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Abstract A metaheuristic algorithm, called Harmony Search (HS) is implemented for data fitting

by rational cubic Bézier curves. HS is a derivative-free real parameter optimization algorithm, and

draws an inspiration from the musical improvisation process of searching for a perfect state of har-

mony. HS is suitable for multivariate non-linear optimization problem. It is mainly achieved by

data fitting using rational cubic Bézier curves with G1 continuity for every joint of segments of

the whole data sets. This approach has significant contributions in making the technique auto-

mated. HS is used to optimize positions of middle points and values of the shape parameters.

Test outline images and comparative experimental analysis are presented to show effectiveness

and robustness of the proposed method. Statistical testing between HS and two other different

metaheuristic algorithms is used in the analysis on several outline images. All of the algorithms

improvised a near optimal solution but the result that is obtained by the HS is better than the results

of the other two algorithms.
� 2015 Production and hosting by Elsevier B.V. on behalf of Faculty of Computers and Information,

Cairo University.
1. Introduction

Data fitting is a well-studied area in computer graphics and
mathematics which is also a fundamental problem in many
fields, such as computer graphics, image processing, shape
modelling and data mining. Depending on applications, differ-
ent types of curves such as parametric curves, implicit curves

and subdivision curves are used for fitting. Data fitting is nor-
mally divided into two types, approximation and interpola-
tion. Under an approximation-fitting scheme, a curve must

pass reasonably close to the data points but is not required
to pass through them [12].

Rational Bézier curves are widely used in CAD/CAGD

fields, because they have concise and geometrically meaningful
presentation and can be deformed easily by moving the control
points or modifying weights. Some studies on data fitting using

rational Bézier functions, to determine the best conic approxi-
mation of a given curve which is based on Hausdorff distance

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eij.2015.05.001&domain=pdf
http://dx.doi.org/10.1016/j.eij.2015.05.001
http://www.sciencedirect.com/science/journal/11108665
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function [7], approximate rational Bézier curves by Bézier

curves through the concept of Cðu;vÞ – continuity [1] and as iter-
ation method for approximation of rational Bézier curves by
adjusting control points gradually using the scheme of weighted

progressive iteration approximations through a global Lp –
error [9]. Recently, a few researchers such as Huang et al. [6]
whose derived offset by using cubic Bézier for approximating

degree n Bézier with comparing three methods, Hausdorff dis-
tance, shifting control and approximation based on L2 norm in
order to find the better approximation. While Yang et al. [21]
focused on curves on surfaces which present a parabola

approximation method based on the cubic rational Bézier sur-
faces. This study also used Hausdorff distance between the
approximate curve and the exact curve; the approximation is

controlled under the user-specified tolerance. Shen et al. [17]
proposed a certified approximation as an optimization method
to select proper weights in the cubic rational Bézier curve to

approximate the given curve. The error of the approximation
is controlled by the size of its tetrahedron, which converges
to zero by subdividing the curve segments. Stamati and

Fudos [20] presented a fast curve approximation method that
approximates raw data with cubic rational Bézier curves. The
approach combines least squares approximation with continu-
ity constraints to ensure G1 continuity between neighbouring

curves. This study imposed continuity constraints into the least
squares optimization process to ensure that the computed con-
trol points respect the estimated tangents at the end points.

Meanwhile, a few researchers had used metaheuristic
method recently to curve fit outline images or a set of data
points such as Sarfraz [18] that used simulated annealing to

curve fit extracting outlines of images with a generalized cubic
spline, the simulated annealing is used to optimize the shape
parameter and another paper [19] also used simulated anneal-

ing as the mechanism to globally optimizes the shape parame-
ters in the description of the conic splines but in the case of
poor approximation, the insertions of intermediate points are
made as long as the desired approximation is achieved.

Yahya [16] proposed particle swarm optimization to optimize
the control points and weight which were then used in conic
equations. While, Gálvez and Iglesias [3] applied PSO to com-

pute an appropriate location of knots as the knots were treated
as free variables for B-splines functions.

