

 UNIVERSITI MALAYSIA PAHANG

 BORANG PENGESAHAN STATUS TESIS♦

 JUDUL:

SESI PENGAJIAN:________________

Saya __

(HURUF BESAR)

 mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di
 Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

 pengajian tinggi.
4. **Sila tandakan (√)

 (Mengandungi maklumat yang berdarjah keselamatan
 SULIT atau kepentingan Malaysia seperti yang termaktub
 di dalam AKTA RAHSIA RASMI 1972)

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan
 oleh organisasi/badan di mana penyelidikan dijalankan)

 √ TIDAK TERHAD

 Disahkan oleh:

 ___________________________ ___________________________
 (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap:

KG ALOR PIAH CHETOK, REZA EZUAN BIN SAMIN
17060 PASIR MAS, (Nama Penyelia)
KELANTAN

Tarikh: 11 NOVEMBER 2008 Tarikh: : 11 NOVEMBER 2008

CATATAN: * Potong yang tidak berkenaan.
 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
 berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu
 dikelaskan sebagai atau TERHAD.

♦ Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara
Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan
penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

2008/2009/I

 SAIFULLAH BIN AHMAD (860514-29-6145)

DUAL MODE MOBILE ROBOT: APPLICATION USING
MATLAB GUI

“I hereby declare that I have read this thesis and in my

opinion this thesis is sufficient in terms of scope and quality for the

award of the degree of Bachelor of Electrical Engineering (Electronic)”

Signature : ..

Name of Supervisor : REZA EZUAN BIN SAMIN

Date : 11 NOVEMBER 2008

DUAL MODE MOBILE ROBOT: APPLICATION USING MATLAB

GUI

SAIFULLAH BIN AHMAD

A thesis submitted in partial fulfillment of the requirements for the award of the

degree of Bachelor of Electrical Engineering (Electronic)

Faculty of Electrical & Electronic Engineering

Universiti Malaysia Pahang

NOVEMBER 2008

ii

“I declare that this thesis is the result of my own research except as cited in the

references. The thesis has not been accepted for any degree and is not concurrently

submitted in candidature of any other degree.”

Signature :

Name : SAIFULLAH BIN AHMAD

Date : 11 NOVEMBER 2008

iii

To my beloved mother and father:

Zabiah Binti Saleh and Ahmad Bin Sulaiman

My siblings:

Zalina Ahmad, Zaleharani Ahmad, Zanariah Ahmad,

Sofiah Ahmad and my youngest brother, Hasan Ahmad

Last but not least a special people in my life, Asmahani Ahmad

iv

ACKNOWLEDGEMENT

 First of all, thanks to ALLAH s.w.t because I have completely finished my

thesis. I want to appreciate to all people who had given their support to make ‘Dual

Mode Mobile Robot: Application Using MATLAB GUI’ successful. I am greatly

indebted to my supervisor, En Reza Ezuan Bin Samin for his advice and guide to

finish this project.

 Here, I also want to thank to all my beloved friends that always give a moral

support and to complete this project. Suggestions and criticism from my friends

have always been helpful in finding a solution to my problem. Thank you very

much all.

Finally, I would like to express my thanks to those who were involved

directly or indirectly in the completion of my thesis. Last but not least, to my family

and also my love, for giving me a moral and inspiration throughout my project.

v

ABSTRAK

(Pergerakan robot 2 kaedah) ini mengandungi program komputer dan

bahagian peralatan. Untuk bahagian program komputer, MATLAB GUI digunakan

dan untuk bahagian peralatan pula cip PIC, LCD, alat pengesan jarak dan banyak

lagi digunakan untuk menyiapkan projek ini. Projek ini terbahagi kepada dua

bahagian iaitu dalam keadaan automatik dan kawalan secara biasa. Dalam keadaan

automatik pula, alat pengesan jarak digunakan untuk mengawal robot dan robot itu

akan berhenti dalam jarak yang tertentu. Jarak ini akan dipaparkan pada LCD.

Kabel rs232 digunakan untuk menyambungkan peralatan dengan program

MATLAB. Fokus utama projek ini adalah interaksi antara program MATLAB

dengan peralatan dengan menggunakan kabel rs232. Pemaparan grafik (GUI)

mengandungi peralatan dan komponen yang boleh melaksanakan pelbagai tugasan.

Untuk melaksanakan tugasan ini, pengguna GUI tidak perlu membuat skrip atau

suruhan. Tambahan lagi, pengguna tidak perlu mengetahui secara terperinci tentang

tugasan. Cip PIC pula mengandungi sistem pemprosesan dan tempat untuk

menyimpan data yang lengkap dalam satu pakej yang murah dan senang untuk

digunakan.

vi

ABSTRACT

Dual mode mobile robot has hardware and software part. For the software

part, we use MATLAB GUI and for the hardware, it consists PIC 16F877A, sensor,

LCD, relay and others. There are two mode to control the mobile using PIC

16F877A by interfacing with MATLAB GUI. The two modes are manual and

autonomous mode. For the manual we control the mobile with GUI. For the

autonomous mode, distance sensor is use to control the mobile and stop the mobile

with certain distance that we have set up. The distance will display on LCD at

hardware. Rs232 cable is use to connect hardware with software (PC). This project

is focus on interfacing MATLAB software and hardware using rs232 cable. A

graphical user interface (GUI) is a graphical display that contains devices, or

components, that enable a user to perform interactive tasks. To perform these tasks,

the user of the GUI does not have to create a script or type commands at the

command line. Often, the user does not have to know the details of the task at hand.

A PIC Microcontroller chip combines the function of microprocessor, ROM

program memory, some RAM memory and input-output interface in one single

package which is economical and easy to use.

