
HEAT TRANSFER PHENOMENON OF HEATED CYLINDER AT VARIOUS 

LOCATIONS IN A SQUARE CAVITY 

 

 

 

 

 

 

 

 

MOHD RUZAINI BIN ZAKARIA 

 

 

 

 

 

 

 

 

Thesis submitted in fulfillment of the requirements 

for the award of the degree of 

Bachelor of Mechanical Engineering 

 

 

 

 

 

 

 

Faculty of Mechanical Engineering 

UNIVERSITI MALAYSIA PAHANG 

 

 

 

 

 

 

 

 

NOVEMBER 2009 



ii 
 

SUPERVISOR’S DECLARATION 

 

I hereby declare that I have checked this project and in my
 
opinion, this project is adequate 

in terms of scope and quality for the award of the degree of Bachelor of Mechanical 

Engineering.  

 

 

 

Signature:  

Name of Supervisor: MOHAMAD MAZWAN BIN MAHAT 

Position: LECTURER 

Date: 24 NOVEMBER 2008 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

STUDENT’S DECLARATION 

 

I hereby declare that the work in this project is my own except for quotations and 

summaries which have been duly acknowledged. The project has not been accepted for any 

degree and is not concurrently submitted for award of other degree. 

 

 

 

Signature: 

Name: MOHD RUZAINI BIN ZAKARIA 

ID Number: MA06051 

Date:  20 NOVEMBER 2009 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

ACKNOWLEDGEMENTS 

 

I am grateful and would like to express my sincere gratitude to my supervisor Mr 

Mohamad Mazwan Bin Mahat for his germinal ideas, invaluable guidance, continuous 

encouragement and constant support in making this research possible. He has always 

impressed me with his outstanding professional conduct, his strong conviction for science, 

and his belief that this is only a start of a life-long learning experience. I appreciate his 

consistent support from the first day I applied to graduate program to these concluding 

moments. I am truly grateful for his progressive vision about my training in science, his 

tolerance of my naïve mistakes, and his commitment to my future career. I also would like 

to express very special thanks supervisor for the suggestions and co-operation throughout 

the study. I also sincerely thanks for the time spent proofreading and correcting my many 

mistakes.   

 

I acknowledge my sincere indebtedness and gratitude to my parents and for their 

understanding. My sincere thanks go to all my friend and lecturer, who helped me in many 

ways and made my stay at UMP pleasant and unforgettable. Many special thanks go to all 

of people that involve in this study for their excellent co-operation, inspirations and 

supports during this study. I cannot find the appropriate words that could properly describe 

my appreciation for their devotion, support and faith in my ability to attain my goals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

ABSTRACT 

 

In this thesis, the theory of lattice Boltzmann method is been described in first chapter. The 

lattice Boltzmann equation method has been found to be useful in many application 

involving interfacial dynamics and complex boundaries. First, the introduction of this 

report is described the objective of the project. This project objective is to study the plume 

behavior of heated cylinder at various locations in square cavity. Next, the problem 

statement is explained in further detailed. The problems solve using the lattice Boltzmann 

method theory and some flow simulation. The background of the project is relating to the 

lattice Boltzmann method equation that is involving the Navier-Stoke equation, the 

governing equation and Bhatnagar-Gross-Krook (BGK) approximation. Then, the literature 

will explain and described further detail about the lattice Boltzmann method. The 

methodology is the simulation of the isothermal and thermal of the lattice Boltzmann. The 

isothermal include the Poiseuille and Coutte flow. The thermal include the Porous Coutte 

flow. The isothermal and thermal of lattice Boltzmann equation have been derived from the 

Boltzmann equation by discretization in both time and phase space. The result of heated 

cylinder at various locations in square cavity at different Rayleigh number that has been 

done compute that when the Rayleigh number is increase the flow will become distorted 

and the plume will emerge in the enclosure. This is because of the buoyancy induced and 

convection become more predominant than conduction. The isotherms move upward and 

larger plumes exist on the top of the inner square, which gives rise to the stronger thermal 

gradient on the top of the enclosure. Therefore, the flow strongly imposes on the above of 

the enclosure, which also cause the form of a thinner thermal boundary layer in this area 

and develops the heat transfer. 
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ABSTRAK 

 

Tesis ini menerangkan teori kaedah kekisi Boltzmann dalam bahagian satu. Persamaan 

kekisi Boltzmann telah ditemui amat berguna  kerana membabitkan dinamik antara muka 

dan sempadan kompleks. Pertama, pendahuluan menerangkan tentang objektif projek ini.. 

