same 

composition as the liquid and the mixture boils at a temperature other than that of the 

pure chemicals’ boiling point (Hilmen, 2000).  Departures from Raoult’s Law 

frequently manifest themselves in the formation of azeotropes, particularly for 

mixtures of close-boiling point species of different chemical types whose liquid 

solutions are nonideal (Seader and Ernest, 2006).   

Azeotropes are formed by liquid mixtures exhibiting maximum or minimum 

boiling points.  These represent, respectively, negative or positive deviations from 

Raoult’s Law.  Vapor and liquid compositions are identical at the azeotropic 

composition, thus all K-values are 1 and no separation of species can take place.  If 

only one liquid phase exists, the mixture forms a homogeneous azeotrope while if 

more than one liquid phase is present, the azeotrope is heterogeneous.  

Heterogeneous azeotropes are always minimum boiling mixtures because activity 

coefficients must be significantly greater than 1 to cause splitting into two liquid 

phases (Seader and Ernest, 2006).   
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Figure 2.2: Phase Diagram of A Positive Azeotrope 

(http://en.wikipedia.org/wiki/Azeotrope) 

 

Figure 2.3: Phase Diagram of A Negative Azeotrope 

(http://en.wikipedia.org/wiki/Azeotrope) 

The term azeotropy was introduced to designate mixtures characterized by a 

minimum or maximum in the vapor pressure under isothermal conditions, or 

equivalently with an extremal point in the boiling temperature at constant pressure.  

This term has been used for liquid systems forming one or several azeotropes.  The 

mixture whose composition corresponds to an extremal point is called an azeotrope.  

Systems which do not form azeotropes are called zeotropic (Hilmen, 2000).   
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2.3  Separation of Azeotropic Mixture 

Separation of azeotropic mixtures is a topic great industrial importance and 

distillation is the dominating unit operation for such separations.  Most liquid 

mixtures of organic components form nonideal systems.  The presence of some 

specific groups, particularly polar groups (oxygen, nitrogen, chlorine and fluorine), 

often results in the formation of azeotropes (Hilmen and Katrine, 2000).  However, 

the presence of azeotropes and non-idealities in the phase behaviour of such mixtures 

complicates the separation.   

In the pharmaceutical and fine/specialty chemical industry, the small-scale 

production and the requirement for flexibility indicates batch distillation as the best 

suited process.  Among, various techniques to enhance distillation, heterogeneous 

azeotropic (heteroazeotropic) distillation is a very powerful and widely used one.  

Thus, there is a need for deeper understanding of the complex behaviour of the 

separation of heteroazeotropic mixtures in batch distillation columns (Skouras and 

Efstathios, 2004).   

An azeotrope cannot be separated the constituents of an azeotrope by 

ordinary distillation since no enrichment of the vapor phase occurs at this point 

(Hilmen, 2000).  Therefore, the separation of azeotropic mixtures involve the other 

methods by introducing an additional agent, called entrainer.  Entrainer will affect 

the volatility of one of the azeotrope constituents more than another and will form a 

ternary azeotrope.  But, the use of entrainer might cause unwanted impurity in the 

product and side streams because azeotropic distillation is a very energy-consuming 

process (Veerle et.al, 2004).    

Azeotropic mixtures may often be effectively separated by distillation by 

adjusting the reflux ratio of the system (Hilmen and Katrine, 2000).  To be able to 

develop separation processes for azeotropic mixtures, there is a need for insight into 

the fundamental phenomena of azeotropic phase equilibria.  The vapor-liquid 

envelope of the equilibrium temperature surfaces defines the feasible operating 

region in which any real distillation process must operate. 
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2.4  Characteristic of Azeotropic Mixtures 

 In this research, three binary mixtures which are Ethanol/Water, 

MTBE/Methanol and IPA/Water are investigated.  The following are the 

characteristic of these binary azeotropic mixtures. 

 

2.4.1 Ethanol/Water Mixture 

 Ethanol also called ethyl alcohol is a volatile, flammable and colorless liquid.  