In this paper, a metaheuristic approach namely, HS is

implemented as an approximation tool using rational cubic
Bézier curve from given data points. Our algorithm is based
on the idea of minimizing least-squares error by Yahya [14]
in order to improve positions of two middle control points,

C1;C2 and values of weights, w1andw2 as in Yahya et al. [15].
We use the adjustments adjust its shape and parametric struc-
ture so as to construct curves that pass as closely as possible

between the data sets smoothly. We also adjust and control
points and values of weights until the error of the least squares
is minimized. Therefore, the best approximation with mini-

mum least-squares error can be obtained by this technique.
The aim of this study was to prove that HS can be used as a
method to fit a set of data points via rational cubic Bézier

and also as a best method based on its time consuming and
guarantee to nearly reach the global optimal solution and
locally optimal solution as it has a stoping criteria with the best
solution it has found so far. In order to prove that statement, a

statistical analysis had been done.
This paper begins with an overview of rational cubic Bézier,
least-squares error and parameterization used based on cen-
tripetal method together with some basic concepts on data fit-

ting. A gentle overview on the HS is also given. The G1

continuity concept between two segments of our proposed
data set is presented. Finally, method and its implementation,

with some experimental results are presented. This method
also had been compared with other two metaheuristic algo-
rithms, which are genetic algorithm and particle swarm opti-

mization on four different outline images. Statistical analysis
also had been carried out in this paper to identify the reliability
and effectiveness of this method.

2. Data fitting with rational cubic Bézier

A rational cubic Bézier function is defined as:

Let fðsi;QiÞ; i ¼ 1; 2; � � � ; ng be a given set of data point
where s1 < s2 < � � � < sn. The piecewise rational cubic Bézier

function is defined over each interval I ¼ ½si; siþ1�;
i ¼ 1; 2; � � � ; n� 1.

PðsÞ � PðsiÞ

¼ 1� uð Þ3C0 þ 3u 1� uð Þ2w1C1 þ 3u2ð1� uÞw2C2 þ u3C3

1� uð Þ3 þ 3u 1� uð Þ2w1 þ 3u2ð1� uÞw2 þ u3

ð1Þ

where u ¼ s�si
hi

and hi ¼ siþ1 � si; u 2 ½0; 1�.
w1 and w2 are shape parameters and Ci; i ¼ 0; 1; 2; 3 are

control points with C0 and C1 are fixed.

3. Least-squares error and reparameterization

By using centripetal method, the length of the data polygon
can be written as

L ¼
Xn
i¼1
jpi � pi�1j

1=2 ð2Þ

Hence the parameters are

s0 ¼ 0 sk ¼
1

L

Xk
i¼1
jpi � pi�1j

1=2

 !
sn ¼ 1

( )
ð3Þ

For a specified set of control points, the least-squares error
function between PðuiÞ and QðsiÞ is

E ¼
Xn
i¼1

PðuiÞ �QðsiÞj j2 ð4Þ

We are looking the values of w1;w2;C1 and C2 for which E

is minimum.

4. Harmony search

Currently many phenomenon-mimicking meta-heuristic algo-
rithms, such as genetic algorithm (GA), simulated annealing
(SA), tabu search, ant colony optimization, and particle swarm
optimization (PSO), have been used in various science and

engineering problems. The advantages of these algorithms over
calculus-based optimization algorithms include: not requiring
complex gradient derivative and initial vector, ability to per-

form global search as well as local search, and efficiently



Figure 2 Geometric view of G1 continuity.
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handling discrete variables [5]. Harmony Search (HS) is a
metaheuristic algorithm which was originally inspired by the
improvisation process of Jazz musicians. The analogy between

improvisation and optimization can be described as each musi-
cian corresponds to each decision variable; musical instru-
ment’s pitch range corresponds to decision variable’s value

range; musical harmony at certain time corresponds to solu-
tion vector at certain iteration; and audience’s aesthetics corre-
sponds to objective function [8]. Just like musical harmony is

improved time after time, solution vector is improved iteration
by iteration. HS imposes fewer mathematical requirements and
does not require initial value settings of decisions variables. As
the algorithm uses stochastic random searches, derivative

information is also unnecessary. The steps in the procedure
of harmony search are shown in Fig. 1. The basic steps are
as follows [10]:

4.1. Initialize the problem and algorithm parameters

Suppose the optimization problem is specified as follows:

Min fðuÞ subject to ui 2 U; i ¼ 1; 2; . . . ;N ð5Þ

where fðuÞ is an objective function, decision variables ui, N is
the number of decision variable, U is the set of the possible
range of values for each decision variable, Lui 6 U 6 Uui
where Lui and Uui are lower and upper bounds for each deci-

sion variable, respectively. Parameters for HS are harmony
memory size (HMS); harmony memory considering rate
Figure 1 Procedure of har
(HMCR); pitch adjusting rate (PAR); and number of improvi-

sation (NI), or stopping criterion. The harmony memory (HM)
is a memory location where all the solution vectors (sets of
decision variables) are stored. At this step, HM is similar to

the genetic pool in the GA where all of the data had been
stored [10].

4.2. Initialize the harmony memory

HM matrix is filled with as many randomly generated solution
vectors as the HMS

HM ¼

u11 u12 � � � u1N�1 u1N
u21 u22 � � � u2N�1 u2N

..

. ..
. ..

. ..
. ..

.

uHMS�1
1 uHMS�1

2 � � � uHMS�1
N�1 uHMS�1

N

uHMS
1 uHMS

2 � � � uHMS
N�1 uHMS

N

2
66666664

3
77777775

ð6Þ
mony search algorithm.



Figure 3 G1 continuity illustration between (a) 3 segments and (b) 2 segments.

(a) (b)

(c) (d)

- OG
***RB

Figure 4 (a) Outline of the image, (b) outline with break points,

(c) line connecting Ci’s in every segment, (d) outline image with

correspondent rational Bézier curve.

(a) (b)

(c) (d)

- OG
***RB

Figure 5 (a) Bitmapped image, (b) outline of the image, (c)

outline with break points, (d) outline image with correspondent

rational Bézier curve.
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4.3. Improvise a new harmony

A new harmony vector, u0 ¼ ðu01; u02; � � � ; u0NÞ is generated based
on three rules: memory consideration, pitch adjustment and

random selection. Generating a new harmony is called ‘impro-
visation’. In the memory consideration, the value of the first
decision variable, u01 for the new vector is chosen from any

of the values in the specified HM range ðu011 ; u021 ; � � � ; u0HMS
1 Þ,

similar process to the other decision variables ðu02; u03; � � � ; u0NÞ.
The detailed process of this steps is illustrated in Fig. 1.

4.4. Update harmony memory

If the new harmony vector, u0 ¼ ðu01; u02; � � � ; u0NÞ is better than
the worst harmony in the HM, judged in terms of the objective

function value, the new harmony is included in the HM and
the existing worst harmony is excluded from the HM.

4.5. Check

If the stopping criterion is satisfied, computation is terminated.
Otherwise, steps 3 and 4 are repeated.
5. G1
continuity between two segments

Marsh [11] gave a definition of geometric continuity by:

Suppose two regular curves BðsÞ; s 2 ½s0; s1�, and
CðtÞ; t 2 ½t0; t1�, meet at a point P ¼ Bðs1Þ ¼ Cðt0Þ. Then the

two curves said to meet with Gk – continuity whenever there
is a Reparameterization b : ½u0; u1� ! ½s0; s1� such that
s1 ¼ bðu1Þ and

diB

dui
ðbðuÞÞju¼u1

diC

dti
ðtÞjt¼t0 ð7Þ

for all i ¼ 0; � � � ; k. This type of continuity is called geometric

continuity.

In a geometric view, for a regular curve PðuÞ, G1 at u if it is

G0 continuous and it possesses continuous unit tangent vector,



Figure 6 (a) Outline of the image, (b) outline with break points, (c) outline image with correspondent rational Bézier curve.

Figure 7 (a) Bitmapped image, (b) outline of the image, (c)

outline with break points, (d) outline image with correspondent

rational Bézier curve.
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bP0ðu�Þ ¼ P0ðuþÞ ð8Þ
where b ¼ kP0ðuþÞkkP0ðu�Þk > 0
Table 1 G1 continuity analysis.

