AUTOMATED LAB ATTENDANCE SYSTEM (ALAS)

NOORBAITI BINTI MAHUSIN

A report submitted in partial fulfilment of the requirements for the award of the degree of BACHELOR OF COMPUTER SCEINCE (COMPUTER SYSTEMS & NETWORK)

Faculty of Computer Systems & Software Engineering University College of Engineering & Technology Malaysia

OCTOBER 2005

ABSTRACT

People use attendance system to record activities. Attendance is being used in business agencies, industries, universities and etc. attendance system will be very much of help in monitoring their employee attendance, absence and leave application. In Universities, the attendance system can be used by the lecturers on taking students attendance for their class. Furthermore, the system can assist in the management of lab security by recording students entering the lab. Currently, most universities record the student attendance manually. This has creates problems such as data loss, unreliable information and etc. The security of laboratory can also be strengthened by having information of students entering laboratories. The main purpose of this system is to help the lecturers in taking the students attendant, as well as to control the laboratory door access. A prototype of the Automated Lab Attendance System (ALAS) system is developed to assist lecturers to manage class attendance, and to assist Laboratory Administrator in keeping track of the laboratory users.

ABSTRAK

Kebanyakan daripada kita menggunakan sistem kehadiran untuk merekodkan pelbagai aktiviti. Sistem kehadiran ini biasanya digunakan dalam agensi-agensi perniagaan, industri, universiti dan lain-lain lagi. Sistem kehadiran banyak membantu memantau kehadiran, ketidakhadiran, serta permohonan cuti pekerja. Di universiti pula, sistem ini boleh digunakan oleh para pensyarah untuk mencatat kedatangan pelajar bagi sesebuah kelas. Selain daripada itu, sistem ini juga akan dapat membantu dalam pengurusan keselamatan sesebuah makmal dengan merekodkan senarai pelajar yang telah menggunakan makmal. Pada masa sekarang, kebanyakan universiti merekodkan kedatangan para pelajarnya secara manual. Hal ini akan menimbulkan pelbagai masalah seperti kehilangan data, maklumat yang tidak boleh dipercayai, dan sebagainya. Ciri keselamatan untuk penggunaan makmal juga boleh dipertingkatkan dengan mempunyai maklumat berkenaan dengan penggunaan makmal oleh pelajar. Tujuan utama sistem ini dibangunkan adalah untuk membantu para pensyarah bagi mencatat kehadiran pelajar mereka, pada masa yang sama untuk mengawal penggunaan makmal. Automated Lab Attendance System (ALAS) merupakan sebuah prototaip sistem yang dibangunkan untuk membantu pensyarah mengendalikan kehadiran kelas, serta untuk membantu Pentadbir Makmal / admin untuk mengenalpasti pengguna yang menggunakan sesebuah makmal bagi sesuatu masa.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
DECLARATION		ii
DEDICATION		iii
ACKNOWLEDGEMENT		iv
ABSTRACT		v
ABSTRAK		vi
TABLE OF CONTENTS	vii	
LIST OF TABLE		xii
LIST OF FIGURES		xiii
LIST OF TERMINOLOGIES		XV
LIST OF APPENDICES		xvi

1 INTRODUCTION

1.0	Introduction	1
1.1	Automated Lab Attendance System (ALAS)	1
1.2	Problem Statements	2
1.3	Objectives	3
1.4	Scopes	3
1.5	Project Contribution	4
1.6	Report Organization	4