vii

TABLES OF CONTENT

CHAPTER TITLE PAGE

1 INTRODUCTION 1

1.1 Overview 1

1.2 Objective 3

1.3 Scope of Project 3

1.4 Problem Statement 4

1.5 Thesis Organization 5

2 LITERITURE REVIEW 7

 2.1 Graphical User Interface (GUI) 6

 2.1.1 GUI definition 6

 2.1.2 MATLAB GUI 7

 2.1.3 MATLAB GUIDE 8

 2.1.4 GUI operation 9

2.2 PIC Microcontroller 10

2.2.1 History of PIC 10

2.2.2 The PIC Microcontroller 11

2.2.3 PIC Basic Pro Compiler 12

 2.3 DC Motor 13

2.3.1 History of DC Motor 13

2.3.2 DC Motor Operation 14

viii

2.3.3 Advantage of DC Motor 15

2.4 Sensor 16

2.4.1 Definition of Sensor and the

Application 16

2.4.2 SHARP GP2Y0A21YK0F 16

2.5 Relay 18

2.6 LCD 19

2.7 MAX 233 20

2.8 Darlington Transistor C1815) 20

3 METHODOLOGY 21

 3.1 Introduction 21

3.2 Software Development 22

3.2.1 Development MATLAB GUI

Using MATLAB GUIDE 24

3.2.2 Build MATLAB Programming 29

3.2.3 Build PIC programming 33

3.3 Hardware Development 35

4 RESULT AND DISCUSSION 41

4.1 Introduction 41

4.2 Main Menu of GUI 41

4.3 Interface MATLAB GUI Software 45

4.4 User information GUI 48

4.5 Result 48

4.5.1 DC motor 48

4.5.2 Sensor (GP2Y0A21YK0F) 49

4.5.3 LCD Display 50

5 CONCLUSION AND RECOMMENDATION 52

5.1 Conclusion 52

ix

5.2 Future Recommendation 53

5.3 Costing and Commercialization 53

REFERENCES 55

Appendices 57-72

x

LIST OF TABLES

TABLE NO TITLE PAGE

3.1 Basic MATLAB GUI Component 25

3.2 Various kind of Callback 30

3.3 Major Sections of the GUI M-file 32

3.4 List of Standard Baud Rate 34

3.5 Modifier Support by SERIN2 Command 38

3.6 Serial Port Pin and Signal Assignments 36

4.1 Observation from sensor 49

xi

LIST OF FIGURES

FIGURE NO TITLE PAGE

1.1 Block Diagram of Project 2

2.1 IC Configuration 12

2.2 Part of DC Motor 14

2.3 Analog distance sensor 17

2.4 Coil and switch contact 18

2.5 6V relays 18

2.6 Liquid crystal display 19

2.7 Circuit diagram of Darlington transistor 20

3.1 Flowchart of the whole project 23

3.2 MATLAB GUIDE Layouts 26

3.3 Property Inspector 27

3.4 Example GUI 28

3.5 Example M-files for GUI 29

3.6 Power Supply Modules 35

3.7 Pins and Signals Associated With the 9-pin

Connector 36

3.8 Serial Port Connection to PIC 37

3.9 5V DC Motor Connection 38

3.10 Hardware circuit (main) 40

3.11 Mobile Robot 40

xii

4.1 Main Menu of GUI 42

4.2 Credit of GUI 43

4.3 Abstract of GUI 44

4.4 Pop-up Window 44

4.5 Mode Selection of Mobile Robot 45

4.6 Manual Mode Motor Control 46

4.7 Autonomous Mode Motor Control 47

4.8 Communication Port Status 47

4.9 Distances versus Output Voltage of the

Sensor 50

4.10 Mobile Robot Distance 51

4.11 Motor Status 51

xiii

LIST OF APPENDICES

APPENDICES TITLE PAGE

Appendice A PIC Programming 57

Appendice B Autonomous Mode Programming 61

Appendice C Manual Mode Programming 65

Appendice D PIC16F877A Datasheet 69

Appendice E MAX 233 Datasheet 71

1

CHAPTER 1

INTRODUCTION

1.1 Overview

This project is focus on designing the Graphical User Interface (GUI)

through MATLAB to control the DC motor using PIC. The PIC is a programmable

interface devices or controller between PC (MATLAB GUI) and the DC motor. The

main contribution of this project is the interfacing of the MATLAB with PIC and

Graphical User Interface (GUI).

The Peripheral Interface Controller (PIC) use in this project is as controller

device between Personal Computer, analog distance sensor and the DC motor. The

PIC is use because of wide availability and economical. Beside that PIC is a free

development tools and can perform many function without needed extra circuitry.

PIC also have analog to digital converter that will be use to connect with analog

distance sensor.

2

The purpose using MATLAB in creating the GUI is because it already has

Graphical User Interface Development Environment (GUIDE) that provides a set of

tools for creating GUI. These tools simplify the process of lay out and programming

GUIs. The GUI create in MATLAB with appropriate coding will control the DC

motor via serial port that interface with the PIC.

The GUI create in MATLAB with appropriate coding will control the DC

motor via serial port that interface with the PIC. There are many advantage by using

the DC motor, among that the DC motor has no adverse effect on power quality and

the speed is proportional to the magnetic flux.

This project is to control the mobile robot by using GUI in MATLAB and

PIC controller. There are two modes to control the mobile robot. The first mode is

control mobile robot manually. For the second mode (autonomous), to control the

mobile robot we use analog distance sensor to detect the distance between the robot

and wall. Then it will stop automatically in certain distance after detect the block or

wall.

Figure 1.1: Block Diagram of Project

3

1.2 Objective

These projects have two main objectives. The objective of this project is to:

i. To control the mobile robot using GUI in MATLAB

ii. Able to interface the MATLAB GUI with hardware using PIC

 The important part of this project is to interface the MATLAB GUI with the

PIC. Then, important part of this project is to receive a signal from sensor that will

transmit to MATLAB GUI and interface using PIC. After that, the programming will

send the signal to control the mobile robot automatically.

1.3 Scope of project

 The scopes of this project are laying out the GUI in MATLAB GUIDE and

create programming for the GUI’s. Secondly Prepare the PIC circuitry and serial 3

connections (DB9) circuit for interfacing part. For the third part is to build IR sensor

circuit and interface with PIC. And the last part is creating program for PIC using

PICBasic Pro Compiler to control the DC motor.

For this project, there are two scopes. The scope of project is dividing to software

part and hardware part:

For the software part, we have:

i. MATLAB programming

4

ii. PIC programming

iii. PICBasic Pro Compiler

For the hardware part, we have:

i. 2 ways serial parallel port (transmit and received input or output)

ii. PIC 16F877A

iii. DC Motor and other components

iv. Distance sensor6V relays

v. LCD

1.4 Problem statement

The main objective in this project is to interface the MATLAB GUI with the

PIC. It is a difficult part to develop the program for MATLAB and the PIC

simultaneously to make the interfacing part. By using the PicBasic Pro Compiler

software to develop programming to control DC motor, it can reduces the difficulty

by comprises a list of statements that written in a programming language like

assembler, C, or PBASIC. With this opportunity, the men in charge do not have to

take long time to written and troubleshoot the program.

To interface MATLAB GUI with PIC controller we use RS232. For my

project it will use bidirectional communication to transmit and receive the data.

Previously, not much has develop application using PIC via RS232 bidirectional

communication in MATLAB GUI due to its difficulties. The development of this

project is for research purpose in MATLAB communication using rs232.

5

1.5 Thesis organization

This thesis consists of five chapters including of the first chapter. The

contents of each chapter will explain details about this project.

Chapter 2 contains a detailed description each part of project. It will explain

about the MATLAB and MATLAB GUI, PIC, sensor and DC motor. The project

methodology is in Chapter 3. This will explain how the project is organized and the

flow of the process in completing this project.

Chapter 4 will presents the expected result of simulation runs using

MATLAB GUI interface with PIC. It also will show how the sensor will function to

send an input signal to GUI and will transmit back to PIC to control the DC motor.

In this chapter also will explain how the sensor works as automatic controller.

Finally the conclusions for this project are presented in Chapter 5.

6

CHAPTER 2

LITERATURE REVIEW

2.1 Graphical User Interface (GUI)

2.1.1 GUI definition

A graphical user interface (or GUI, often pronounced "gooey"), is a particular

case of user interface for interacting with a computer which employs graphical

images and widgets in addition to text to represent the information and actions

available to the user. Usually the actions are performed through direct manipulation

of the graphical elements [1].

The first graphical user interface was designed by Xerox Corporation's Palo

Alto Research Center in the 1970s, but it was not until the 1980s and the emergence

of the Apple Macintosh that graphical user interfaces became popular. One reason

7

for their slow acceptance was the fact that they require considerable CPU power and

a high-quality monitor, which until recently were prohibitively expensive [2].

