A Hybrid of Harmony Search and Minimization of Metabolic Adjustment for Optimization of Succinic Acid Production

^aNor Syahirah Abdul Wahid, ^aMohd Saberi Mohamad, ^aAbdul Hakim Mohamed Salleh, ^bSafaai Deris , ^aWeng Howe Chan, ^cSigeru Omatu, ^dJuan Manuel Corchado, ^eMuhammad Farhan Sjaugi, ^fZuwairie Ibrahim

- ^aArtificial Intelligence and Bioinformatics Research Group, Faculty of Computing, Universiti Teknologi Malaysia
- ^bFaculty of Creative Technology and Heritage, Universiti Malaysia Kelantan
- ^cDepartment of Electronics, Information and Communication Engineering, Osaka Institute of Technology
- ^dBiomedical Research Institute of Salamanca/BISITE Research Group, University of Salamanca
- ^eCenter for Bioinformatics, School of Data Sciences, Perdana University
- ^fFaculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang

ABSTRACT

Succinic acid has been favored by researchers due to its industrial multi-uses. However, the production of succinic acid is far below cell theoretical maximum. The goal of this research is to identify the optimal set of gene knockouts for obtaining high production of succinic acid in microorganisms. Gene knockout is a widely used genetic engineering technique. Hence, a hybrid of Harmony Search (HS) and Minimization of Metabolic Adjustment (MOMA) is proposed. The dataset applied is a core *Escherichia coli* metabolic network model. Harmony Search is a meta-heuristic algorithm inspired by musicians' improvisation process. Minimization of Metabolic Adjustment is used to calculate fitness closest to the wild-type, after mutant gene knockout. The result obtained from the proposed hybrid technique are knockout genes list and production rate after the deletion. This proposed technique is possible to be applied in wet laboratory experiment to increase the production of succinic acid in *E. coli*.

KEYWORDS: Bioinformatics; Artificial intelligence; Metabolic engineering; Harmony Search; Minimization of Metabolic Adjustment; Gene knockout

DOI: 10.1007/978-3-319-40126-3_19