
TIMETABLE SCHEDULING USING RULE-BASED TECHNIQUE

FIFDIL MAR WAN

A report submitted in partial fulfilment
of the requirements for the award

of the degree of
Bachelor of Computer Technology (Software Engineering)

Faculty of Computer Systems & Software Engineering

University College of Engineering & Technology Malaysia

MARCH, 2005

ABSTRACT

Timetablmg is a problem of allocating a timeslot for all lectures, lab and tutorials

in the problem instances within a limited number of permitted timeslots, in such a way

that none of the specified hard constraints are violated. In addition to the hard constraints,

there are often many soft constraints which are desirable to satisfy. In this study, the

timetable scheduling for Faculty of Computer System & Software Engineering (FSKKP)

of University College of Engineering & Technology Malaysia (KUKTEM) has been

studied to develop new prototype software for generating timetable. Basically, FSKKP is

still using human power in generating its timetable instead of using timetable scheduling

software. Since the timetable is configured manually, it is time-consumed as well as it

needs extra human resources to manage it. The university has its own system for

generating timetable which involving all of the faculties, but it is still in maintenance for

perfecting and enhancement since it still has weaknesses. In this project development, the

prototype will be implemented with rule-based approach as the solution to overcome the

timetable constraints and rules. The success of implementation and development of this

project is expected to help in reducing the time consumed and human power in generating

timetable for FSKKP. Indeed, it is also expected to generate a well-developed timetable

which giving the best solution in overcome the timetabling constraints and rules of

FSKKP.

V

ABSTRAK

Penjadualan merupakan satu masalah untuk menyusun semua aktiviti

pembelajaran seperti kuliah, bengkel dan tutorial mengikut masa dan tempat seterusnya

kemudian dimuat dan disusunkan dalam bentuk jadual tanpa melanggar atau

mengindarkan kengkangan utama seperti kekangan universiti dan fakulti. Dalam kajian

mi, penyusunan jadual waktu bagi Fakulti Sistem Komputer & Kejuruteraan Perisian

(FSKKP) di Kolej Umversiti Kejuruteraan & Teknologi Malaysia (KUKTEM) telah

dikaji untuk tujuan pembangunan model perisian yang mampu menyusunjadual

pembelajaran dengan berkesan. Penyusunanjadual pembelajaran di FSKKP masih lagi

dijalankan secara manual di mana ianya memakan-masa yang lama dan menggunakan

banyak tenaga manusia. Orgamsasi KUKTEM telah pun mempunyai sistem untuk

menyusun jadual pembelajaran yang melibatkan semua fakulti di universiti tersebut.

Namun demikian, sistem tersebut masih lagi dalam proses pembaikan disebabkan masih

lagi mempunyai kelemahan. Dalam projek mi, model yang dibangunkan menggunakan

teknik pangkalan peraturan dalam melaksanakan aktiviti penjadualan. Daripada projek

mi, diharap ía dapat mengurangkan masa dan tenaga manusia untuk pembangunan jadual

pembelajaran di FSKKP yang merupakan masalah utama yang perlu diatasi. Dengan

pembangunan projek nit juga, diharap ia dapat membma jadual yang berkesan dengan

menitik beratkan kengkangan-kengkangan yang perlu diambil kira.