A graphical user interface (GUI) is a pictorial interface to a program. A good

GUI can make programs easier to use by providing them with a consistent

appearance and with intuitive controls like pushbuttons, list boxes, sliders, menus,

and so forth [3]. A true GUI includes standard formats for representing text and

graphics [3]. The GUI should behave in an understandable and predictable manner,

so that a user knows what to expect when he or she performs an action. For example,

when a mouse click occurs on a pushbutton, the GUI should initiate the action

described on the label of the button [4].

Many DOS programs include some features of GUIs, such as menus, but are

not graphics based. Such interfaces are sometimes called graphical character-based

user interfaces to distinguish them from true GUIs [4].

2.1.2 MATLAB GUI

A graphical user interface (GUI) is a graphical display that contains devices,

or components, that enable a user to perform interactive tasks. To perform these

tasks, the user of the GUI does not have to create a script or type commands at the

command line. Often, the user does not have to know the details of the task at hand

[5].

8

The GUI components can be menus, toolbars, push buttons, radio buttons,

list boxes, and sliders just to name a few. In MATLAB, a GUI can also display data

in tabular form or as plots, and can group related components [5].

There are two basic tasks in process to implement a GUI. The two basic tasks in

process of implementing a GUI are:

i. Laying out a GUI where MATLAB implement GUIs as figure

windows containing various styles of uicontrol (User Interface)

objects.

ii. Programming the GUI, where each object must be program to

perform the intended action when activated by the user of GUI [5].

2.1.3 MATLAB GUIDE

GUIDE, the MATLAB graphical user interface development environment,

provides a set of tools for creating graphical user interfaces (GUIs). These tools

simplify the process of laying out and programming GUIs [6].

i. GUIDE is primarily a set of layout tools

ii. GUIDE also generates an M-file that contains code to handle the

initialization and launching of the GUI

The M-file will provide a framework for the implementation of the callbacks,

the functions that execute when users activate a component in the GUI [6].

9

2.1.4 GUI operation

The GUI is already associated with one or more user written routines known

as callbacks. The execution of each callback is triggered by a particular user action

such as, mouse click, pushbuttons, toggle buttons, lists, menus, text boxes, selection

of a menu item, or the cursor passing over a component and so forth 7].

By clicking the button triggers the execution of a callback. A mouse click or

a key press is an event, and the MATLAB program must respond to each event if the

program is to perform its function. For example, if a user clicks on a button, that

event must cause the MATLAB code that implements the function of the button to

be executed. The code executed in response to an event is known as a call back [7].

This kind of programming is often referred to as event-driven programming.

The event in the example is a button click. In event-driven programming, callback

execution is asynchronous, controlled by events external to the software. In the case

of MATLAB GUIs, these events usually take the form of user interactions with the

GUI [7].

The writer of a callback has no control over the sequence of events that leads

to its execution or, when the callback does execute, what other callbacks might be

running simultaneously [7].

Callbacks:

i. Routine that executes whenever you activate the uicontrol object.

ii. Define this routine as a string that is a valid MATLAB expression or

the name of an M-file.

iii. The expression executes in the MATLAB workspace.

10

2.2 PIC Microcontroller

PIC is a family of Harvard architecture microcontrollers made by Microchip

Technology, derived from the PIC1650 originally developed by General Instrument's

Microelectronics Division. PICs are popular with developers due to their low cost,

wide availability, large user base, extensive collection of application notes,

availability of low cost or free development tools, and serial programming (and re-

programming with flash memory) capability[8].

2.2.1 History of PIC

The original PIC was built to be used with GI's new 16-bit CPU, the CP1600.

While generally a good CPU, the CP1600 had poor I/O performance, and the 8-bit

PIC was developed in 1975 to improve performance of the overall system by

offloading I/O tasks from the CPU [8].

 The PIC used simple microcode stored in ROM to perform its tasks, and

although the term wasn't used at the time, it is a RISC design that runs one

instruction per cycle (4 oscillator cycles) [8].

 In 1985 General Instruments spun off their microelectronics division, and

the new ownership cancelled almost everything which by this time was mostly out-

of-date. The PIC, however, was upgraded with EPROM to produce a programmable

channel controller, and today a huge variety of PICs are available with various on-

11

board peripherals (serial communication modules, UARTs, motor control kernels,

etc.) and program memory from 512 words to 32k words and more[8].

2.2.2 The PIC16F877A Microcontroller

A PIC PIC16F877A Microcontroller chip combines the function of

microprocessor, ROM program memory, some RAM memory and input-output

interface in one single package which is economical and easy to use. The PIC

devices generally feature is sleep mode (power saving), watchdog timer and various

crystal or RC oscillator configuration, or an external clock [9].

Logicator system is designed to be used to program a range of 8, 18, 28 pin

reprogrammable PIC microcontroller which provide a variety of input output, digital

input and analogue input options to suit students project uses [9]. Reprogrammable

“FLASH Memory” chips have been selected as the most economical for student use.

If a student needs to amend to control system as the project is evaluated and

developed, the chip can simply be taken out of the product and reprogrammed with

an edited version of the floe sheet [9].

The features that available in PIC 16F877A:

i. General purpose i/o pins

ii. Internal clock oscillators

iii. 8/16 Bit Timers

iv. Internal EEPROM Memory

v. Synchronous/Asynchronous Serial Interface USART

vi.

vii.

viii.

ix.

x.

xi.

xii.

2.2.3 PIC

The

program M

MSSP P

Capture/

 Analog-t

USB, Et

External

Integrate

KEELO

C Basic Pro

 PicBasic P

icrochip Tec

Peripheral for

/Compare an

to-digital co

thernet, CAN

l memory int

ed analog RF

Q Rolling co

Figure

Compiler

Pro Compile

chnology’s p

r I²C and SP

nd PWM mo

onverters

N interfacing

terface

F front ends

ode encrypti

2.1: IC Con

er (or PBP)

powerful PIC

PI Communic

odules

g support

(PIC16F639

ion periphera

nfiguration

makes it ev

Cmicro micr

cations

9, and rfPIC)

al (encode/d

ven quicker

rocontrollers

)

decode)

and easier

s (MCUs). T

12

to

The

13

English-like BASIC language is much easier to read and write than the quirky

Microchip assembly language [10].

The PicBasic Pro Compiler is “BASIC Stamp II like” and has most of the

libraries and functions of both the BASIC Stamp I and II. Being a true compiler,

programs execute much faster and may be longer than their Stamp equivalents. PBP

is not quite as compatible with the BASIC Stamps as our original [10].

The PicBasic Pro Compiler produces code that may be programmed into a

wide variety of PICmicro microcontrollers having from 8 to 84 pins and various on

chip features including A/D converters, hardware timers and serial ports [10].

2.3 DC Motor

2.3.1 History of DC Motor

At the most basic level, electric motors exist to convert electrical energy into

mechanical energy. This is done by way of two interacting magnetic fields one

stationary, and another attached to a part that can move. A number of types of

electric motors exist, but most BEAMbots use DC motors in some form or another.

DC motors have the potential for very high torque capabilities (although this is

generally a function of the physical size of the motor), are easy to miniaturize, and

can be "throttled" via adjusting their supply voltage. DC motors are also not only the

simplest, but the oldest electric motors [11].