Objektif projek ini adalah untuk mengkaji sifat pemanasan silinder dalam ruang segi empat. 

Seterusnya,  permasalahan projek ini diterangkan dengan lebih terperinci. Masalah The 

problem is diselesaikan dengan kaedah kekisi Boltzmann dan simulasi aliran. Latar 

belakang projek ini berkaitan dengan kaedah kekisi Boltzmann yang membabitkan 

persamaan Navier-Stoke dan penghampiran Bhatnagar-Gross-Krook (BGK). Kemudian, 

penulisan akan menerangkan lebih lanjut tentang kaedah kekisi Boltzmann. Dalam simulasi 

Isothermal dan pemanasan kekisi Boltzmann. Dalam Isothermal terdapat aliran Poiseuille 

dan Couette. Dalam pemanasan terdapat aliran Porous Couette. Persamaan Thermal dan 

Isothermal Boltzmann diterbitkan daripada persamaan kekisi Boltzmann melalui diskit 

masa dan fasa.Hasil pemanasan silinder dalam ruang segi empat pada nombor Rayleigh 

yang berlainan menunjukkan apabila nombor Rayleigh meningkat, aliran akan menjadi 

bengkok dan bentuk seperti pelepah akan terbentuk dalam ruang tersebut. Ini adalah kerana 

apungan berlaku dan konveksi akan menjadi lebih dominan daripanan konduksi. Isotherm 

akan bergerak ke atas dan pelepah yang lebih besar akan terbentuk di atas ruang segi empat, 

yang mana akan meningkatkan kecerunan suhu di atas ruang segi empat tersebut. Oleh itu, 

aliran yang kuat terjadi di atas ruang segu empat tersebut, seterusnya menjadikan lapisan 

sempadan suhu menjadi nipis di kawasan ini dan menyebabkan pemindahan haba berlaku. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 OBJECTIVE 

 

This project objective is to study the plume behavior of heated cylinder at 

various locations in square cavity. This project also attempts to deal with the analysis of 

an investigation of the natural convection of heat transfer in a square enclosure 

containing solid cylinder. The effects of the cylinder position on the heat transfer and 

the flow structures inside the cavity are to be studied and highlighted. 

 

1.2 PROBLEM STATEMENT 

 

This project is to study the heat transfer phenomenon of heated cylinder at 

various locations in square cavity. The project scope is to analysis heat transfer limit to 

natural convection only. The problem will be tested at Ra = 10
5
and 10

6
.  This study will 

include the natural convection interactions in a heated cavity with an inner body. A 

specifically developed numerical model, based on the lattice Boltzmann method (LBM), 

is used for the solutions of the governing equations. Natural convection in heated 

enclosures, housing inner bodies has received significant attention because of its interest 

and importance in industrial applications. Some applications are solar collectors, fire 

research, electronic cooling, aeronautics, chemical apparatus, building constructions and 

nuclear engineering. This will contributes to the development of the LBM. Effects of 

the cylinder position on the heat transfer and the flow structures inside the cavity are to 

be studied and highlighted. 
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1.3 PROJECT BACKGROUND 

 

The Lattice Boltzmann Method (LBM) is another approach to finite difference, 

finite element and finite volume method for solving Navier-Stoke Equation. Lattice 

Boltzmann approach has found current achievement in the host of fluid dynamical study 

including in porous media, magnetohydrodynamics, immiscible fluid and turbulence. 

The numerical and experimental study of natural convection of heat transfer in the 

partitioned enclosure has received significant interest in the recent year due to the useful 

engineering application. The application that related to this project is the solar 

collectors, thermal insulation, cooling of the electronic component and designing 

building. In nearly all of the earlier studies on natural convection in a square cavity 

containing partitions or solid bodies, with or without heat generation, the influence of 

radiation is ignored. There have been not many studies on the both heat-transfer 

problem involving convection and radiation. On the other hand, it is well recognized 

that when natural convection in air is involved, the heat transfers by convection and 

radiation are usually of the equal order of magnitude. In this project the objective is to 

study the plume behavior of heated cylinder in the square cavity at the various locations 

using the Lattice Boltzmann Method. The analysis of the heat transfer will be limited to 

natural convection only. A complete parametric study is made for different Rayleigh 

numbers. The problem will be tested at Ra = 10
5
and 10

6.  