VI-

TABLE OF CONTENTS

VII

CHAPTER

1

2

TITLE PAGE

Title Page

Declaration of Originality and Exclusiveness ii

Dedication iii

Acknowledgement iv

Abstract V

Abstrak vi

Table of Contents vii

List of Figures ix

List of Abbreviations x

List of Appendices xi

INTRODUCTION 1

1.1	 Introduction 1

1.2	 Problem Statement 2

1.2.1	 Current System 2

1.2.2	 Current System's Process 2

1.3	 Objectives 2

1.4	 Scopes

LITERATURE REVIEW 4

2.1	 Introduction 4

2.2	 Methodology in Timetabling 5

2.2.1	 Rule-Based Approach 5

2.2.2	 Fuzzy Logic Approach 8

2.2.3	 Genetic Algorithm Approach 10

2.3 Selected Technique 18

2.4 Common Constraints in Timetabling 19

2.4.1	 The Rooms Problem 19

2.4.2	 Pre-allocations or Pre-assignments 19

2.4.3	 Unavailability 19

2.4.4	 Minimizing versus equitation 20

2.4.5	 Preferences 20

2.4.6	 Miscellaneous constraints. 21

2.5 Constraints in FSKKP Timetabling 21

3	 METHODOLOGY 23

3.1 Introduction 23

3.2 Software Process 24

3.11	 Analysis 24

3.2.2	 Design 25

3.2.3	 Development 26

3.2.4	 Testing 27

33 Software and Hardware 31

4	 RESULT AND DISCUSSION 32

4.1 introduction 32

4.2 Result and Discussion 32

4.3 Assumption and Further Research 33

4.4 Lesson Learnt 33

5	 CONCLUSION 35

REFERENCES 36

APPENDICES A - F 39-68

VIII

LIST OF FIGURES

FIGURE NO TITLE PAGE

2.1 Forward-Chaining in Rule-based System 8

2.2 Fuzzy controller 9

2.3 Example of algorithm for Fuzzy logic 10

2.4 Genetic Algorithm 11

3.1 Rapid Application Development 24

3.2 Rule-based algorithm in the project 26

3.3 One of the exception handling in the software 27

3.4 Testing for duplicate subject code 28

3.5 Testing for duplicate room code 28

3.6 Testing for duplicate lecturer name 29

3.7 Testing for duplicate lecturer name 29

3.8 Testing for duplicate subject code 30

3.9 Sample of timetable report 30

LIST OF ABBREVIATIONS

etc.	 - etcetera

e.g.	 - for example [exempli gratia]

i.e.	 - that is [id est]

Al	 - Artificial Intelligence

BCS	 - Bachelor Computer Science

CHI	 - Set of children

CPU	 - Computer Processing Unit

DCS	 - Diploma Computer Science

FSKKP	 - Fakulti Sistem Komputer & Kejuruteraan Perisian

GA	 - Genetic Algorithm

GEN	 - Number of generation

JAD	 - Joint Application Development

KUKTEM	 - Kolej Umversiti Kejuruteraan & Teknologi Malaysia

LFT	 - Latest finish time

LST	 - Latest start time

POP	 - Population

PPSS	 - Pusat Pembangunan Sains Sosial

RAD	 - Rapid Application Development

RAM	 - Random Access Memory

RCPSP	 - Representation and self-adaptation

RS	 - Resource strength

SDLC	 - Software Development Life Cycle

SGS	 - Schedule generation scheme

x

LIST OF APPENDICES

APPENDIX TITLE PAGE

A KUKTEM Timetabling Algorithm 39

B 1 Flowchart of Timetabling Process 41

B2 Flowchart of Subject Constraints 42

B3 Flowchart of Checking For Slot Condition 43

C Gantt chart for Project Development Plan 44

D List of Subject Offered for Semester 11 2004/2005 47

E Generated Timetable for Every Course 50

F User Manual for TimeTabler 53

xi

CHAPTER 1

INTRODUCTION

1.1	 Introduction

The management of timetabling in the educational institution is very crucial as to

have a well-managed schedule lectures, labs and tutorials. This is important in

distributing the resources needed in a proper way without any faults. As seen nowadays,

a lot of solution or application that helps in generating a timetable which has been

developed in an artificial intelligent way. Some of the artificial intelligent methods that

available are expert system, genetic algorithm, fuzzy logic and etc. Each method has their

own way of performing their solution.

The TimeTabler is a software that will assists the Faculty of Computer and

Software Engineering (FSKKP) to schedule a timetable in the faculty. It automatically

will schedule the time and subject for a lecture, lab or tutorial class for specific time and

place. Indeed, this software will be implemented with the required rules and constraints

that need to be complied. Through TimeTabler, schedule for specific lecturer or course

can be view as a report. Basically, this software will help in develop a well-distributed

timetable and overcome the constraints in an intelligent way.

2

	

1.2	 Problem Statement

1.2.1 Current System

The current system for timetablmg in the faculty manages to develop a timetable.