nth joint Fig. 5 Fig. 6

bx by bx by

1 4.26051098 4.26051098 0.01893534 0.01893

2 0.16440373 0.16440373 0.04707052 0.04707

3 �2.77452417 �2.77452417 3.30416527 3.30416

4 �0.34379848 �0.34379848 0.41811991 0.41811

5 1.01815645 1.01815645 1.53058122 1.53058

6 0.01585093 0.01585093 0.37198273 0.37198

7 2.55695847 2.55695847 4.12417886 4.12417

8 0.49683132 0.49683132 �2.63191694 0.65945

9 �0.34326318 �0.91623243 0.43726459 0.43726

10 0.30432804 0.30432804 0.409990409 0.40999

11 3.74608222 3.74608222 �3.87751453 6.62429

12 �1.50717641 0.18755597 – –

13 �2.00241487 4.31008604 – –

14 1.04244158 1.04244158 – –

15 1.73650617 1.73650617 – –
P0ðu�Þ and P0ðuþÞ point to the same direction with different
values of magnitude as in Fig. 2.

Bézier points C2;C3 and C01 must be collinear but the ratio

of kC2C3k and kC00C01k are not fixed, where b is utilized to

break the chain.

6. Method and implementation

In order to implement HS, Eq. (4) is used as the objective
function. HS parameters in this work are HM = 5,
HMCR = 0.9, PAR = 0.3 and bw = 0.03. All these values

of parameters are the usual choice in HS community and also
supported based on empirical results by [13]. According to
results by Omran and Mahdavi [13], in general, using a small

HM seems to be a good and logical choice with the added
advantage of reducing space requirements. Actually, since
HM resembles the short-term memory of a musician which

is known to be small, it is logical to use a small HM as in
the paper used the smallest value of HM is 5. As for
HMCR, a large value for HMCR (e.g. 0.95) generally
improves the performance of the HS. The experiments show

that using a relatively small constant value for PAR seems
to improve the performance of the HS.

As the beginning, all the data extracted from the outline

boundary of the images had been broke into a few curve seg-
ments. The completion of the procedures to fit all the data con-
sists of 3 sections: original segments, segment between two

segments and end segment.
Fig. 7 Fig. 8

bx by bx by

534 10.43118780 10.43118780 0.59910652 0.59910652

052 0.38101031 0.38101039 1.72965880 1.72965880

527 4.32293758 4.32293758 5.19218689 5.19218689

991 2.05956026 2.05956026 1.32544346 1.32544346

122 1.81849452 1.81849452 0.92138456 0.92138456

273 0.88708711 0.88708711 0.65161496 0.65161496

886 1.17072419 1.17072419 1.08933812 1.08933812

804 0.42307881 0.42307881 1.06743386 1.06743386

459 7.93291619 7.93291619 0.39554224 0.39554224

041 0.20215543 0.20215543 0.84602743 0.84602743

858 1.23469281 1.23469281 1.66866911 1.66866911

1.78335501 1.78335501 0.87416563 0.87416563

– – 3.24574994 3.24574994

– – 0.35296832 0.35296832

– – – –



Outline image
HS 

*    GA
x    PSO

Figure 8 Data fitting for outline for alphabet ‘S’ with 2593 data

points. The highlight segment consists of 113 data points, HS

error = 0.0008, GA error = 0.0025 and PSO error = 0.0803.

(a) Aeroplane (1875 data points)

(c) Letter ‘e’ (2783 data points)

 - o      HS
  x       GA
*       PSO

- o      HS
  x       GA
*       PSO

Figure 9 Minimum least-squares error fo
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6.1. Original segments

In this section, only the odd segments (1,3,. . .) will be
considered and all the data in the segment will be approxi-
mated without any constraints. The size of w1 and w2 is in

½0; 2�. The search space for C1 and C2 are estimated as
follows:

Let a segment consists a set of points ðd1; d2; � � � ; dendÞ 2 R2

while C�1 and C�2 are extremum points in the segments. The size

of each C�1 and C�2 is determined by:

size of C�i ¼ jdmax � dminj; i ¼ 1; 2 ð9Þ
6.2. Segment between two segments

For this section, the even segments (2,4,. . .) will be considered
and all the data in the segment will be approximated with cer-
tain constraints, which are as follows:

Suppose a set of data has three segments, seg1; seg2 and seg3
as in Fig. 3(a), each segment of rational cubic Bézier curve
(b) Pear (1433 data points)

(d) Letter ‘s’ (2593 data points)

 - o      HS
  x       GA
*       PSO

- o      HS
  x       GA
*       PSO

r each segment of test outline images.