14

The basic principles of electromagnetic induction were discovered in the

early 1800's by Oersted, Gauss, and Faraday. By 1820, Hans Christian Oersted and

Andre Marie Ampere had discovered that an electric current produces a magnetic

field. The next 15 years saw a flurry of cross-Atlantic experimentation and

innovation, leading finally to a simple DC rotary motor. A number of men were

involved in the work, so proper credit for the first DC motor is really a function of

just how broadly you choose to define the word "motor”[11].

2.3.2 DC Motor Operation

In any electric motor, operation is based on simple electromagnetism. A

current-carrying conductor generates a magnetic field; when this is then placed in an

external magnetic field, it will experience a force proportional to the current in the

conductor, and to the strength of the external magnetic field. As you are well aware

of from playing with magnets as a kid, opposite (North and South) polarities attract,

while like polarities (North and North, South and South) repel. The internal

configuration of a DC motor is designed to harness the magnetic interaction between

a current-carrying conductor and an external magnetic field to generate rotational

motion [12].

Figure 2.2: Part of DC Motor

15

Every DC motor has six basic parts axle, rotor (a.k.a., armature), stator,

commutator, field magnet(s), and brushes. In most common DC motors (and all that

BEAMers will see), the external magnetic field is produced by high-strength

permanent magnets [12]. The stator is the stationary part of the motor this includes

the motor casing, as well as two or more permanent magnet pole pieces. The rotor

(together with the axle and attached commutator) rotates with respect to the stator.

The rotor consists of windings (generally on a core), the windings being electrically

connected to the commutator. The above diagram shows a common motor layout

with the rotor inside the stator (field) magnets [13].

The geometry of the brushes, commutator contacts, and rotor windings are

such that when power is applied, the polarities of the energized winding and the

stator magnet(s) are misaligned, and the rotor will rotate until it is almost aligned

with the stator's field magnets. As the rotor reaches alignment, the brushes move to

the next commutator contacts, and energize the next winding. Given our example

two-pole motor, the rotation reverses the direction of current through the rotor

winding, leading to a "flip" of the rotor's magnetic field, driving it to continue

rotating[13].

2.3.3 Advantage of DC Motor

The greatest advantage of DC motors may be speed control. Since speed is

directly proportional to armature voltage and inversely proportional to the magnetic

flux produced by the poles, adjusting the armature voltage and/or the field current

will change the rotor speed [13].

16

2.4 Sensor

2.4.1 Definition of Sensor and the application

A sensor is a device which measures a physical quantity and converts it into a

signal which can be read by an observer or by an instrument. For example, a

mercury thermometer converts the measured temperature into expansion and

contraction of a liquid which can be read on a calibrated glass tube. A thermocouple

converts temperature to an output voltage which can be read by a voltmeter. For

accuracy, all sensors need to be calibrated against known standards [14].

Sensors are used in everyday objects such as touch-sensitive elevator buttons

and lamps which dim or brighten by touching the base. There are also innumerable

applications for sensors of which most people are never aware. Applications include

automobiles, machines, aerospace, medicine, industry, and robotics [14].

A sensor's sensitivity indicates how much the sensor's output changes when

the measured quantity changes. For instance, if the mercury in a thermometer moves

1cm when the temperature changes by 1°, the sensitivity is 1cm/1°. Sensors that

measure very small changes must have very high sensitivities [14].

2.4.2 SHARP GP2Y0A21YK0F

17

GP2Y0A21YK0F is a distance measuring sensor unit, composed of an

integrated combination of PSD (position sensitive detector), IRED (infrared emitting

diode) and signal processing circuit. The variety of the reflectivity of the object, the

environmental temperature and the operating duration are not influenced easily to

the distance detection because of adopting the triangulation method. This device

outputs the voltage corresponding to the detection distance. So this sensor can also

be used as a proximity sensor [14].

Figure 2.3: Analog distance sensor

The features that available in this sensor type:

i. Distance measuring range : 10 to 80 cm

ii. Analog output type

iii. Package size : 29.5×13×13.5 mm

iv. Consumption current : Typ. 30 mA

v. Supply voltage : 4.5 to 5.5 V

18

2.5 Relay

A relay is an electrically operated switch. Current flowing through the coil of

the relay creates a magnetic field which attracts a lever and changes the switch

contacts. The coil current can be on or off so relays have two switch positions and

they are double throw (changeover) switches. Relays allow one circuit to switch a

second circuit which can be completely separate from the first [15].

Figure 2.4: Coil and switch contact

Figure 2.5: 6V relays

19

In this project relay use to supply the voltage to DC motor. 6V relays need

more than 6V voltage to energized the contact. The output voltage from PIC is use to

energized the contact of relay [15].

2.6 LCD

A liquid crystal display (LCD) is an electro-optical amplitude modulator

realized as a thin, flat display device made up of any number of color or

monochrome pixels arrayed in front of a light source or reflector. It is often utilized

in battery-powered electronic devices because it uses very small amounts of electric

power [16].

Figure 2.6: Liquid crystal display

LCDs with a small number of segments, such as those used in digital watches

and pocket calculators, have individual electrical contacts for each segment. An

external dedicated circuit supplies an electric charge to control each segment. This

display structure is unwieldy for more than a few display elements [16].

2.7 MA

The

EIA/TIA-23

where ±12V

systems, sin

than 5μW.

use no exte

circuit boar

2.8 Dar

Darl

transistors i

further by t

hFE) and can

can use a s

common als

AX 233

 MAX220–M

32E and V.2

V is not ava

nce their lo

The MAX2

ernal compo

rd space is cr

rlington Tra

lington trans

in a single d

the second. T

n take less s

shared colle

so to use two

Figure

MAX249 fa

28/V.24 com

ailable. Thes

ow-power sh

225, MAX2

onents and a

ritical [17].

ansistor C18

sistor is a se

device so th

This configu

space than tw

ctor. Integra

o separate tr

e 2.7: Circuit

amily of line

mmunication

se parts are

hutdown mo

33, MAX23

are recomme

815

emiconducto

hat the curre

uration gives

wo separate

ated circuit

ransistors [18

t diagram of

e drivers/rec

ns interfaces

especially u

ode reduces

35, and MA

ended for a

or device wh

ent amplified

s a high curr

transistors b

packages ar

8].

f Darlington

ceivers is in

s, particularl

useful in ba

power dissi

AX245/MAX

applications

hich combine

d by the firs

rent gain (wr

because the t

re available,

transistor

ntended for

ly applicatio

attery-power

ipation to le

X246/MAX2

where print

es two bipol

st is amplifi

ritten β, hfe,

two transisto

, but it is st

20

all

ons

red

ess

47

ted

lar

ied

or

ors

till

21

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter will present the whole methodology of this project and details of

each part of hardware and software that use in this project. It will describe on how

the project is organized and the flow of the steps in order to complete this project.

The methodology is diverged in two parts, which is developing the hardware to

interface with MATLAB. The other is developing the programming for MATLAB

and the PIC to control DC motor. Then, another developing is the programming for

MATLAB and PIC to receive the input from sensor and control the motor.

22

3.2 Software Development

There are three mains method in order to develop this project. Before the

project is developing using MATLAB, it is needed to do the study on MATLAB

GUIDE and the hardware (especially PIC). The flowchart in Figure 3.1 illustrated

the sequence of steps for this project. The first method is developing GUI in

MATLAB and programs every GUI component. Secondly is to develop PIC

programming to control 5V DC and to receive data from sensor. And lastly is

hardware design which is use to interface with MATLAB GUI.