2 LITERATURE REVIEWS

2.0	Introduction	7
2.1	Smart Card	7

vii

2.2	Physic	cal Structure of Smart Card		
2.3	Differ	ent Types of Smart Card		
	2.3.1	Java cards	10	
	2.3.2	Contact Smart Cards	10	
	2.3.3	Contact Less Smart Card	11	
2.4	The C	ontain of Chip and Made For	12	
2.5	Smart	Card Reader	12	
	2.5.1	Features of Smart Card Reader	12	
	2.5.2	Mandatory Features	13	
		2.5.2.1 Smart Card Interface Standard	13	
		2.5.2.2 Driver	14	
	2.5.3	Desirable Features	14	
		2.5.3.1 Type of Card Contact	15	
		2.5:3.2 Software Interface Standard	15	
2.6	Smart	Card and Smart Card Reader	15	
	2.6.1	Method of smart card sends a signal		
		to smart card reader	15	
	2.6.2	Process of reading data signal to database	16	
	2.6.3	Communication between smart card		
		and smart card reader	16	
	2.6.4	Capture data from Smart Card Reader	16	
		2.6.4.1 Reader Security Module	16	
		2.6.4.2 Secured Data Path	17	
2.7	Bar C	ode	18	
	2.7.1	Bar Code Label	18	
	2.7.2	Bar Code Reader	18	
	2.7.3	Bar Code Symbol	18	
2.8	How I	Bar Codes Are Read	19	
	2.8.1	Types of Bar Code Scanners	20	
		2.8.1.1 Passive Non-contacts Readers	21	
2.9	Code	39	22	

2.10	D-730 CCD Scanner	23
	2.10.1 PartnerTech SD700 CCD	
	Barcode Scanner	24
	2.10.2 SD-700 Series Handheld	
	Barcode Scanner Specifications	24
2.11	Testing Technique	26
	2.11.1 Black Box Testing Technique	26
	2.11.2 White Box Testing Technique	26
	2.11.3 Black box and white box testing compared	27
2.12	Overall Application Process	27
2.13	Advantages of using Smart Card	28
2.14	Comparison to Current System	28
	2.14.1 KUKTEM	28
	2.14.2 Others	29
2.15	The Advantages of Using This System	29
2.16	The Disadvantages of Using This System	30
•		

MET

3

METHODOLOGY

3.0	Introduction			31
3.1	Syster	n Planning		33
	3.1.1	Gantt Chart		33
	3.1.2	Development Proc	ess	33
	3.1.3	Source / Reference	;	34
3.2	Syster	n Analysis		34
	3.2.1	Tools Required In	ALAS Development	35
		3.2.1.1 Client Requ	uirement	35
		.3.2.1.1.1	General Requireme	ents
		(for studen	its)	35
		3.2.1.1.2	General Requireme	ents
		(for client/	lecturer)	35
		3.2.1.2 Hardware I	Requirements	

		(for client/lecturer)	36
		3.2.1.3 Software Requirements	
		(for client/lecturer)	36
	3.2.2	Interface Security	37
	3.2.3	System Service Programming	37
3.3	Syster	n Design	38
	3.3.1	Project Flow	39
	3.3.2	Data Flow Diagram of the System	
		(Admin/Server)	41
	3.3.3	Data Flow Diagram of the System	
		(Clients)	42
3.4	Syster	n Testing	43
	3.4.1	Testing Technique	43
		3.4.1.1 Black Box Testing	44
		3.4.1.2 White Box Testing	45
3.5	System	n Implementation and Maintenance	48

4 RESULT & DISCUSSION

Introduction	
Expected Result	50
Result from the Testing Phase	51
4.2.1 Software testing phase	51
4.2.2 Hardware testing phase	54
Discussion	59
Assumptions	60
Constraints	60
Further Research	61
Recommendations	62
	Expected Result Result from the Testing Phase 4.2.1 Software testing phase 4.2.2 Hardware testing phase Discussion Assumptions Constraints Further Research

5 CONCLUSION

63

APPENDIX

67-72

65

LIST OF TABLE

TABLE NO	TITLE	PAGE
Table 2.1	Mandatory Features of Smart Card Reader	13
Table 2.2	Desirable Features of Smart Card Reader	14
Table 2.3	Bar code scanner specification	24

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
Figure 2.1	Physical structure of a smart card	8
Figure 2.2	Contact Smart Card	11
Figure 2.3	Contact Less Smart Card	11
Figure 2.4	Bar code	19
Figure 2.5	Show how to used bar code scanner	21
Figure 2.6	SD-730 CCD Scanner	23
Figure 3.1	Models to System Development Life Cycle (SDLC)	32
Figure 3.2	System Analysis phase	34
Figure 3.3	Overall System Design	38
Figure 3.4	Chart of the Process Flow	39
Figure 3.5	Data Flow Diagram of the System (Admin/Server)	41
Figure 3.6	Data Flow Diagram of the System (Client)	42
Figure 3.7	Interface of User Group before fill in the box	44
Figure 3.8	Interface of User Group after fill in the box	45
Figure 3.9	Code for button Search	46
Figure 3.10	Button Search	46
Figure 3.11	Code for button Login	47