Table 2 Descriptive data of four outline images.

Best Worst Mean Median Variance Standard deviation

Letter ‘s’

HS 0.0500 0.1400 0.1087 0.1063 0.00099 0.03153

GA 0.0900 0.1700 0.1599 0.1533 0.00172 0.04151

PSO 0.2300 0.7300 0.5610 0.5377 0.03745 0.19353

Letter ‘e’

HS 0.1151 0.2567 0.1648 0.1633 0.00129 0.03597

GA 0.1837 0.9036 0.6007 0.5963 0.03636 0.19068

PSO 0.7127 1.1592 0.9362 0.9595 0.01072 0.10354

Aeroplane

HS 0.0437 0.0890 0.068247 0.06665 0.00013 0.01161

GA 0.0290 0.1393 0.074257 0.0712 0.00047 0.02162

PSO 0.1082 0.3716 0.22588 0.22215 0.00241 0.04910

Pear

HS 0.0123 0.0222 0.01695 0.0168 0.00000 0.00274

GA 0.0235 0.0426 0.03226 0.0321 0.00003 0.00512

PSO 0.1107 0.2482 0.174553 0.1728 0.00179 0.04227

Table 3 Tests of normality.

Kolmogorov–Smirnov Shapiro–Wilk

Statistic df Sig. Statistic df Sig.

Letter ‘s’_HS 0.087 30 0.200 0.960 30 0.308

Letter ‘s’_GA 0.108 30 0.200 0.971 30 0.572

Letter ‘s’_PSO 0.169 30 0.029 0.943 30 0.109

Letter ‘e’_HS 0.101 30 0.200 0.947 30 0.138

Letter ‘e’_GA 0.172 30 0.024 0.932 30 0.056

Letter ‘e’_PSO 0.183 30 0.012 0.935 30 0.067

Aeroplane_HS 0.073 30 0.200 0.980 30 0.825

Aeroplane_GA 0.102 30 0.200 0.962 30 0.345

Aeroplane_PSO 0.112 30 0.200 0.953 30 0.204

Pear_HS 0.172 30 0.024 0.938 30 0.079

Pear_GA 0.102 30 0.200 0.973 30 0.621

Pear_PSO 0.088 30 0.200 0.948 30 0.153

Table 4 Independent group ANOVA.

ANOVA

Source of variation SS df MS

(a) Letter ‘s’

Between Groups 3.681533865 2 1.840767

Within Groups 1.16491916 87 0.01339

Total 4.846453025 89

(b) Letter ‘s’

Between Groups 8.974284755 2 4.487142

Within Groups 1.402854501 87 0.016125

Total 10.37713926 89

(c) Aeroplane

Between Groups 0.47874 2 0.23937

Within Groups 0.087393 87 0.001005

Total 0.566133 89

(d) Pear

Between Groups 0.453205995 2 0.226603

Within Groups 0.052788262 87 0.000607

Total 0.505994257 89

Data fitting by G1 rational cubic Bézier curves 181
should consist of ðC0;C1;C2;C3Þ, the control points. All these

three segments are G1. Therefore, data fitting in seg2 must fulfil

certain constraints involving seg1 and seg3.
The size of w1 and w2 is in ½0; 2:5�. While search space for C�1

and C�2 are similar to the previous section but one of the vari-

ables, Ci ¼ ðxi; yiÞ depends on the other one, for which

ðC2; segiÞ; ðC3; segi ¼ C0; segiþ1Þ; ðC1; segiþ1Þ
� �

, i ¼ 1; 2 must

be collinear. For this section, the number of decision variables

for HS is reduced.

6.3. End segments

The end segment, segend will be considered if total data points
are even. All the data in the segment will be approximated with
certain constraints, which are:
F P-value F crit

137.4745378 1.16929E�27 3.101296

278.2765 1.56918E�38 3.101295757

238.294 5.03791E�36 3.101295757

373.463 1.99546E�43 3.101296



Table 5 F-test of two samples for variances.