Ethanol is a straight chain alcohol and its molecular formula is C2H5OH.  

Its empirical formula is C2H6O.  An alternative notation is CH3–CH2–OH, which 

indicates that the carbon of a methyl group (CH3–) is attached to the carbon of a 

methylene group (–CH2–), which is attached to the oxygen of a hydroxyl group (–

OH).  It is a constitutional isomer of dimethyl ether.  Ethanol is often abbreviated 

as EtOH, using the common organic chemistry notation of representing the ethyl 

group (C2H5).  Ethanol has boiling point temperature at 78.4oC while water has 

boiling point temperature at 80oC.  Mixtures of ethanol and water form 

an azeotrope at approximately 89 mole% ethanol and 11 mole% water or a mixture 

of about 96 volume% ethanol and 4% water at normal pressure and temperature 

(351 K).  This azeotropic composition is strongly temperature and pressure 

dependent and vanishes at temperatures below 303 K.  Ethanol is slightly more 

refractive than water, having a refractive index of 1.36242 (at λ=589.3 nm and 

18.35°C) (http://en.wikipedia.org/wiki/Ethanol). 

 

2.4.2 MTBE/Methanol Mixture 

 Methyl tert-butyl ether, also known as methyl tertiary butyl ether and MTBE, 

is a chemical compound with molecular formula C5H12O.  MTBE is a volatile, 

flammable and colorless liquid that is immiscible with water.  MTBE has a minty 

odor vaguely reminiscent of diethyl ether, leading to unpleasant taste and odor in 
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water.  MTBE is used inorganic chemistry as a relatively inexpensive solvent with 

properties comparable to diethyl ether but with a higher boiling point and 

lower solubility in water.  MTBE has boiling point temperature at 55.2oC while water 

and methanol have boiling point temperature at 80oC and 64.7oC respectively.  

MTBE forms azeotropes with water at 52.6°C, 96.5% MTBE and methanol at 

51.3°C, 68.6% MTBE (http://en.wikipedia.org/wiki/Methyl_tert-butyl_ether). 

 

2.4.3 IPA/Water Mixture 

 Isopropyl alcohol (also propan-2-ol, 2-propanol and also IPA) is a common 

name for isopropanol, a colorless and flammable chemical compound with a 

strong odor.  It has the molecular formula C3H7OH and is the simplest example of a 

secondary alcohol, where the alcohol carbon is attached to two other carbons.  It is 

an isomer of propanol.  Isopropyl alcohol has boiling point temperature at 82oC 

while water has boiling point temperature at 80oC.  Isopropyl alcohol and water form 

an azeotrope and simple distillation gives a material which is 87.9% by weight 

isopropyl alcohol and 12.1% by weight water 

(http://en.wikipedia.org/wiki/Isopropyl_alcohol).  

 

2.5  Parameters Affecting Column Performance 

2.5.1  Reflux Ratio 

The reflux ratio, R, is a key variable in the performance of a distillation 

column.  The reflux ratio is the ratio of the liquid flow, L in the rectifying section to 

the distillate flowrate.  The gradient of the rectifying section operating line is a 

function (R/R+1) of the reflux ratio (Richard and Patricia, 2004).  Reflux ratio will 

control the product purity and determine the energy which is required in reboiler and 

can affects the separation efficiency.  By controlling the speed of boil, it can affect 

the purity of the product and can be improved by slowing the boil.  The composition 

profile over time is determined by the reflux rate and the distillate rate.  The lightest 



15 

component starts at its highest value, followed by concentration peaks of components 

with descending volatility.  The sharpness of the separation is determined by the 

reflux ratio.  Since, the reflux rate is limited by hydraulics considerations, higher 

reflux ratios would require lowering the distillate rate, thus lengthening the 

distillation cycle (Fouad, 2005). 

For a given separation, increasing the reflux ratio will increase the gradient of 

the rectifying operating line and move its intercept with the y-axis downwards, 

moving it away from the equilibrium line and therefore decreasing the number of 

stages required to achieve the separation.  Alternatively for a fixed number of stages 

(real column) adjusting the reflux ratio will control the purity of the distillate, the 

higher the reflux ratio the purer the distillate (Richard and Patricia, 2004).  There is 

an inverse relationship between the reflux ratio and the number of theoretical stages. 