Figure 3.12	Button Login	48
Figure 4.1	Main interface of ALAS for admin	52
Figure 4.2	Interface of Report Attendance	53
Figure 4.3	Interface of Lab Timetable	53
Figure 4.4	Example of bar code	54
Figure 4.5	Example of smart card / student card	54
Figure 4.6	Interface of Attendance record	55
Figure 4.7	Interface of Attendance record when user touch the barcod	e
	reader	55
Figure 4.8	Interface of Attendance record when invalid user touch the	
	barcode reader	56
Figure 4.9	Interface of Login Update Status	56
Figure 4.10	Interface of Update Status before fill in the label box	57
Figure 4.11	Interface of Login Update Status after fill in the label box	57
Figure 4.12	Interface of Login Update Status after button Update Statu	8
	was click	58
Figure 4.13	Interface of Login Update Status after status has changes	58

LIST OF TERMINOLOGIES

ALAS		Automated Lab Attendance System
CAD	-	card acceptor device
DeVRY	-	DeVRY University of Canada
Encryption	-	Process of transforming data into a type that
		prevents casual observers from deciphering.
EPROM	-	erasable programmable read only memory
EEPROM	-	electrically erasable programmable read only
		memory
EMV	-	desired in consideration of its capability for
		supporting potential electronic payment
		applications
IDE	-	integrated development environment
I/O	-	input/output
ISO	-	International Standards Organization
KUKTEM	-	Kolej Universiti Kejuruteraan & Teknologi M'sia
LEGIC	-	one of company that support all function and
		maintenance of smart card
PC	_	personal computer
PROM	-	Programmable read only memory
RAM	-	random access memory
ROM	-	read only memory
SDLC	-	System Development Life Cycle
UTP	-	Unshielded Twisted Pair
VB.Net	-	Visual Basic.Net: one of software that we can use
		to develop system

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Gantt Chart (for PSM I)	67
В	Gantt Chart (for PSM II)	69
С	User Manual	71

CHAPTER 1

INTRODUCTION

1.0 Introduction

At the end of this chapter, reader will know about what is *ALAS* where the title of this project is. Beside that, they also will know what kind of *problem statement* that constructs me to build this project. Other than that, reader also will know the *objective* and *cope* of this project. Lastly, reader will give some explanation about *project contribution* and *report organization*.

1.1 Automated Lab Attendance System (ALAS)

Automated Lab Attendance System (ALAS) is systems that are designed for labs. This system is an integrated system between information system, smart card and autolocking door system at every lab.

This system is a web-based system which help the lab administrator to keep an eye on the lab from unauthorized person enter the lab. Other than that, this system will help the lecturer to take the attendance when the students scan their smart card in the barcode reader in every outside of the lab. The admin or lecturer can set lock the auto lock door if the student late 15 minutes. This *ALAS* will store the database in the server. When the student wants to enter the lab, she or he must scan their smart card. If the student name list is has in current lab user, the door will open automatically. If not, the door cannot open.

These systems also store the time in and out for every user in database. In the end of the lab session, if the lecturer wants to know the attendance, he/she can view from the client's system.

1.2 Problem Statement

Recently, at KUKTEM, we know that security of lab usage is still in average level. Actually, anyone who wants to use the lab no need to should touch their smartcard to the card reader to enter it. So, everyone who want to use the lab can enter it either they have a smartcard or not. Administrator cannot secure the lab since there is no data or information regarding the person who enters the place. It will make easier to anyone who wants to steal any devices or tools from lab like happen nowadays.

Beside that, lecturers also have faced a problem to record a student attendance with the manual system. As we know, the current attendance system was not really systematic to the lecturers and students at KUKTEM where it is only one piece of paper that can lost at anytime and anywhere. Sometimes, the manual attendance system will no prove the students whether they're really attend the class on the day or not.