Based on the previous timetable, it is found that the system does not really helps in

scheduling timetable wisely. Therefore, there is still human power needed to configure

the timetable manually. Below are some of the problems faced by the current system:

(a) Classroom clashing between for two courses at the same time

(b) Classroom provided cannot support the number of student

(c) Timetable for courses in FSKKP takes approximately three days to be

manually-developed.

(d) Still in need for human power for timetable configuration.

1.2.2 Current System Process

For every algorithm, it is crucial to understand the flow of process on how it is

executed. This will determine the success of the algorithm implementation through

coding and logic programming. The process flow for KUKTEM timetablmg algorithm

can be referred in Appendix A.

	

1.3	 Objectives

For every project development, it must have its aims so the project's success can

be measured into some extent. Therefore, below are the objectives of this project:

(a)	 TimeTabler is a prototype software for developing a well-distributed

timetable for every course in FSKKP.

3

(b) Provide a full report of timetable for every course in FSKKP

(c) Reduce the time consumed as well as the human power in arranging a

schedule and overcome the conventional way of managing a schedule

1.4	 Scopes

Basically, this software is mainly developed for the FSKKP to manage and

establish a well-organized schedule. The courses that involved are Bachelor of Software

Engineering (BCS) and Diploma of Software Engineering (DCS) for each

batch. In this scheduling, it only involves with the subjects in the FSKKP and the

subjects from Pusat Pembangunan Sams Sosial (PPSS) for university subjects.

This project is going to be developed for Windows platform and it uses the data or

resources and subjects for semester 2 year 2004/2005. It will use the visual basic

programming as code generation and Microsoft Access as the database management.

The TimeTabler is well-designed rule-based application to comply the following

constraints that critically required to be emphasized:

(a) There will be no class or lecture that is clashing.

(b) The room for each class, tutorial or lab must be able to support the number

of student.

(c) Must satisfy the university constraints such as there should be no class at

8.am on every Monday, no subject is scheduled in the evening for every

Wednesday, and schedule should not have class at 1.00 pm and for faculty

meeting; on Tuesday 8 am to 10 am.

(d) The TimeTabler should be able to give a final report of timetable for every

course in the FSKKP.

CHAPTER 2

LITERATURE REVIEW

2.1	 Introduction

Timetabling is a great importance for educational institutions and has to be solved

numerous times at each institution consuming expensive human and computer resources.

Timetabling can be defined as the problem of assigning a set of schedule into a given set

of classrooms over a limited number of time periods in such a way that there are no

conflicts between any two classes. That is no student should be required to attend two

classes at the same time and no two classes should be assigned to the same classroom

during overlapping time periods.. At the same time, it is also need to consider the capacity

of the room, lecturers that involved, time and some other constraints.

There are a lot of applications that has been developed and available in the market.

These applications aim is to generate a well-distributed timetable in respective way of

solution depending its method or artificial intelligent algorithm. A lot of algorithms or

methods available nowadays and widely used in the area of timetabling, such as genetic

algorithm, fuzzy logic, expert system and etc.

2.2	 Methodology in Timetabling

2.2.1 Rule-Based Approach

2.2.1.1 Introduction to Rule-Based System

Rule-based system use a set of assertions, which collectively form the 'working

memory', and a set of rules that specify how to act on the assertion set, a rule-based

system can be created. Rule-based systems are fairly simplistic, consisting of little more

than a set of if-then statements, but provide the basis for so-called "expert systems" which

are widely used in many fields. The concept of an expert system is where the knowledge

of an expert is encoded into the rule set. When exposed to the same data, the expert

system will perform in a similar manner to the expert.

Rule-based systems are a relatively simple model that can be adapted to any

number of problems. As with any 'system, a rule-based system has its strengths as well as

limitations that must be considered before deciding if it's the right technique to use for a

given problem. Overall, rule-based systems are really only feasible for problems for

which any and all knowledge in the problem area can be written in the form of if-then

rules and for which this problem area is not large. If there are too many rules, the system

can become difficult to maintain and can suffer a performance hit. Basically, to create a

rule-based system for a given problem, the following must have (or created) [15]:

a) A set of facts to represent the initial working memory. This should be

anything relevant to the beginning state of the system.

b) A set of rules. This should encompass any and all actions that should be

taken within the scope of a problem, but nothing irrelevant. The number

of rules in the system can affect its performance, so you don't want any

that aren't needed.