23

Figure 3.1: Flowchart of the whole project

Figure 3.1 show the flow of the whole project. The flow of the project is

divided into two main tasks that are hardware design and MATLAB GUI design. In

hardware design part flow, the main target is to create appropriate programming for

PIC to interface with personal computer via serial port to control DC motor and

receive input from sensor. The second part, the prior task is to develop program in

MATLAB to interface with PIC and the DC motor and the sensor. After that the both

part is combine and do the analysis until achieve the needed objective. The main

24

contribution of this project is to interface MATLAB GUI with the PIC using

bidirectional communication.

3.2.1 Development MATLAB GUI Using MATLAB GUIDE

The MATLAB graphical user interface development environment provides a

set of tools for creating graphical user interfaces (GUIs). These tools simplify the

process of laying out and programming GUIs.

There are 5 steps in build the MATLAB GUI. First Use a MATLAB tool

called guide (GUI Development Environment) to layout the components that show

in Figure 3.2. This tool allows a programmer to layout the GUI, selecting and

aligning the GUI components to be placed in it. The basic component of the

MATLAB GUI is shown in Table 3.1.

25

Table 3.1: Basic MATLAB GUI Component

26

Figure 3.2: MATLAB GUIDE Layouts

Use a MATLAB tool called the Property Inspector (built into guide) to give

each component a name (a "tag") and to set the characteristics of each component,

such as its color, the text it displays, and so on. After that, we save the figure to the

file. When the figure is saved, two files will be created on disk with the same name

but different extents. The fig file contains the actual GUI that has been created, and

the M-file contains the code to load the figure and skeleton call backs for each GUI

element. These two files usually reside in the same directory. They correspond to the

tasks of laying out and programming the GUI. When you lay out the GUI in the

Layout Editor, your work is stored in the FIG-file. When you program the GUI, your

work is stored in the corresponding M-file.

27

 Figure 3.3: Property Inspector

After laying out the GUI component and set the property, the GUI will be

look like in Figure 3.4 for example according to the user creativity.

28

Figure 3.4: Example GUI

And finally write code to implement the behavior associated with each

callback function in m-files show in Figure 3.5. A callback is a function that writes

and associates with a specific GUI component or with the GUI figure. It controls

GUI or component behavior by performing some action in response to an event for

its component. This kind of programming is often called event-driven programming.

This last step is the difficult one and has to make an extra reading on how to write

the coding before the GUI component can perform some task that user desire.

29

Figure 3.5 Example M-files for GUI

3.2.2 Build MATLAB Programming

After layed out the GUI, it need to program its behavior. The code is to write

controls how the GUI responds to events such as button clicks, slider movement,

menu item selection, or the creation and deletion of components. This programming

takes the form of a set of functions, called callbacks, for each component and for the

GUI figure itself.

30

A callback is a function that writes and associates with a specific GUI

component or with the GUI figure. It controls GUI or component behavior by

performing some action in response to an event for its component. This kind of

programming is often called event-driven programming.

The GUI figure and each type of component have specific kinds of callbacks

with which it can be associated. The callbacks that are available for each component

are defined as properties of that component. Each kind of callback has a triggering

mechanism or event that causes it to be called. The kind of callback is shown in

Table 3.2.

Table 3.2: Various kind of Callback

Callback Property Triggering Event Components

DeleteFcn Component deletion. It can be

used to perform cleanup

operations just before the

component or figure is

destroyed.

Axes, figure, button

group,

context menu, menu,

panel,

user interface

controls

KeyPressFcn Executes when the user presses

a keyboard key and the

callback’s component or figure

has focus.

Figure, user

interface controls

ResizeFcn Executes when a user resizes a

panel, button group, or figure

whose figure. Resize property

is set to On.

Button group, figure,

panel

SelectionChangeF

cn

Executes when a user selects a

different radio button or toggle

Button group

31

button in a button group

component.

WindowButtonDo

wnFcn

Executes when you press a

mouse button while the pointer

is in the figure

window.

Figure

WindowButtonMo

tionFcn

Executes when you move the

pointer within the figure

window.

Figure

WindowButtonUp

Fcn

Executes when you release a

mouse button.

Figure

ButtonDownFcn Executes when the user presses

a mouse button while the

pointer is on or within five

pixels of a component or

figure. If the component is a

user interface control, its

Enable property must be on.

Axes, figure, button

group, panel, user

interface controls

Callback Component action. Executes,

for example, when a user

clicks a push

button or selects a menu item.

Context menu,

menu, user

interface controls

CloseRequestFcn Executes before the figure

closes.

Figure

CreateFcn Component creation. It can be

use to initialize the component

when it is created. It executes

after the component or figure

is created, but before it is

displayed.

Axes, figure, button

group, context

menu, menu, panel,

user interface

controls

32

The GUI M-file that GUIDE generates is a function file. The name of the

main function is the same as the name of the M-file. For example, if the name of the

M-file is auto.m, then the name of the main function is auto. Each callback in the file

is a sub function of the main function. When GUIDE generates an M-file, it

automatically includes templates for the most commonly used callbacks for each

component. The major sections of the GUI M-file are ordered as shown in Table 3.3.

Table 3.3: Major Sections of the GUI M-file

GUIDE automatically includes two callbacks, the opening function and the

output function, in every GUI M-file it creates. The opening function programming

is importance in initialize the communication port in MATLAB GUI before it can

transmit data to the PIC. The data send from MATLAB GUI to PIC is in decimal

form and PIC will control the DC motor with the preset programming according to

the data received.

In opening and closing the communication port the command fclose (SerPIC)

is use to disconnect a serial port object from the device. The baud rate from

33

MATLAB GUI must be set same with the baud rate in PIC before it can transmit and

receive the data. For example if baud rate in MATLAB GUI is 9600bps, so the baud

rate in PIC also 9600bps.

3.2.3 Build PIC programming

The data from MATLAB GUI is send to PIC in decimal form, so the PIC is

program to read or receive the data also in decimal form. The communication

between MATLAB GUI and PIC is in standard asynchronous format where the

device uses its own internal clock resulting in bytes that are transferred at arbitrary

times. The baud rate is specifying according to MATLAB GUI. Some standard baud

rates are listed in Table 3.4. For PIC programming, 9600bps is using which same

with the MATLAB GUI.

The input data at PIC that transmit from MATLAB GUI is set to PORTC.0

before it run certain program to control the DC motor. Here is the example to

program the stepper motor run in clockwise and anticlockwise direction. If

MATLAB send data ‘001’, so the PIC will perform case 001 according the

programming.

34

Table 3.4: List of Standard Baud Rate

To program the PIC, make sure the oscillator that defines in programming is

same as use at hardware to avoid instability during transmit and receive data. The

SERIN2 command in the program support many different data modifier which may

be mixed and matches freely within single SERIN2 statement to provide various

input formatting. The modifier support is shown in Table 3.5. The number 84 on

“Serin2 SerI, 84, [dec3 B0]” command is refer to baud rate that equal to 9600bps

according Table 3.4.

Table 3.5: Modifier Support by SERIN2 Command

35

3.3 Hardware Development

For hardware design, first is to design the power supply module which is to

supply 5V fixed to PIC and max232 IC. Power supply module is importance to PIC

and max232 to prevent damage if users give the higher input supply to device. The

schematic diagram for power supply module is like in Figure 3.6. Input to the power

supply must greater than 7V to 7805 voltage regulator IC to achieve the 5V output

supply to PIC and max233.

