UNIVERSITI MALAYSIA PAHANG

BORANG PENGESAHAN STATUS TESIS®

JubuL: DUAL MODE MOBILE ROBOT: APPLICATION USING
MATLAB GUI

SESI PENGAJIAN:__2008/2009/1

SAIFULLAH BIN AHMAD (860514-29-6145)
(HURUF BESAR)

Saya

mengaku membenarkan tesis (Sarjana Muda/Sarjana /Bekter-Falsafah)™ ini disimpan di
Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi
pengajian tinggi.

4. **Sjlatandakan (V)

(Mengandungi maklumat yang berdarjah keselamatan

SULIT atau kepentingan Malaysia seperti yang termaktub
di dalam AKTA RAHSIA RASMI 1972)

v TIDAK TERHAD

[:] TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan
oleh organisasi/badan di mana penyelidikan dijalankan)

Disahkan oleh:

(TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)
Alamat Tetap:
KG ALOR PIAH CHETOK, REZA EZUAN BIN SAMIN

17060 PASIR MAS, (Nama Penyelia)
KELANTAN

Tarikh: 11 NOVEMBER 2008 Tarikh: : 11 NOVEMBER 2008

CATATAN: * Potong yang tidak berkenaan.
faled Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu
dikelaskan sebagai atau TERHAD.
. Tesis dimaksudkan sebagai tesis bagi ljazah doktor Falsafah dan Sarjana secara
Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan
penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

“l hereby declare that | have read this thesis and in my
opinion this thesis is sufficient in terms of scope and quality for the

award of the degree of Bachelor of Electrical Engineering (Electronic)”

Signature e
Name of Supervisor : REZA EZUAN BIN SAMIN
Date : 11 NOVEMBER 2008

DUAL MODE MOBILE ROBOT: APPLICATION USING MATLAB
GUI

SAIFULLAH BIN AHMAD

A thesis submitted in partial fulfillment of the requirements for the award of the

degree of Bachelor of Electrical Engineering (Electronic)

Faculty of Electrical & Electronic Engineering

Universiti Malaysia Pahang

NOVEMBER 2008

“I declare that this thesis is the result of my own research except as cited in the
references. The thesis has not been accepted for any degree and is not concurrently

submitted in candidature of any other degree.”

Signature e
Name : SAIFULLAH BIN AHMAD
Date : 11 NOVEMBER 2008

To my beloved mother and father:
Zabiah Binti Saleh and Ahmad Bin Sulaiman
My siblings:
Zalina Ahmad, Zaleharani Ahmad, Zanariah Ahmad,
Sofiah Ahmad and my youngest brother, Hasan Ahmad

Last but not least a special people in my life, Asmahani Ahmad

ACKNOWLEDGEMENT

First of all, thanks to ALLAH s.w.t because | have completely finished my
thesis. | want to appreciate to all people who had given their support to make *Dual
Mode Mobile Robot: Application Using MATLAB GUI’ successful. I am greatly
indebted to my supervisor, En Reza Ezuan Bin Samin for his advice and guide to

finish this project.

Here, | also want to thank to all my beloved friends that always give a moral
support and to complete this project. Suggestions and criticism from my friends
have always been helpful in finding a solution to my problem. Thank you very

much all.

Finally, 1 would like to express my thanks to those who were involved
directly or indirectly in the completion of my thesis. Last but not least, to my family

and also my love, for giving me a moral and inspiration throughout my project.