1.3 Objective

The objective of this project is to:-

- i. To develop a prototype of the Automated Lab Attendance System (ALAS) from the manual system to computerized system.
- ii. To make the lab attendance to be more organized.
- iii. To make the lab is more secure by using the smart cards/student card.

1.4 Scope

The scope of this project is to:-

- i. This system will used Windows XP as a platform.
- ii. Database stores the student's information and used it to enter and out from the lab (by using smart card) to open the door.
- iii. Barcode reader is used to read data from the smart card and verify data for current user from database in server.
- iv. This system also will used VB.net and MS SQL Server as a language for build system.
- v. A simple hardware is develop to control the door to show is it the student that want to enter in the lab is valid or not.
- vi. This is a web-based system.

.

This system is will into 4 parts. Which are admin/server, client, smart card and smart card reader. My scope consists of Admin/Server, Smart Card and Smart Card Reader.

1.5 **Project Contribution**

In the project contribution, reader will elaborate about how far this project will give a benefit to the users. Actually, this project can be useful to many sides. The main contribution in this project is for admin and the second contribution is for lecturers.

For the admin, this system can be helping them to make the lab more secure. In the other word, it makes easily for them to track how many times students / staffs get in the lab. Besides that, it also can help them to manage lab management to be more secure and systematic.

Simultaneously, it also can give a good opportunity to changes the manual system to an automated system for attendances record. As we know, the current manual system becomes a lot of problem especially for lecturers to tread whether their student is truly come to their lab or not. So that, for generally, this system can helps many sides like from student, lecturers, admin or even KUKTEM.

1.6 Report Organization

In the Report Organization, reader will know generally about overall of this project at the end of their reading. This thesis contains six chapters. The first chapter is the Introduction.

As we know, in the Introduction chapter, everyone will discuss an overview of their project. It also will be include the problem statement where were elaborates about the current problem that occur in the project area. Beside that, it also will include the objectives and scopes of this project. Other than that, the project contribution also state in this chapter. It will discuss about how far this project can be useful like for KUKTEM, lecturer and student. Lastly, the last part in this chapter is report organization where will explain generally about the entire chapter in the report of project.

Literature Review (Chapter 2) also one of the important part of this project. In this chapter, it will add in all information that we're gathering from anywhere that is related about this project. It will includes about smart card, smart card reader, bar code reader, an overall application process, advantages of using smart card, comparison with a new system to current system and the advantages of using this system

Every system has own methodology that used to build the system. Because of thus, user also will give an exposure of Chapter 3 where is about the methodology used of this system. In this ALAS, will develop according to System Development Life Cycle (SDLC). The SDLC model includes the following steps that will be described details in the Chapter 3:-

- 1. System Planning
- 2. System Analysis
- 3. System Design
- 4. System Testing
- 5. System Implementation

After doing a testing and implementation of project, in Chapter 4 (Result and Discussion), we will discuss about result that faced by doing this project based on our objective of this project. The result that we have is become from the testing phase that we've already done. In discussion part, we'll discuss about features, assumptions, constraints, further research and recommendations of this project.

Lastly, in this Chapter 5 (Conclusion), it will be conclude about overall information about this project. So that, after reader read this chapter, hopefully that they will know generally an overview of this project.

CHAPTER 2

LITERATURE REVIEWS

2.0 Introduction

Literature review will explain about all information that we're gathering from anywhere that is related about this project. It will include about smart card, the physical structure of smart card and the different type of smart card. Other than that, it also will include information of smart card reader and bar code reader.

In the middle of this chapter also will include how the bar codes are read and the types of bar code scanner. Reader also will describe on how to print bar code by using Code 39. Beside that, an overview of overall application process will explain to show on how the system running. Lastly, this chapter also will elaborate of an advantage of using smart card, comparison to current system and the advantages of using this system.

2.1 Smart Card

The smart card, an intelligent token, is a credit card sized plastic card embedded with an integrated circuit chip. It provides not only memory capacity, but computational capability as well. The self-containment of smart card makes it resistant to attack, as it does not need to depend upon potentially vulnerable external resources. Because of this characteristic, smart cards are often used in different applications that require strong security protection and authentication [1].