C) A condition that determines that a solution has been found or that none

exists. This is necessary to terminate some rule-based systems that find

themselves in infinite loops otherwise.

2.2.1.2 Theory of Rule-Based Systems

The rule-based system itself uses a simple technique whereby it starts with a rule-

base, which contains all of the appropriate knowledge encoded into If-Then rules, and a

working memory, which may or may not initially contain any data, assertions or initially

known information. The system examines all the rule conditions (IF) and determines a

subset, the conflict set, of the rules whose conditions are satisfied based on the working

memory. Of this conflict set, one of those rules is triggered (fired).

Which one is chosen is based on a conflict resolution strategy. When the rule is

fired, any actions specified in its THEN clause are carried out. These actions can modify

the working memory, the rule-base itself, or do just about anything else the system

programmer decides to include. This loop of firing rules and performing actions

continues until one of two conditions is met: there are no more rules whose conditions are

satisfied or a rule is fired whose action specifies the program should terminate.

Which rule is chosen to fire is a function of the conflict resolution strategy.

Which strategy is chosen can be determined by the problem or it may be a matter of

preference. In any case, it is vital as it controls which of the applicable rules are fired and

thus how the entire system behaves. There are several different strategies, but here are a

few of the most common [15].

First Applicable: If the rules are in a specified order, firing the first applicable one

allows control over the order in which rules fire. This is the simplest strategy and has a

potential for a large problem: that of an infinite loop on the same rule. If the working

memory remains the same, as does the rule-base, then the conditions of the first rule have

not changed and it will fire again and again. To solve this, it is a common practice to

7

suspend a fired rule and prevent it from re-firing until the data in working memory, that

satisfied the rule's conditions, has changed.

Random: Though it doesn't provide the predictability or control of the first-applicable

strategy, it does have its advantages. For one thing, its unpredictability is an advantage in

some circumstances (such as games for example). A random strategy simply chooses a

single random rule to fire from the conflict set. Another possibility for a random strategy

is a fuzzy rule-based system in which each of the rules has a probability such that some

rules are more likely to fire than others.

Most Specific: This strategy is based on the number of conditions of the rules. From the

conflict set, the rule with the most conditions is chosen. This is based on the assumption

that if it has the most conditions then it has the most relevance to the existing data.

Least Recently Used: Each of the rules is accompanied by a time or step stamp, which

marks the last time it was used. This maximizes the number of individual rules that are

fired at least once. If all rules are needed for the solution of a given problem, this is a

perfect strategy.

"Best" rule: For this to work, each rule is given a 'weight,' which specifies how much it

should be considered over the alternatives. The rule with the most preferable outcomes is

chosen based on this weight.

2.2.1.3 Forward-Chaining in Rule-Based Systems

Rule-based systems, as defined above, are adaptable to a variety of problems. In

some problems, information is provided with the rules and the Al follows them to see

where they lead. An example of this is a medical diagnosis in which the problem is to

diagnose the underlying disease based on a set of symptoms (the working memory). A

problem of this nature is solved using a forward-chaining, data-driven, system that

compares data in the working memory against the conditions (IF parts) of the rules and

determines which rules to fire.

Rule)	 I Determine possible
Base	 rules to tire

Conflict Set
Working
Memory

SelectRule Fo	 I	 Resolution \
Conflict

Strategy rule
Fire RuI to fire

No Rule Found

I Exit

Figure 2.1: Forward-Chaining in Rule-based System [15]

2.2.2 Fuzzy Logic Approach

Fuzzy scheduling provides the possibility to deal with the inherent dynamic and

incompleteness of the scheduling area. It allows the representation (by fuzzy sets and

linguistic variables) and the inference (by fuzzy rules) from vaguely formulated

knowledge. The main types of imprecise scheduling information addressed by fuzzy sets

are:

(a) Vaguely defined dates or durations, e.g., due dates,

(b) Vague definitions of preferences, e.g., preferences between alternatives,

(c) Uncertainty about the value of scheduling parameters, e.g., process times,

(d) Aggregated knowledge, e.g., machine groups instead of individual

machines.