ABSTRAK

(Pergerakan robot 2 kaedah) ini mengandungi program komputer dan
bahagian peralatan. Untuk bahagian program komputer, MATLAB GUI digunakan
dan untuk bahagian peralatan pula cip PIC, LCD, alat pengesan jarak dan banyak
lagi digunakan untuk menyiapkan projek ini. Projek ini terbahagi kepada dua
bahagian iaitu dalam keadaan automatik dan kawalan secara biasa. Dalam keadaan
automatik pula, alat pengesan jarak digunakan untuk mengawal robot dan robot itu
akan berhenti dalam jarak yang tertentu. Jarak ini akan dipaparkan pada LCD.
Kabel rs232 digunakan untuk menyambungkan peralatan dengan program
MATLAB. Fokus utama projek ini adalah interaksi antara program MATLAB
dengan peralatan dengan menggunakan kabel rs232. Pemaparan grafik (GUI)
mengandungi peralatan dan komponen yang boleh melaksanakan pelbagai tugasan.
Untuk melaksanakan tugasan ini, pengguna GUI tidak perlu membuat skrip atau
suruhan. Tambahan lagi, pengguna tidak perlu mengetahui secara terperinci tentang
tugasan. Cip PIC pula mengandungi sistem pemprosesan dan tempat untuk
menyimpan data yang lengkap dalam satu pakej yang murah dan senang untuk

digunakan.

Vi

ABSTRACT

Dual mode mobile robot has hardware and software part. For the software
part, we use MATLAB GUI and for the hardware, it consists PIC 16F877A, sensor,
LCD, relay and others. There are two mode to control the mobile using PIC
16F877A by interfacing with MATLAB GUI. The two modes are manual and
autonomous mode. For the manual we control the mobile with GUI. For the
autonomous mode, distance sensor is use to control the mobile and stop the mobile
with certain distance that we have set up. The distance will display on LCD at
hardware. Rs232 cable is use to connect hardware with software (PC). This project
is focus on interfacing MATLAB software and hardware using rs232 cable. A
graphical user interface (GUI) is a graphical display that contains devices, or
components, that enable a user to perform interactive tasks. To perform these tasks,
the user of the GUI does not have to create a script or type commands at the
command line. Often, the user does not have to know the details of the task at hand.
A PIC Microcontroller chip combines the function of microprocessor, ROM
program memory, some RAM memory and input-output interface in one single

package which is economical and easy to use.

CHAPTER

TABLES OF CONTENT

TITLE

INTRODUCTION

1.1
1.2
1.3
1.4
1.5

Overview
Objective

Scope of Project
Problem Statement

Thesis Organization

LITERITURE REVIEW

2.1

2.2

2.3

Graphical User Interface (GUI)
2.1.1 GUI definition

2.1.2 MATLAB GUI

2.1.3 MATLAB GUIDE
2.1.4 GUI operation

PIC Microcontroller

2.2.1 History of PIC

2.2.2 The PIC Microcontroller
2.2.3 PIC Basic Pro Compiler
DC Motor

2.3.1 History of DC Motor
2.3.2 DC Motor Operation

PAGE

g W W R e

© 00 N o o N

10
11
12
13
13
14

Vii

2.3.3 Advantage of DC Motor

2.4 Sensor
2.4.1 Definition of Sensor and the
Application
2.4.2 SHARP GP2Y0A21YKOF
2.5 Relay
26 LCD
2.7 MAX 233
2.8 Darlington Transistor C1815)
METHODOLOGY
3.1 Introduction
3.2 Software Development
3.2.1 Development MATLAB GUI
Using MATLAB GUIDE
3.2.2 Build MATLAB Programming
3.2.3 Build PIC programming
3.3 Hardware Development

RESULT AND DISCUSSION

4.1
4.2
4.3
4.4
4.5

Introduction

Main Menu of GUI

Interface MATLAB GUI Software
User information GUI

Result

45.1 DC motor

452 Sensor (GP2Y0A21YKOF)
4.5.3 LCD Display

CONCLUSION AND RECOMMENDATION

5.1

Conclusion

15
16

16

16
18
19
20
20

21
21
22

24
29
33
35

41
41
41
45
48
48
48
49
50

52
52

viii

5.2
5.3

REFERENCES
Appendices

Future Recommendation

Costing and Commercialization

53
53

55
57-72

TABLE NO

3.1
3.2
3.3
3.4
3.5
3.6
4.1

LIST OF TABLES

TITLE

Basic MATLAB GUI Component
Various kind of Callback

Major Sections of the GUI M-file

List of Standard Baud Rate

Modifier Support by SERIN2 Command
Serial Port Pin and Signal Assignments

Observation from sensor

PAGE

25
30
32
34
38
36
49

FIGURE NO

1.1
2.1
2.2
2.3
2.4
2.5
2.6
2.7
3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8
3.9
3.10
3.11