F-test two-sample for variances F-test two-sample for variances F-test two-sample for variances

GA HS PSO HS PSO GA

(a) Letter ‘s’

Mean 0.159926667 0.10868 Mean 0.561043333 0.10868 Mean 0.561043333 0.1599267

Variance 0.001723099 0.000994 Variance 0.037452536 0.000994 Variance 0.037452536 0.0017231

Observations 30 30 Observations 30 30 Observations 30 30

df 29 29 df 29 29 Df 29 29

F 1.733516623 F 37.67896352 F 21.73556516

P(F<=f) one-

tail

0.072201294 P(F<=f) one-

tail

2.71646E�16 P(F<=f) one-

tail

4.75936E�13

F critical one-

tail

1.619899621 F critical one-

tail

1.860811435 F critical one-

tail

1.860811435

F-test two-sample for variances F-test two-sample for variances F-test two-sample for variances

HS GA HS PSO GA PSO

(b) Letter ‘e’

Mean 0.164833333 0.6007 Mean 0.164833333 0.936147 Mean 0.6007 0.936147

Variance 0.001293492 0.03636 Variance 0.001293492 0.010721 Variance 0.036359512 0.010721

Observations 30 30 Observations 30 30 Observations 30 30

df 29 29 df 29 29 df 29 29

F 0.035575064 F 0.120647051 F 3.391337565

P(F<=f) one-

tail

1.4988E�14 P(F<=f) one-

tail

8.71309E�08 P(F<=f) one-

tail

0.000769416

F critical one-

tail

0.537399965 F critical one-

tail

0.537399965 F critical one-

tail

1.860811435

F-test two-sample for variances F-test two-sample for variances F-test two-sample for variances

HS GA HS PSO GA PSO

(c) Aeroplane

Mean 0.068247 0.074257 Mean 0.068246667 0.22588 Mean 0.074256667 0.22588

Variance 0.000135 0.000468 Variance 0.000134765 0.002411209 Variance 0.000467574 0.002411

Observations 30 30 Observations 30 30 Observations 30 30

df 29 29 df 29 29 Df 29 29

F 0.288223 F 0.055891197 F 0.193916687

P(F<=f) one-

tail

0.000634 P(F<=f) one-

tail

6.20171E�12 P(F<=f) one-

tail

1.54586E�05

F critical one-

tail

0.412637 F critical one-

tail

0.412636754 F critical one-

tail

0.412636754

F-test two-sample for variances F-test two-sample for variances F-test two-sample for variances

HS GA HS PSO GA PSO

(d) Pear

Mean 0.01695 0.03226 Mean 0.01695 0.174553 Mean 0.03226 0.174553333

Variance 7.51776E�06 2.62E�05 Variance 7.51776E�06 0.001787 Variance 2.62E�05 0.001786553

Observations 30 30 Observations 30 30 Observations 30 30

df 29 29 df 29 29 Df 29 29

F 0.286781845 F 0.004207969 F 0.014673

P(F<=f) one-

tail

0.000607464 P(F<=f) one-

tail

0 P(F<=f) one-

tail

0

F critical one-

tail

0.412636754 F critical one-

tail

0.412636754 F critical one-

tail

0.412637
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Suppose a set of data has two last segments, segend�1; segend
as in Fig. 3(b). All these two segments should have smooth

joints with G1 continuity. Therefore, data fitting in segend must
fulfil certain constraints involving segend�1.

The size of w1 and w2 is in ½0; 2:5�. While search space for C1

and C2 are similar to the previous section but one of the vari-
able, Ci ¼ ðxi; yiÞ depends on the other one at the last joint,

i.e., ½ðC2; segend�1Þ; ðC3; segend�1 ¼ C0; segendÞ; ðC1; segendÞ�
must be collinear.
7. Demonstration and experimental results

Proposed data fitting method has been implemented practi-

cally in Figs. 4–7(a). Each data segments are evaluated at uni-
formly distributed values of u in its domain to generate a
collection of 201 data points on the interval of ½0; 1�.