Figure 3.6: Power Supply Modules

Second is to design the connection from communication port (DB9 female

connection) from computer to the device which is the pin assignment is shown in

Table 3.6 below and the figure of RS 232 communication port shown on Figure 3.7.

In fact, only three pins are required for serial port communications: one for receiving

data, one for transmitting data, and one for the signal ground. The connection from

computer to device is only on pin 2, 3 and pin 5. The circuit in Figure 3.8 shows the

connection between RS232 with MAX232 and the PIC.

36

Figure 3.7: Pins and Signals Associated With the 9-pin Connector

Table 3.6: Serial Port Pin and Signal Assignments

37

Figure 3.8: Serial Port Connection to PIC

In this project the output data from MAX233 is send directly to PIC at PORTC.7

and the sensor is connect to PIC at PORTA.0. This connection is depending on the PIC

programming that has been developing before it can perform specific task according the

data send from the MATLAB GUI. The oscillator use in the circuit diagram also same

with the define one in the PIC programming to avoid instability.

38

The output on the PIC port is approximately 4.7 V low current which is cannot

run the stepper motor or DC motor directly. So, to run the motor, switching approach is

use by using additional source with high current supply. To done this method the

Darlington transistor (C1815) is use like the circuit in Figure 3.9. To run the DC motor

in forward or reverse direction it has to use relay because it cannot directly control via

PIC. Relays use to give direct current to motor. In this project, the PORTB.0 to

PORTB.3 will be use to control 5V DC motor like in Figure 3.9. The hardware

installation for this project is shown in Figure 3.10.

Figure 3.9: 5V DC Motor Connection

The input from sensor is connecting to PIC at PORTA.0. In this project, we

use analog distance sensor that can sense a range between 8cm – 80cm. Analog

distance sensor will give single output voltage. The input from sensor will convert

from analog to digital form. We write the program that will convert analog input to

digital. After the conversion, the digital output produce will display on LCD. The

program to convert from analog to digital is in program 1. Before the character

display at LCD, we must initialize LCD first. The program to initialize LCD is in

program 2.

39

Program 1:

 ADCON1=4 ' Set PortA 0, 1, 3 to A/D inputs
 Pauseus 50 ' Wait for channel to setup
 ADCON0.2 = 1 ' Start conversion
 Pauseus 50 ' Wait for conversion
 Return

' Subroutine to get pot x value
getx:
 ADCON0 = $41 ' Set A/D to Fosc/8, Channel 0, On
 Gosub getad
 x = ADRESH
 Return

mainloop:
 Gosub getx ' Get x value
 Lcdout $fe, 1, "Distance=", #x ' Send to LCD

 if x>=100 then balik
 IF X<=10 THEN balik
 Goto mainloop ' Do it forever

balik:
 portb=%00000000
 Lcdout $fe, 1, "MOTOR STOP" ' Send to LCD
 pause 1000
 goto start

Program 2:

Define LCD_DREG PORTD 'initialize lcd
Define LCD_DBIT 4
Define LCD_RSREG PORTE
Define LCD_RSBIT 0
Define LCD_EREG PORTE
Define LCD_EBIT 1

Low PORTE.2 ' LCD R/W line low (W)
Pause 500 ' Wait for LCD to start

40

Figure 3.10: Hardware circuit (main)

Figure 3.11: Mobile Robot

41

CHAPTER 4

RESULT AND DISCUSSION

4.1 Introduction

This chapter consists of the discussions on the results from the MATLAB

GUI layout that has been developing using MATLAB Graphical User Interface

Development Environment. The MATLAB GUI in this project can be divided to

four parts. First part is main menu of the whole GUI. Second part is interfacing

MATLAB GUI software.

4.2 Main Menu of GUI

42

The main menu of the GUI in this project contain of four pushbutton which

link to motor control selection, general info about the project abstract, the credit and

lastly is an exit button to close the whole program. The main menu of the GUI and

info of the project is shown in Figure 4.1. For motor control pushbutton will explain

detail in the next sub chapter. In credit part shown in Figure 4.2 contains the detail

about the GUI developer and the supervisor. For the introduction to motor control

will show in abstract. This abstract window is shown in Figure 4.3. For the exit

button user will ask about the confirmation either to exit the GUI or not. The

confirmation figure is shown in Figure 4.4.

Figure 4.1: Main Menu

43

The main menu of GUI window consist four push buttons. The first push

button is credit, abstract motor control and lastly exit button to close the main menu

of GUI. When we push exit button it will close the window and pop-up window will

display to do the action or not. The confirmation window is shown in Figure 4.5.

Figure 4.2: Credit

The credit window will display when we push the credit button on the main

menu. The credit will show GUI developer and the supervisor of the project. When

we push the close button, it will display back main menu window.

44

Figure 4.3: Abstract

The abstract window will shown the description of the whole project. The

back button is use to back to main menu.

Figure 4.4: Pop-up Window

45

The pop-up window will show when we push exit button. When we push

‘yes’ button, it will exit the program. If we push ‘no’ button, it will back to main

menu.

4.3 Interface MATLAB GUI Software

For motor control part, it divides into two parts where the first part is

interfacing software and the second part is advance GUI development for future. The

first part of the motor control GUI is the main objective of this project where to

interface between MATLAB GUI with the device (motor) to control the motor. The

figure of motor control menu is shown in Figure 4.5. The interface software is

developing only for 5V DC motor. The rest is for advance development. In the menu

motor control menu user can choose for manual mode or autonomous mode. For

manual mode motor control is shown in Figure 4.6. For the autonomous mode motor

control is shown in Figure 4.8.

Figure 4.5: Mode Selection

46

Figure 4.5 shown will the menu selection of manual mode and autonomous

mode. At this window, we can choose from two types of mode to control mobile

robot. The button back is use for return to main menu.

Figure 4.6: Manual Mode Motor Control

In manual mode window it has 3 main boxes. For manual mode box it consist

four buttons that use to control the motor. Each button has assigned to control the

mobile robot to move forward, reverse, left and right. In this window, we will be

able to check the port in open or close condition. Finally it has the stop button and

close button to exit the system.

47

Figure 4.7: Autonomous Mode Motor Control

For autonomous mode, when we push start button the mobile robot will

move forward. When the sensor detects the block, it will display the distance

between robot and block. The distance will display at LCD at hardware board.

Before we push start button, we must first check the port by clicking the button

check. The communication port status is shown in Figure 4.8. If errors happen, user

must restart the MATLAB and run the GUI back.

Figure 4.8: Communication Port Status

48

The communication port status is use to check the port connection opens or

close. If the communication port status is close, we cannot use the entire button in

the GUI window because the data from GUI programming are no sent to serial port.

The push button is able to use when communication port status is open.

4.4 User information GUI

This part provides the user manual as guidance to use this MATLAB GUI

software. The manual is important for the first time user to get the information on

how to operate the GUI in right way. The user can get the information on how to

setting the port when we click on radio button, because if this software use in

different computer, the communication port configuration also differ. So the GUI

software cannot control the motor or in other word the interface between MATLAB

GUI and device is failed. The data is not sending to the PIC. The available port will

display at MATLAB window, so we should setting back the programming.