 

The mathematical relationship governing fluid flow is the famous continuity 

equation. The Navier-Stoke Equation is given by: 

 

(1.1) 

 

(1.2) 

 

u = velocity 

P = pressure 

υ = kinematic shear viscosity 

 

Source: J Ryong Lee, Man Yeong Ha and S. Balachandar (2007) 

0u

uuu
u 2P
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As well known, the Navier-Stoke equation is nonlinear partial differential 

equations. It is too difficult and there is no analytical answer to them except for a small 

amount of particular cases. The information about physical process of fluid dynamics is 

often given by real dimension. The study analysis involving full scale tools can be used 

to guess how indistinguishable copies of the tools would act upon under the same state. 

On the other hand, in nearly all cases the investigations are costly and frequently 

unattainable. 

 

At the present time, the fresh development in the computing power of 

microprocessor, numerical and solution of flow problems can be brought to the desktop. 

The employ of computer is necessary to come to a decision of the fluid motion of a few 

problems. The Computational Fluid Dynamic (CFD) has developed to turn out to be 

significant tool in solving the Navier-Stoke equation, continuity equation or the 

equations that are achieve from them. CFD is the science for determination the 

numerical answer to the governing equation during space or time to attain numerical 

details of the entire flow field of consideration. To accurately replicate fluid flow on the 

computer, it is essential to work out the Navier-Stoke equation with infinite exactness. 

 

Lattice Boltzmann method is an additional technique to finite difference, finite 

element, and finite volume process for solving the Navier-Stoke equations. Lattice 

Boltzmann develops since the expansion of the lattice gas automata and takes over a 

few appearances from its pioneer, the lattice gas technique. The significant development 

to improve the computational competence has been made to Lattice Boltzmann method.  

The continuous Boltzmann equation is express as in Eq. (1.3) 

 

(1.3) 

 

f = density distribution function 

c = microscopic velocity 

Ω( f) = collision integral 

 

Source: Nor Azwadi C.S. (2007) 

)(),(),( ftxftttcxf
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The development is the completion of Bhatnagar-Gross-Krook (BGK) estimate 

that is the single relaxation approximation. The primary pace in the lattice Boltzmann 

method is to follow the progression of single particle distribution. This will involve the 

probable quantity of molecules in an assured amount at assured moment complete since 

huge number of particles in a structure that travel liberally with no collisions for 

extended space judge against to their sizes. Following the distribution functions are 

achieved, the hydrodynamic equation can be attained. The most important purpose of 

LBM advance is to construct a connection or relation involving the microscopic and 

macroscopic dynamics, slightly than to deal with macroscopic dynamic 

straightforwardly. The goal is to attain macroscopic equation since microscopic 

dynamics by signify of statistic. 

 

The collision integral equation is express as in Eq. (1.4) 

 

(1.4) 

 

τ = relaxation parameter 

f
eq

 = equilibrium distribution function 

 

Source: Nor Azwadi C.S. (2007) 

 

The combination of the continuous Boltzmann equation and collision integral 

equation will give the Lattice Boltzmann BGK equation. The Lattice Boltzmann BGK is 

express as in Eq. (1.5) 

 

(1.5) 

 

fi = density distribution function 

τ = relaxation parameter 

f 
eq

 = equilibrium distribution function 

 

Source: Junya Onishi, Yu Chen and Hirotada Ohashi (2001) 

fff eq1
)(

eqff
txftttcxf ),(),(
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Figure 1.1: Lattice Boltzmann Method 

 

Source: Nor Azwadi C.S. (2007) 

 

The newest thermal lattice Boltzmann method goes to three sorts: the passive 

scalar approach, multispeed approach and thermal energy distribution model. The figure 

1.1 shows the lattice Boltzmann method and the relationship between the macroscopic 

and microscopic variables. The multispeed technique employ the equivalent purpose in 

determine the macroscopic velocity, pressure and temperature. To preserve the kinetic 

energy in the collision on every one lattice point, this model necessary extra 

dissimilarity of velocity than isothermal form. The equilibrium distribution function 

commonly include elevated order velocity structure but this form on the other hand has 

severe numerical instability and not competent. The passive scalar model has enhanced 

numerical constancy than the multispeed form. The flow ground and temperature of the 

inactive scalar model distinguish by two distribution functions. Macroscopic function is 

advection by flow speed but does not manipulate the flow ground. The isothermal and 

thermal lattice Boltzmann equation (LBE) is resulting from the Boltzmann equation by 

discretization in together time and stage space. The origins straightforwardly link the 

LBE to the Boltzmann equation. Consequently, the LBE can be constructing on well-
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known origin of the Boltzmann equation and the effect of Boltzmann equation can be 

prolonged to the LBE. To verify the newest developed lattice arrangement, the 

numerical simulations of the porous plate coutte flow complexity and the natural 

convection in a square or cubic cavity have to be figure.  