For a new design, of course the reflux ratio and number of theoretical stages can both 

be varied to achieve an optimum balance.  

For an existing column, the number of trays used is fixed, hence higher 

distillate concentration (mole fraction, XD) can only be obtained by increasing the 

reflux ratio.  The effect of reflux ratio on column performance may also be inspected 

using enthalpy-composition diagram.  As the reflux ratio is increased, the gradient of 

operating line for the rectification section moves towards a maximum value of 1.  

Physically, what this means is that more and more liquid that is rich in the more 

volatile components are being recycled back into the column.  Separation then 

becomes better and thus less trays are needed to achieve the same degree of 

separation.  Minimum trays are required under total reflux conditions, there is no 

withdrawal of distillate (Fouad, 2005).   

On the other hand, as reflux is decreased, the operating line for the 

rectification section moves towards the equilibrium line.  The ‘pinch’ between 

operating and equilibrium lines becomes more pronounced and more and more trays 

are required.  This is easy to verify using the McCabe-Thiele method.  The limiting 

condition occurs at minimum reflux ratio, when an infinite number of trays will be 

required to effect separation.  Most columns are designed to operate between 1.0 to 

1.5 times the minimum reflux ratio because this is approximately the region of 
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minimum operating costs (more reflux means higher reboiler duty) (Seader and 

Ernest, 2006).  

 

2.5.2  Feed Conditions 

The state of the feed mixture and feed composition affects the operating lines 

and hence the number of stages required for separation.  It also affects the location of 

feed tray.  During operation, if the deviations from design specifications are 

excessive, then the column may no longer be able handle the separation task.  To 

overcome the problems associated with the feed, some column are designed to have 

multiple feed points when the feed is expected to containing varying amounts of 

components (Tham, 2006). 

 

2.5.3  Column Diameter 

Most of the above factors that affect column operation is due to vapour flow 

conditions, either excessive or too low.  Vapour flow velocity is dependent on 

column diameter.  Weeping determines the minimum vapour flow required while 

flooding determines the maximum vapour flow allowed, hence column capacity.  

Thus, if the column diameter is not sized properly, the column will not perform well.  

Not only will operational problems occur, the desired separation duties may not be 

achieved (Tham, 2006). 

 

2.5.4  State of Trays and Packings 

The actual number of trays required for a particular separation duty is 

determined by the efficiency of the plate, and the packings if packings are used.  

Thus, any factors that cause a decrease in tray efficiency will also change the 

performance of the column.  Tray efficiencies are affected by fouling, wear and tear 
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and corrosion and the rates at which these occur depends on the properties of the 

liquids being processed.  Thus appropriate materials should be specified for tray 

construction (Tham, 2006). 

 

2.5.5 Feed Tray Position 

As the feed stage is moved lower down the column, the top composition 

becomes less rich in the more volatile component while the bottoms contains more of 

the more volatile component.  However, the changes in top composition is not as 

marked as the bottoms composition.  It should not be used to generalise to other 

distillation systems, as the effects are not straightforward (Tham, 2006). 

 

2.5.6 Weather Conditions 

 Most distillation columns are open to the atmosphere.  Although many of the 

columns are insulated, changing weather conditions can still affect column operation.  

Thus the reboiler must be appropriately sized to ensure that enough vapour can be 

generated during cold and windy spells and that it can be turned down sufficiently 

during hot seasons.  The same applies to condensers (Tham, 2006). 

These are some of the more important factors that can cause poor distillation 

column performance.  Other factors include changing operating conditions and 

throughputs, brought about by changes in upstream conditions and changes in the 

demand for the products.  All these factors, including the associated control system, 

should be considered at the design stages because once a column is built and 

installed, nothing much can be done to rectify the situation without incurring 

significant costs (Tham, 2006). 
 

 

 