.1	 knowledge	 Fuzzy-base Controller

fuzzifi-	 inference	 deflizzifl-
cation	 engine	 cation

Output: crisp
Input: crisp values	 values

Figure 2.2 Fuzzy controller [16]

To handle the imprecise information with fuzzy controllers (Figure 2.2), the following

steps have to be performed:

(a) Transformation of scheduling data into a knowledge representation that

can be handled by a fuzzy controller (fuzzification). Imprecise knowledge

is represented by linguistic variables denoting the possible values, e.g.,

capacity of machine groups by (very low, low, normal, high, very high).

For each of the possible values a membership function (e.g., triangular) is

given, which is used in combining and processing the fuzzy sets.

(b) Processing of the fuzzy scheduling knowledge towards a decision by

means of given rules and integration of fuzzy arithmetic to deal with

imprecise or vague data. Fuzzy sets and rules are stored in the knowledge

base of the fuzzy controller.

(c) Transformation of the fuzzy scheduling decision into crisp scheduling data

(defuzzification), e.g., to determine concrete dates for operations. The

principal advantage of fuzzy scheduling is the possibility to focus on the

significant scheduling decisions; a main disadvantage is the computational

10

effort necessary. First approaches have been reported in the late 1980s

[13; 14] and research is ongoing [11; 12].

k	 number of unscheduled exam;
For u	 I to k

Select exam[u];
Find timeslots where exam(uj can be inserted with minimum number
of scheduled exams need to be removed from the timesiot;
If found more than one slot with the same number of scheduled ex-
ams need to be removed

Select a time-slot randomly from the candidate list of slots, ts;
End if
C	 number of exam in timeslot ts that conflict with examlu);
For in : 1 to c

Select exam[m];
If found another timeslot with minimum cost to move examfm)

Move exam[m] to the timeslot;
else

Bump back exam(m) to unscheduled exam list;
End if

End for
Insert examlu) to timeslot ts,;
Remove exam[u) from unscheduled exam List;

End for

Figure 2.3 : Example of algorithm for Fuzzy logic [5]

2.2.3 Genetic Algorithm Approach

2.2.3.1 Basic Scheme

Genetic algorithms in Holland [9] and Goldberg [10] apply the principles of

biological evolution to solve optimization problems. They combine existing solutions in

order to form new ones. Together with a survival-of-the-fittest strategy, this leads to

successively better solutions for the problem to be solved. The GA framework starts with

the computation of an initial population which describes in Subsection 2.2.3.3, i.e., the

first generation. The number of individuals in the population is referred to as POP which

is assumed to be an even integer.

The GA then determines the fitness values of the individuals of the initial

Population. After that, the population is randomly partitioned into pairs of individuals.

To each resulting pair of (parent) individuals, it applies the crossover operator (see

Subsection 2.2.3.4) to produce two new (child) individuals. Subsequently, apply the

mutation operator (see Subsection 2.2.3.5) to the genotypes of the newly produced

children. After computing the fitness of each child individual, add the children to the

current population, leading to a population size of 2 POP. Then apply the selection

operator (see Subsection 2.2.3.6) to reduce the population to its former size POP. Doing

so, will obtain the next generation to which, again apply the crossover operator and so on.

This process is repeated for a pre-specified number of generations which is

denoted as GEN or, alternatively, until a given CPU time limit is reached. More formally,

the GA scheme can be summarized as follows. POP denotes the current population (i.e., a

set of individuals), and CH I is the set of children. G is the current generation number.

Note that exactly POP GEN individuals (and thus schedules) are computed if a time

limit is not given.

G:= I:
generate initial population TOT;
compute fitness for individuals I E !POfP:

W till E G < GE \ AND time limit is not reached 1)0
BEGIN

produce children C5{i from POT by crossover;
apply mutation to children .1 E C51.i;
compute fitness for children I E C511;
POP: == TOT U CHI;
reduce population POP by means of selection:

EN I).