 

The macroscopic equation for isothermal equation is express as in Eq. (1.6) 

 

uPuu
t

u

u

2

6

12

0

                             (1.6)

 

6

12

        (1.7)
 

 

u = velocity 

P = pressure 

υ = kinematic shear viscosity 

τ = relaxation time 

 

Source: Nor Azwadi C.S. (2007) 

 

The numerical answer of the porous coutte flow problem for a great variety of 

the Rayleigh numbers is representing that the form is suitable and numerically steady 

for the computational of elevated Rayleigh. The computations of natural convection in a 

cavity predictable the flow element for dissimilar Rayleigh number. The models utilize 

shorter imitation time and can be relate successfully in engineering function. 

 

The macroscopic equation for thermal express as in Eq. (1.8) and (1.9) 

 

              

uPuu
t

u

u

f 2

6

12

0

      (1.8) 
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TT
t

T
g

2

2

1
u       (1.9) 

 

               2

1
3f        (1.10) 

 

2

1
g

      (1.11) 

u = velocity 

P = pressure 

 = kinematic shear viscosity 

τ = relaxation time 

 

Source: H.N. Dixit and V. Babu (2006) 

 

1.4 PROJECT FLOW CHART 

 

 The figure 1.2 shows the project flow chart which is basically referred to the 

theory of lattice Boltzmann method. The theory of lattice Boltzmann contained the 

governing equation, basic principle of lattice Boltzmann, Collide Function of BGK, 

Equilibrium Distribution Function, Time Relaxation, Discretization of Microscopic 

Velocity and the Derivation of Navier Stoke Equation. After the theory of lattice 

Boltzmann has been studied, the isothermal fluid flow is simulated. The isothermal fluid 

flows have two basic flows which is the flow in pipe or the Poiseuille flow and the 

Couette flow. The extension of lattice Boltzmann model is the thermal lattice 

Boltzmann theory and the Porous Couette flow is simulated. The final part of the flow 

chart is to do the main project that is to study the Heated Cylinder Geometry and 

Boundary Condition Analysis 

 

 

 

 

 



8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Project flow chart 

Theory of Lattice Boltzmann 

 

1. Governing Equation 

2. Basic Principle 

3. Collide Function BGK 

4. Equilibrium Distribution Function 

5. Time Relaxation 

6. Discretization of Microscopic Velocity 

7. Derivation of Navier-Stoke Equation 

Isothermal Fluid Flow 

1. Simulate flow in pipe 

(Poiseuille flow) 

2. Simulate Couette flow 

Extension to Lattice Boltzmann Model 

 

1. Theory of Thermal Lattice Boltzmann Model 

2. Simulate Porous Couette Flow 

 

Heated Cylinder Geometry and Boundary 

Condition Analysis 



 

 

 

 

 

CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 NAVIER STOKE EQUATION 

 

In the last few years we have seen a quick growth of latest numerical methods 

for the result of partial differential equations, especially Navier-Stokes equations. The 

history of the Navier–Stokes equations is it named after Claude-Louis Navier and 

George Gabriel Stokes. Navier-Stokes equations explain the motion of fluid material 

that is material which can flow. These equations obtained from relate Newton's second 

law to fluid movement and collectively with the statement that the fluid pressure is the 

sum of a spread viscous expression, plus a pressure expression (Batchelor, G.K., 1967). 

They are one of the mainly practical sets of equations because they explain the physics 

of a large number of phenomena of academic and economic attention. The application is 

the weather, ocean currents, water stream in a pipe, flow about an airfoil and movement 

of stars within a galaxy. These equations in together complete and shorten outline are 

employed in the design of airplane and vehicle, the learning of blood stream, the devise 

of power post and the investigation of the effect of pollution.  