4.5 Result

4.5.1 DC motor

49

DC motor is control by programming the PIC that will control the motor by

clicking at push button on MATLAB GUI windows. The mobile robot is control

using DC motor. All the movement of mobile robot is control trough GUI window.

4.5.2 Sensor (GP2Y0A21YK0F)

GP2Y0A21YK0F is a distance measuring sensor unit, composed of an

integrated combination of PSD (position sensitive detector). IRED (infrared emitting

diode) and signal processing circuit. The variety of the reflectivity of the object, the

environmental temperature and the operating duration are not influenced easily to

the distance detection because of adopting the triangulation method. This device

outputs the voltage corresponding to the detection distance. So this sensor can also

be used as a proximity sensor.

From the observation from distance sensor result, we have record some of

characteristic of distance in such of to sense an object. Table 4.1 will show the

accuracy of analog distance sensor to sense object.

Table 4.1: Observation from sensor

Paper type Reflectance ratio

White paper 90%

Gray paper 18%

50

 Figure 4.9: Distance versus Output Voltage of the Sensor

4.5.3 LCD Display

LCD module is use to display the distance measure from analog distance

sensor. It also will display the mode and the status of motor.

51

Figure 4.10: Mobile Robot Distance

Figure 4.11: Motor Status

52

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

The GUI design and it implementation has fully develop to achieve the entire

objectives. The mobile robot is able control using GUI via serial port

communication. The development of the MATLAB GUI using MATLAB GUIDE

and PIC16F877A programming using Microcode Studio was done after detail study

and analysis. Through the development of this project it has conclude that the

MATLAB GUI can control the motor and interface with the device using serial

communication port with the proper hardware installation and a lot of knowledge to

programmed the PIC.

The main objectives of this project are to control DC motor and interface the

MATLAB GUI is fully achieved. The most important part in this project is

interfacing MATLAB GUI with PIC 16F877A.

53

5.2 Future Recommendation

For the futures recommendation, to improve this project, others features in

GUI is added and use as the main part of the project like slider to control the speed

of motor. By using this slider, the accuracy of analog distance sensor to sense object

is more precise and accurate. The input from sensor will send through serial port and

display at GUI window.

For other recommendation of this project is to use two mobile robot for two

mode we have. From GUI window, we can choose one of the two modes we have.

To make more looked interested in this project; we use wireless systems to replace

rs232 cable. By using wireless system, the mobile robot is able to control in wide

range.

5.3 Costing and Commercialization

The cost of the project is divided into two parts. First part is for components

that we get from laboratory and second part is for components we get from other

sources. For components from laboratory, it will cost approximately RM 95. For

components from other sources, it cost approximately RM 175. The total cost for

hardware cost is approximately RM275. For software part, it will cost more on to get

the license from MATLAB and usually the cost is high where the license must be

renew by year.

This project can be used in industries for pick and place operation to replace

SCARA robot that perfume same task. The operation system of this is project more

54

effective because it has software part. This project cost more cheaply than SCARA

robot and friendly users. This project approach of imparting advanced GUI

capability to microcontrollers using MATLAB can be used to develop

microcontroller-based low-cost control platforms. In addition, this approach can be

used to impart GUI capability to any microcontroller that supports serial

communication, such as the PIC series microcontrollers.

55

REFERENCES

1. UsersBrian R. Hunt, Ronald L. Lipsman, Jonathan Rosenberg, Kevin R.

Coombes, John E. Osborn, Garrett J. Stuck. A Guide to MATLAB: For

Beginners and Experienced. Published by Cambridge University Press. 2006.

 2. MATLAB, high-performance numeric computation and visualization

software: building a graphical user interface. By MathWorks, Inc, Inc

MathWorks. Available at: http://www.mathworks.com

3. Chapman, Stephen J. MATLAB Programming for Engineers. Brooks Cole.

2001.

4. Scott T. Smith. MATLAB Advanced GUI Development: Advanced GUI

Development. 2006.

5. Robert DeMoyer and E. Eugene Mitchell. Use of the MATLAB Graphical

User Interface Development Environment for Some Control System

Applications. 1999.

 6. Marc E. Herniter. Programming In MATLAB. Northern Arizona.

 University, Brooks/Cole. 2001.

 7. Yan-Fang Li, Saul Harari, Hong Wong, and Vikram Kapila.

Matlab-Based Graphical User Interface Development for Basic Stamp 2.

2004.

8. Dan O'Sullivan; Tom Igoe. Physical Computing: Sensing and Controlling the

Physical World with Computers. 2004.

56

 9. Chuck Hellebuyck. Programming PIC Microcontrollers with PICBASIC.

 10. PicBasic Pro Compiler. MicroEngineering Labs, Inc. 2004.

 Available at: http://www.melabs.com

11. Gerald A. Moberg. AC and DC Motor Control. Published by Prentice Hall

PTR. 1987.

12. Lab-Volt (Quebec) Ltd, Lab-Volt (Quebec) Ltd. Contributor Lab-Volt

(Quebec) Ltd Staff. DC Motor Drive. Published by Lab-Volt. 2006.

13. Christopher Edwards and Sarah K. Spurgeon. Sliding Mode Control: Theory

and Applications. Published by CRC Press. 1998.

14. David J. Perdue. Unofficial LEGO NXT Inventor's Guide. 2007.

15. Jonathan Chin. Cisco Frame Relay Solutions Guide. March 2004.

16. John Iovine. PIC Robotics: A Beginner's Guide to Robotics Projects Using

the PICmicro. Published by McGraw-Hill Professional. 2004.

17. Jan Axelson. Serial Port Complete: Programming and Circuits for RS-232

and RS-485 Links and Networks. Published by lakeview research llc. 1998.

 18. Mohamed A. El-Sharkawi. Electric Energy: An Introduction

 Published by CRC Press. 2004.

57

APPENDIX A
PIC PROGRAMMING

INCLUDE "bs2defs.bas" 'has some definition in it
DEFINE OSC 8 'define the oscillator speed in MHz
Define LCD_DREG PORTD 'initialize lcd
Define LCD_DBIT 4
Define LCD_RSREG PORTE
Define LCD_RSBIT 0
Define LCD_EREG PORTE
Define LCD_EBIT 1

SerI VAR PORTC.0 'define input port
x var BYTE

TRISA = %00000001
TRISB = %00000000

Low PORTE.2 ' LCD R/W line low (W)
Pause 500 ' Wait for LCD to start

Start:

portc = %00000000 'clear port C
Serin2 SerI, 84, [dec3 B0] 'get three digit decimal number data from ‘MATLAB

GUI

SELECT CASE B0

CASE 001 'forward
Lcdout $fe, 1, "MANUAL MODE" 'Send to LCD
PAUSE 1000
GOSUB forward
pause 100
goto start

CASE 002 'reverse
Lcdout $fe, 1, "MANUAL MODE" 'Send to LCD
PAUSE 1000
GOSUB undur
pause 100
goto start

CASE 003 'right

58

Lcdout $fe, 1, "MANUAL MODE" 'Send to LCD
PAUSE 1000
GOSUB right
pause 100
goto start