In the near future, the traditional magnetic strip card will be replaced and integrated together into a single card by using the multi-application smart card, which is known as an electronic purse or wallet in the smart card industry. The smart card is becoming more and more significant and will play an important role in our daily life. It will be used to carry a lot of sensitive and critical data about the consumers ever more than before when compared with the magnetic strip card. Therefore, there are many arguments and issues about whether or not the smart card is secure and safe enough to store that information. This has always been a source of controversy [1].

2.2 Physical Structure Of Smart Card

The physical structure of a smart card is specified by the International Standards Organization (ISO) 7810, 7816/1 and 7816/2. Generally it is made up of three elements. The plastic card is the most basic one and has the dimensions of 85.60mm x 53.98mm x 0.80mm. A printed circuit and an integrated circuit chip are embedded on the card. Figure 2.1 shows an overview of the physical structure of a smart card [1].

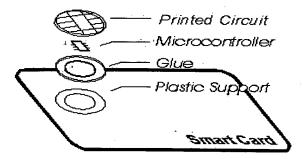


Figure 2.1 Physical structure of a smart card (Source: Philips DX smart card reference manual, 1995

The printed circuit conforms to ISO standard 7816/3 which provides five connection points for power and data. It is hermetically fixed in the recess provided on the card and is burned onto the circuit chip, filled with a conductive material, and sealed with contacts protruding. The printed circuit protects the circuit chip from mechanical stress and static electricity. Communication with the chip is accomplished through contacts that overlay the printed circuit [2].

The capability of a smart card is defined by its integrated circuit chip. Typically, an integrated circuit chip consists of a microprocessor, read only memory (ROM), no static random access memory (RAM) and electrically erasable programmable read only memory (EEPROM) which will retain its state when the power is removed. The current circuit chip is made from silicon which is not flexible and particularly easy to break. Therefore, in order to avoid breakage when the card is bent, the chip is restricted to only a few millimeters in size.

Furthermore, the physical interface which allows data exchange between the integrated circuit chip and the card acceptor device (CAD) is limited to 9600 bits per second. The communication line is a bi-directional serial transmission line which conforms to ISO standard 7816/3. [2] All the data exchanges are under the control of the central processing unit in the integrated circuit chip. Card commands and input data are sent to the chip which responses with status words and output data upon the receipt of these commands and data. Information is sent in half duplex mode, which means transmission of data is in one direction at a time. This protocol together with the restriction of the bit rate prevents massive data attack on the card [2].

In general the size, the thickness and bend requirements for the smart card are designed to protect the card from being spoiled physically. However, this also limits the memory and processing resources that may be placed on the card. As a result, the smart card always has to incorporate with other external peripherals to operate. For example, it may require a device to provide and supply user input and output, time and date information, power and so on. These limitations may degrade the security of the smart card in some circumstances as the external elements are entrusted and precarious [2].

2.3 Different Types of Smart Card

There is several type of the Smart Card. There are:

2.3.1 Java cards

These Java Cards specifications enable Java technology to run on smart cards and other devices with limited memory. This Java Card technology enables multiple applications to co-exist securely on a single smart card. Other than that, in this card we can install new applications securely. In the Security purpose, this type of card Relies on the inherent security of the Java programming language to provide a secure execution environment and Platform's proven industry deployments and security evaluations ensure that card issuers benefit from the most capable and secure technology available today [2].

2.3.2 Contact Smart Cards

Size of the Contact Smart Card is a conventional credit or debit card with a single embedded integrated circuit chip that contains just memory or memory plus a microprocessor. This type of cards most popular uses to Network Security, vending, meal plans, loyalty, electronic cash, government IDs, campus IDs, e-commerce, health cards [2].

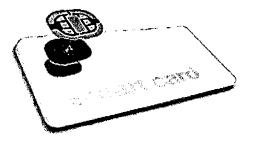


Figure 2.2 Contact Smart Card

2.3.3 Contact Less Smart Card

The Contact Less Smart Card containing an embedded antenna instead of contact pads attached to the chip for reading and writing information contained in the chip's memory. This type card is mostly used to Student identification, electronic passport, vending, parking, tolls, IDs [2].

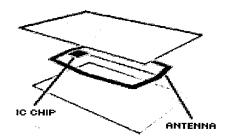


Figure 2.3 Contact Less Smart Card