 

In a purely mathematical sense, the Navier–Stokes equations are in the great 

attention. On the other hand, mathematicians have not yet confirm that in three 

dimensions answers always subsist or that if they do subsist they do not include any 

infinities, singularities or discontinuities (Batchelor, G.K., 1967). These are known the 

Navier–Stokes continuation and smoothness troubles. The Clay Mathematics Institute 

has known this one of the seven mainly significant open questions in mathematics. The 

Navier–Stokes equations are differential equations which do not explicitly create a 

relation between the variables of concern example like velocity and pressure. They 
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establish relations among the rates of change. The Navier–Stokes equations for simple 

case of an ideal fluid can affirm that acceleration is proportional to the gradient of 

pressure. It also states not position but rather velocity (Frisch, U., Hasslacher, B. and 

Pomeau, Y. 1986). A result of the Navier–Stokes equations is called a velocity field or 

flow field, which is a description of the velocity of the fluid at a given point in space 

and time. Once the velocity field is resolved for, other amount of concern such as flow 

rate or drag force may be establish. This is dissimilar from what one normally sees in 

classical mechanics, where answers are typically trajectories of position of a particle or 

deflection of a continuum. Studying velocity as an alternative of position makes more 

sense for a fluid but for visualization reasons one can compute a variety of trajectories. 

 

The Navier-Stoke equation is nonlinear partial differential equations. The 

information about physical process of fluid dynamics is frequently given by genuine 

measurement (Nor Azwadi C.S, 2007). The experimental study involving full scale 

equipment can be used to expect how identical copies of the equipment would perform 

under the same state. Yet, in nearly all cases the tests are expensive and always 

impossible.  

 

(2.1) 

 

(2.2) 

 

u = velocity 

P = pressure 

 = kinematic shear viscosity 

 

Source: J Ryong Lee, Man Yeong Ha and S. Balachandar (2007) 

 

2.2 COMPUTATIONAL FLUID DYNAMICS (CFD) 

 

Computational fluid dynamics (CFD) is one of the undergrowth of fluid 

mechanics that uses numerical scheme and algorithms to work out and study problems 

that engage fluid flows. Computers are used to carry out the millions of calculations 

0u

uuu
u 2P
t
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needed to simulate the relations of fluids and gases with the not easy surfaces used in 

engineering. Still with high-speed supercomputers barely inexact solutions can be attain 

in many cases. Continuing study, on the other hand, may give way software that give 

betters accuracy and speed of difficult simulation situations such as transonic or 

turbulent flows (Acheson, D. J., 1990). Software is frequently carried out by a wind 

tunnel with the final justification coming in flight analysis. The basic of CFD problem is 

the Navier-Stokes equations, which describe whichever single-phase fluid flow. Navier-

Stokes equations can be simplified by eliminate terms explaining viscosity to give in the 

Euler equations (Batchelor, G.K., 1967). Advance simplification, by eliminate terms 

explaining vorticity give in the complete possible equations. Finally, these equations 

can be linearized to give in the linearized possible equations. 

 

In these days, CFD has developed from a mathematical attention to become 

significant instrument in solving Navier-Stoke equation and the continuity equation. It is 

the science of determining numerical answer of the governing equation of fluid flow 

during proceeds the solution through space or time to achieve a numerical explanation 

of the whole flow field of attention (Acheson, D. J., 1990). For the fact, numerical 

researcher must select a method to discretise the difficulty. The settings up of the 

numerical simulation initiate with built a computational grid. The flow variables are 

calculated at the node point of this grid in some approach and at in-between points. The 

spacing between grid points has to be very well sufficient to achieve a high enough 

degree of precision. There are some benefits but to remain the number of grid point 

small since of additional grid point indicate more computer memory needed and a 

greater time is desired to carry out each iteration of the calculation (Nor Azwadi C.S, 

2007). The uncomplicated computational grid rectangular lattice by unchanging spacing 

between node points in every dimension. There are series of way that use unstructured 

grids where the density of the node point is not constant and is higher in the area where 

the precision is wanted. Unstructured meshes often end up being connected in a 

triangular or tetrahedral style since these form fill space well and they needed least 

number of vertices. Several way employ adaptive meshes where the node point are 

generated and devastated as flow featured shift though the computational domain. This 

will remain number of nodes to a least but still providing the wanted dimension for the 

certain flow elements.  
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