CASE 004 'left
Lcdout $fe, 1, "MANUAL MODE" 'Send to LCD
PAUSE 1000
GOSUB left
pause 100
goto start

case 005
Lcdout $fe, 1, "MOTOR STOP" 'Send to LCD
portb=%00000000
pause 1000
goto start

case 006
pause 100
Lcdout $fe, 1, "AUTONOMOUS MODE" 'Send to LCD
portb=%00000101
PAUSE 1000
Lcdout $fe, 1, "MOTOR FORWARD" 'Send to LCD
PAUSE 1000
GOSUB mainloop

CASE 007
PAUSE 100
LCDOUT $fe, 1, "AUTONOMOUS MODE" ' Send to LCD
portb=%00001010
PAUSE 1000
Lcdout $fe, 1, "MOTOR REVERSE" ' Send to LCD
PAUSE 1000
GOSUB mainloop

end select

goto start

forward:
 portb=%00000101
 Lcdout $fe, 1, "MOTOR FORWARD" ' Send to LCD
 pause 1000

59

 RETURN

undur:
 portb=%00001010
 Lcdout $fe, 1, "MOTOR REVERSE" ' Send to LCD
 pause 1000
 RETURN

right:
 portb=%00001001
 Lcdout $fe, 1, "TURN RIGHT" ' Send to LCD
 pause 1000
 portb=%00000000
 Lcdout $fe, 1, "MOTOR STOP" ' Send to LCD
 pause 100
 RETURN

left:
 portb=%00000110
 Lcdout $fe, 1, "TURN LEFT" ' Send to LCD
 pause 1000
 portb=%00000000
 Lcdout $fe, 1, "MOTOR STOP" ' Send to LCD
 pause 100
 RETURN

' Subroutine to read a/d converter
getad:
ADCON1=4 ' Set PortA 0, 1, 3 to A/D inputs
 Pauseus 50 ' Wait for channel to setup
 ADCON0.2 = 1 ' Start conversion
 Pauseus 50 ' Wait for conversion
 Return

' Subroutine to get pot x value
getx:
 ADCON0 = $41 ' Set A/D to Fosc/8, Channel 0, On
 Gosub getad
 x = ADRESH
 Return

mainloop:
 Gosub getx ' Get x value
 Lcdout $fe, 1, "Distance=", #x ' Send to LCD
 Pause 500 ' Do it about 5 times a second

60

 if x>=100 then balik
 IF X<=10 THEN balik
 Goto mainloop ' Do it forever

balik:
 portb=%00000000
 Lcdout $fe, 1, "MOTOR STOP" ' Send to LCD
 pause 1000
 goto start

end

61

APPENDIX B
AUTONOMOUS MODE

function varargout = auto(varargin)
% AUTO M-file for auto.fig
% AUTO, by itself, creates a new AUTO or raises the existing
% singleton*.
%
% H = AUTO returns the handle to a new AUTO or the handle to
% the existing singleton*.
%
% AUTO('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in AUTO.M with the given input arguments.
%
% AUTO('Property','Value',...) creates a new AUTO or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before auto_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to auto_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help auto

% Last Modified by GUIDE v2.5 14-Oct-2008 14:15:38

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @auto_OpeningFcn, ...
 'gui_OutputFcn', @auto_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else

62

 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before auto is made visible.
function auto_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to auto (see VARARGIN)

SerPIC=serial('COM3') %define the port available
Check=SerPIC.status %to check port status data
handles.status=Check %store data
handles.op=SerPIC; % store data
guidata(hObject, handles); %save data

% Choose default command line output for auto
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes auto wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = auto_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in check2.
function check2_Callback(hObject, eventdata, handles)
% hObject handle to check2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of check2

63

if (get(hObject,'Value')==get(hObject,'Max'));
 SerPIC=handles.op % retrieve data

set(SerPIC,'BaudRate',9600,'DataBits',8,'Parity','none','StopBits',1,'FlowControl','non
e');
 fopen(SerPIC)
 guidata(hObject,handles); %save data ;
else
 SerPIC=handles.op
 fclose(SerPIC)
 guidata(hObject,handles)

end
guidata(hObject,handles);

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','006');

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
close
figure(pop)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

function edit1_Callback(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit1 as text
% str2double(get(hObject,'String')) returns contents of edit1 as a double

% --- Executes during object creation, after setting all properties.
function edit1_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

64

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
close
figure(select)
% hObject handle to pushbutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
SerPIC=handles.op
fprintf(SerPIC,'%s','005');

% --- Executes on button press in pushbutton5.
function pushbutton5_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
SerPIC=handles.op
Check=handles.status
u=SerPIC.status

set(handles.text9,'String',u)

% --- Executes on button press in pushbutton7.
function pushbutton7_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','007');

65

APPENDIX C
MANUAL MODE

function varargout = manual(varargin)

% MANUAL M-file for manual.fig

% MANUAL, by itself, creates a new MANUAL or raises the existing
% singleton*.
%
% H = MANUAL returns the handle to a new MANUAL or the handle to
% the existing singleton*.
%
% MANUAL('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in MANUAL.M with the given input arguments.
% MANUAL('Property','Value',...) creates a new MANUAL or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before manual_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to manual_OpeningFcn via varargin.
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help manual
% Last Modified by GUIDE v2.5 11-Oct-2008 10:55:03
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @manual_OpeningFcn, ...
 'gui_OutputFcn', @manual_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before manual is made visible.

66

function manual_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to manual (see VARARGIN)

SerPIC=serial('COM3') %define the port available
Check=SerPIC.status %to check port status data
handles.status=Check %store data
handles.op=SerPIC; % store data
guidata(hObject, handles); %save data

% Choose default command line output for manual
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes manual wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = manual_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in check.
function check_Callback(hObject, eventdata, handles)
% hObject handle to check (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of check

if (get(hObject,'Value')==get(hObject,'Max'));
 SerPIC=handles.op % retrieve data

set(SerPIC,'BaudRate',9600,'DataBits',8,'Parity','none','StopBits',1,'FlowControl','non
e');

67

 fopen(SerPIC)
 guidata(hObject,handles); %save data ;
else
 SerPIC=handles.op
 fclose(SerPIC)
 guidata(hObject,handles)

end
guidata(hObject,handles);

% --- Executes on button press in fw.
function fw_Callback(hObject, eventdata, handles)
% hObject handle to fw (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','001');

% --- Executes on button press in rw.
function rw_Callback(hObject, eventdata, handles)
% hObject handle to rw (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','002');

% --- Executes on button press in l.
function l_Callback(hObject, eventdata, handles)
% hObject handle to l (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','004');

% --- Executes on button press in r.
function r_Callback(hObject, eventdata, handles)
% hObject handle to r (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','003');

68

% --- Executes on button press in pushbutton5.
function pushbutton5_Callback(hObject, eventdata, handles)
close
figure(select)
% hObject handle to pushbutton5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton6.
function pushbutton6_Callback(hObject, eventdata, handles)
close
figure(pop)
% hObject handle to pushbutton6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton7.
function pushbutton7_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton8.
function pushbutton8_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton8 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
SerPIC=handles.op
Check=handles.status
u=SerPIC.status

set(handles.text5,'String',u)

% --- Executes on button press in pushbutton9.
function pushbutton9_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton9 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','005');

69

APPENDICE D
PIC16F877A DATASHEET

70

71

APPENDICE E
MAX 233 DATASHEET

72

	pengesahan_status_tesis.pdf
	cover_sv_declare.pdf
	front page.pdf
	Final_Thesis_08.pdf