Figure 2.4: Genetic Algorithm [4]

2.2.3.2 Representation and Self-Adaptation

For many optimization problems, GA does not operate directly on the solutions

for the problems. Instead, they make use of problem-specific representations of the

solutions. The genetic operators modify the representation which is then transformed into

a solution by means of a so-called decoding procedure.

For the RCPSP, a solution is given by a schedule S = (si,. . . , s.J) which assigns a

start time Sf to every activityj. As outlined in Hartmann [11], such a solution can be

represented within a GA by an activity list I = (jl,. . . ,jJ. M activity list must be

precedence feasible, that is, any activity must occur in the list after all its predecessors.

Formally, that is Pji - {0,jl,.. . ,ji-1} for 11,.. . J. The activity list is transformed into

a schedule by a decoding procedure which is called serial schedule generation scheme

(SGS). The serial SGS constructs schedules from activity lists as follows: First, the

dummy source activity is started at time 0. Then the activities are scheduled in the order

that is prescribed by the list (ii,. . . ,jJ).

Thereby, each activity is assigned the earliest precedence and resource feasible

start time. In fact, in Hartmann [11] it is shown that the activity list representation

(together with the serial SGS as decoding procedure) leads to better results than other

representations for the RCPSP. In the context of priority rule based heuristics, another

scheduling algorithm for the RCPSP, the so-called parallel SGS, has been employed [20].

It works as follows: Having scheduled the dummy sink activity at time 0, the parallel SGS

computes a so-called decision point which is the time at which an activity to be scheduled

is started.

This decision point is determined by earliest finish time of the activities currently

in process. For each decision point, the set of eligible activities is computed as the set of

those activities that can be feasibly started at the decision point. The eligible activities are

selected successively and started until none are left. Then the next decision point and a

related set of eligible activities are computed. This is repeated until all activities are

feasibly scheduled.

To the best of knowledge, all metaheuristics in the RCPSP literature that employ

the activity list representation also make use of the serial SGS as decoding procedure as

agreed in Baar et al. [21], Boctor [22], Bouleimen and Lecocq [23], Hartmann [24], and

Pinson et al. [25]. Usually, no reason for the selection of the serial SGS is given—the

serial SGS appears to be the "natural choice."

Thus, here it is proposed to use not only the serial but also the parallel SGS as

decoding procedure for the activity list representation. In fact, the parallel SGS can easily

be applied to activity lists: In each step, simply choose that activity from the eligible set

that has the lowest index in the activity list.

Now there are two possible decoding procedures for the activity list representation

of the RCPSP. This leads to the question which of them should be used. In fact, there is

no general answer to this question. This is due to the differences between the serial and

the parallel SGS: Whereas the serial SGS constructs so-called active schedules, the

parallel one constructs so-called non-delay schedules [27].

The set of the non-delay schedules is a (in most cases proper) subset of the set of

the active schedules. While the set of the active schedules always contains an optimal

schedule, this does not hold for the set of the non-delay schedules. Consequently, the

parallel SGS may miss an optimal schedule. On the other hand, it produces schedules of

good average quality because it tends to utilize the resources as early as possible, leading

to compact schedules.

These result in different behaviors of the SGS in computational experiments based

on Kolisch [20] and Hartmann and Kolisch [26]. On instances with many activities

and/or scarce resource capacities, the parallel SGS performs better than the serial one.

Moreover, if long computation times are allowed (i.e., if many schedules can be

computed), the serial SGS leads to better results than the parallel one.

These observations can be explained as follows: Many activities and scarce

resources imply larger search spaces, where the focus on compact, but often only

suboptimal non-delay schedules is a promising heuristic strategy. Longer computation

times may allow finding an optimal or a near optimal solution, which is typically only

possible if the serial SGS is used.

However, it is usually impossible to predict which of the SGS will perform better

for an arbitrary instance of the RCPSP. The idea is now to allow both SGS to be

employed as decoding procedures within the GA. To do so, define the genotype as

follows: An individual I = (l,SGS) consists of an activity list 1 and an indicator

SGS = 1 1, if activity list 1 is to be decoded by the serial SGS

0, if activity list 1 is to be decoded by the parallel SGS.