Figs. 4(d), 5(d), 6(c) and 7(d) are the best fitting curves,
where OG is the original graph and, RB is the corresponding
rational Bézier curve. Fig. 4(c) shows lines which connects



Table 6 T-test of two samples assuming unequal variances.

t-test: two-sample assuming unequal variances t-test: two-sample assuming unequal

variances

t-test: two-sample assuming unequal variances

HS GA HS PSO GA PSO

(a) Letter ‘s’

Mean 0.10868 0.159927 Mean 0.10868 0.561043 Mean 0.159926667 0.5610433

Variance 0.000993991 0.001723 Variance 0.000993991 0.037453 Variance 0.001723099 0.0374525

Observations 30 30 Observations 30 30 Observations 30 30

Hypothesized

mean difference

0 Hypothesized

mean difference

0 Hypothesized

mean difference

0

df 54 df 31 df 32

t stat �5.38485789 t stat �12.6362865 t stat �11.1000084
P(T<=t) one-

tail

8.08374E�07 P(T<=t) one-

tail

4.56312E�14 P(T<=t) one-

tail

8.30798E�13

t critical one-tail 2.397409645 t critical one-tail 2.452824193 t critical one-tail 2.448677634

P(T<=t) two-

tail

1.61675E�06 P(T<=t) two-

tail

9.12624E�14 P(T<=t) two-

tail

1.6616E�12

t critical two-tail 2.669984796 t critical two-tail 2.744041919 t critical two-tail 2.738481482

t-test: two-sample assuming unequal variances t-test: two-sample assuming unequal

variances

t-test: two-sample assuming unequal variances

HS GA HS PSO GA PSO

(b) Letter ‘e’

Mean 0.164833333 0.6007 Mean 0.164833333 0.936147 Mean 0.6007 0.936147

Variance 0.001293492 0.03636 Variance 0.001293492 0.010721 Variance 0.036359512 0.010721

Observations 30 30 Observations 30 30 Observations 30 30

Hypothesized

mean difference

0 Hypothesized

mean difference

0 Hypothesized

mean difference

0

Df 31 df 36 df 45

t stat �12.3030977 t stat �38.5419363 t stat �8.4676361
P(T<=t) one-

tail

9.14105E�14 P(T<=t) one-

tail

3.6084E�31 P(T<=t) one-

tail

3.63208E�11

t critical one-tail 1.695518783 t critical one-tail 1.688297714 t critical one-tail 1.679427393

P(T<=t) two-

tail

1.82821E�13 P(T<=t) two-

tail

7.2168E�31 P(T<=t) two-

tail

7.26417E�11

t critical two-tail 2.039513446 t critical two-tail 2.028094001 t critical two-tail 2.014103389

t-test: two-sample assuming unequal variances t-test: two-sample assuming unequal

variances

t-test: two-sample assuming unequal variances

HS GA HS PSO GA PSO

(c) Aeroplane

Mean 0.068247 0.074257 Mean 0.068246667 0.22588 Mean 0.074256667 0.22588

Variance 0.000135 0.000468 Variance 0.000134765 0.002411 Variance 0.000467574 0.002411

Observations 30 30 Observations 30 30 Observations 30 30

Hypothesized

mean difference

0 Hypothesized

mean difference

0 Hypothesized

mean difference

0

df 44 df 32 df 40

t stat �1.34127 t stat �17.1112491 t stat �15.4782647
P(T<=t) one-

tail

0.093358 P(T<=t) one-

tail

5.79073E�18 P(T<=t) one-

tail

8.71294E�19

t critical one-tail 1.30109 t critical one-tail 1.308572793 t critical one-tail 1.303077053

P(T<=t) two-

tail

0.186717 P(T<=t) two-

tail

1.15815E�17 P(T<=t) two-

tail

1.74259E�18

t critical two-tail 1.68023 t critical two-tail 1.693888748 t critical two-tail 1.683851013

t-test: two-sample assuming unequal variances t-test: two-sample assuming unequal

variances

t-test: two-sample assuming unequal variances

HS GA HS PSO GA PSO

(d) Pear

Mean 0.01695 0.03226 Mean 0.01695 0.174553 Mean 0.03226 0.174553

Variance 7.51776E�06 2.62E�05 Variance 7.51776E�06 0.001787 Variance 2.62142E�05 0.001787