For a given individual, compute a schedule using the SGS specified in the

genotype. The fitness of the individual is defined as the make span of the schedule. That

is, a lower fitness implies a better individual and thus a higher chance to survive.

The extended representation proposed here includes an additional gene that

determines the SGS type to be used as decoding procedure for the related activity list. As

with all genes in GAs, also this one is subject to the genetic operators' crossover,

mutation, and selection. Therefore, the SGS type leading to better results will survive

while the other one will probably die over the generations. Thus the mechanism of

evolution decides for the specific instance currently to be solved which decoding

procedure is the more promising one. This enables the GA to adapt itself dynamically to

each instance, leading to what it is call a self-adapting GA.

2.2.3.3 Initial Population

In initial population, it is crucial to define how to determine an initial population

containing POP individuals of the genotype introduced above. Basically, it will proceed

in two steps. First, consider the construction of an activity list. Second, describe the

selection of the decoding procedure to be used, i.e., one of the two SGS. An activity list

is constructed by a modified priority rule based sampling heuristic [20]. The next activity

for the list is successively chosen from those unscheduled activities the predecessors of

which have already been selected for the list. This way, it will obtain a precedence

feasible activity list. The decision which activity is chosen next is made on the basis of

one of two well-known priority rules. Firstly, select the priority rule; either the LFT

(latest finish time) or the LST (latest start time) rule is chosen with a probability of 0.5

each.

From the resulting priority values of the activities, derive regret based biased

selection probabilities that are used to select the next activity (for details on the priority

rules and the regret based biased sampling approach, refer to Kolisch [20]). Using two

good priority rules and a randomized activity selection method leads to a diversified

initial population of good activity lists. Next, choose an SGS in order to make the current

activity list a complete genotype. Of course, both SGS must appear in the population

because the genetic algorithm needs to decide which of them is more promising. Then,

examined the following three alternative approaches:

a) The most straightforward method is to select each of the SGS types with a

probability ofp = 0.5.

b) The following idea was designed to lead to a good initial distribution of the

SGS types with respect to the project actually to be scheduled. It is

discussed above that, roughly explained, the serial SGS is more favorable

for smaller projects. This motivated the following approach where the

probability to select the serial SGS is defined asp serial = a J, where a is a

constant. Clearly, setp parallel = 1-p serial. This way, the more activities

it will have in a project, the higher the probability to select the parallel

SGS in the initial population.

C) Similarly, the parallel SGS is superior in case of scarce resource capacities.

A formal measure for the scarceness is the resource strength RS [28]. Low

resource strength implies scarce capacities. Thus, simply set p serial = RS.

Again, set parallel =1-p serial. Obviously, low resource strength leads

to a low probability for selecting the serial SGS (note that RS is between 0

and 1 by definition).

In computational experiments with a large number of test instances, these three

approaches gave similar results on the average. This indicates that the initial distribution

is not crucial for the evolution as long as both .SGS obtain a sufficient fraction in the

initial population. As none of the methods was clearly superior, select the simplest

approach (a).

2.2.3.4 Crossover

Let's assume that two individuals of the current population have been selected for

crossover. Thus, there will be mother individual M(1M,SGSIvI) and a father individual F

=(1F,SGSF). Now two child individuals have to be constructed, a daughter D =

(ID,SGSD) and a son S = (IS,SGSS).

First, start with a definition of the daughter D. In a first step, determine the

daughter's activity list ID. Combining the parent's activity lists, make sure that each

activity appears exactly once in the daughter's activity list. Therefore, adapt a general

crossover technique presented by Reeves [311 for permutation based genotypes. This

approach also secures that precedence feasibility is maintained. Perform a two-point

crossover for which will draw two random integers q 1 and q2 with 1 - q 1 <q2 - J. Now

the daughter's activity list ID is determined by taking the activity list of the positions i =

1,. . . ,q 1 from the mother, that is,

.M
ii := J

The positions i=q 1 + 1,.. . ,q2 are derived from the father. However, the activities already

selected may not be considered again. Then, this will be obtained:

= j k where k is the lowest index such that 	 ,. . • 'fi }

The remaining positions i = q2+1,. . .. ,J are again taken from the mother, that is,

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24