Observations 30 30 Observations 30 30 Observations 30 30

Hypothesized 0 Hypothesized 0 Hypothesized 0

(continued on next page)
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Table 6 (continued)

t-test: two-sample assuming unequal variances t-test: two-sample assuming unequal

variances

t-test: two-sample assuming unequal variances

HS GA HS PSO GA PSO

mean difference mean difference mean difference

df 44 df 29 df 30

t stat �14.4382645 t stat �20.3800972 t stat �18.3051871
P(T<=t) one-

tail

1.33021E�18 P(T<=t) one-

tail

4.92526E�19 P(T<=t) one-

tail

3.95498E�18

t critical one-tail 2.414134368 t critical one-tail 2.46202136 t critical one-tail 2.457261542

P(T<=t) two-

tail

2.66042E�18 P(T<=t) two-

tail

9.85052E�19 P(T<=t) two-

tail

7.90995E�18

t critical two-tail 2.692278266 t critical two-tail 2.756385904 t critical two-tail 2.749995654
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all the Ci‘s in every segment which applies G1 continuity
between two segments.

Table 1 summarizes the G1 continuity analysis for above
test outline images. Values of b for each test function are cal-
culated based on Eq. (8).

7.1. Comparison with other methods and analysis

Our G1 HS approach performs well for the above test outline

images. To support this claim, a comparison with recent alter-
native curve fitting based on soft computing techniques has
been carried out. There were a few of soft computing method
used in this data fitting problem, such as curve fitting by B-

splines using GA by Gálvez et al. [4], Sarfraz [19] used cubic
spline by SA and Yahya [15–16] proposed an approach of
curve fitting by PSO. Here a comparison between HS, GA

and PSO that used on the similar data points. The procedure
of PSO was taken from [2]. Fig. 8 highlights on a segment of
letter ‘s’ and shows that HS approach better the data points

within the same time range as others. Fig. 9 summarizes the
least-squares errors of each segment for test outline images
and in the graphs; the output for HS in segments 4 and 10

for the first image, segment 3 in third image and also segment
15 in fourth image are larger than others as there are cusps
before the segments. However, HS approach each outlines bet-
ter by looking at the total of least-squares error in the data

sets.

7.2. Statistical analysis

All evolutionary algorithms, including HS, GA and PSO are
stochastic population based search methods. Accordingly,
there is no guarantee that the optimal solution will be reached

consistently. Therefore, in order to deny that there is a guaran-
tee that HS can be used to have better approximation to the
global optimal solution, a comparison on optimization prob-
lem using such algorithm where a statistical analysis had been

carried out. 30 sample data of total least-squares error of four
outlines for methods HS, GA and PSO were being used with
the time taken for all the data which were fixed.

From Table 2, it is clearly shows the prominent method for
all images based on descriptive data is HS. All the sample data
had been assessed their normality by the Shapiro-Wilks statis-

tics in order to verify their significance different between their
variance. The results of normality were shown in Table 3.
According to Table 4, there is sufficient evidence that the
HS has the smallest variation compared to GA and PSO at

1–10% significance level (p-value: 0.0722, 2.7164 · 10�16;
1.4988 · 10�14, 8.7131 · 10�8; 0.0006, 6.2017 · 10�12; 0.0006,
0.0000). While Table 5 shows that the mean of HS is the small-

est value compared to GA and PSO at 1–10% significance level
(p-value: 8.0837 · 10�7, 4.5621 · 10�14; 9.1411 · 10�14,
3.6084 · 10�31; 0.0934, 5.7907 · 10�18; 1.3302 · 10�18,

4.9253 · 10�19). While, Table 6 also supported the same con-
clusion of HS compared to other two methods. These leads
to say that, in this study, HS was found to give the best fit
for data fitting using rational cubic Bezier for each segment

of all tested outlines images. These results give strong indica-
tion that the HS method is more stable and accurate compared
to GA and PSO.
8. Conclusions

A derivative-free real parameter optimization technique, based

on HS, is implemented for data fitting. This technique opti-
mizes the control points and shape parameters of rational
cubic Bézier curves in order to approximate the data sets.

The technique data fitting by G1 continuity for every joint of
segments for the whole data set, the rational Bézier ultimately
produces optimal results in approximating the data. It pro-

vides an optimal fit with an efficient computation cost. A com-
parison between HS, GA and PSO were done on four different
outline images and a few of statistical testing also had been
carried out over a 30 sample data set each. Based on the statis-

tical analysis carried out on the sample data, there are suffi-
cient evidences to say that HS gave a smaller values of error
compared to other two methods.
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