LIST OF FIGURES

TITLE

Block Diagram of Project

IC Configuration

Part of DC Motor

Analog distance sensor

Coil and switch contact

6V relays

Liquid crystal display

Circuit diagram of Darlington transistor
Flowchart of the whole project
MATLAB GUIDE Layouts

Property Inspector

Example GUI

Example M-files for GUI

Power Supply Modules

Pins and Signals Associated With the 9-pin
Connector

Serial Port Connection to PIC

5V DC Motor Connection

Hardware circuit (main)

Mobile Robot

PAGE

12
14
17
18
18
19
20
23
26
27
28
29
35

36
37
38
40
40

xi

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10
411

Main Menu of GUI

Credit of GUI

Abstract of GUI

Pop-up Window

Mode Selection of Mobile Robot
Manual Mode Motor Control
Autonomous Mode Motor Control
Communication Port Status
Distances versus Output Voltage of the
Sensor

Mobile Robot Distance

Motor Status

42
43
44
44
45
46
47
47

50
51
51

xii

APPENDICES

Appendice A
Appendice B
Appendice C
Appendice D
Appendice E

LIST OF APPENDICES

TITLE

PIC Programming

Autonomous Mode Programming
Manual Mode Programming
PIC16F877A Datasheet

MAX 233 Datasheet

PAGE

57
61
65
69
71

xiii

CHAPTER 1

INTRODUCTION

1.1 Overview

This project is focus on designing the Graphical User Interface (GUI)
through MATLAB to control the DC motor using PIC. The PIC is a programmable
interface devices or controller between PC (MATLAB GUI) and the DC motor. The
main contribution of this project is the interfacing of the MATLAB with PIC and
Graphical User Interface (GUI).

The Peripheral Interface Controller (PIC) use in this project is as controller
device between Personal Computer, analog distance sensor and the DC motor. The
PIC is use because of wide availability and economical. Beside that PIC is a free
development tools and can perform many function without needed extra circuitry.
PIC also have analog to digital converter that will be use to connect with analog

distance sensor.

The purpose using MATLAB in creating the GUI is because it already has
Graphical User Interface Development Environment (GUIDE) that provides a set of
tools for creating GUI. These tools simplify the process of lay out and programming
GUIs. The GUI create in MATLAB with appropriate coding will control the DC

motor via serial port that interface with the PIC.

The GUI create in MATLAB with appropriate coding will control the DC
motor via serial port that interface with the PIC. There are many advantage by using
the DC motor, among that the DC motor has no adverse effect on power quality and

the speed is proportional to the magnetic flux.

This project is to control the mobile robot by using GUI in MATLAB and
PIC controller. There are two modes to control the mobile robot. The first mode is
control mobile robot manually. For the second mode (autonomous), to control the
mobile robot we use analog distance sensor to detect the distance between the robot
and wall. Then it will stop automatically in certain distance after detect the block or

wall.

R5232

PIC MOBILE

ROBOT

MAX 232

F
L4
F 3
v
¥

MATLAB GUI

SENSCR

Figure 1.1: Block Diagram of Project

1.2 Objective

These projects have two main objectives. The objective of this project is to:

1. To control the mobile robot using GUI in MATLAB
11. Able to interface the MATLAB GUI with hardware using PIC

The important part of this project is to interface the MATLAB GUI with the
PIC. Then, important part of this project is to receive a signal from sensor that will
transmit to MATLAB GUI and interface using PIC. After that, the programming will

send the signal to control the mobile robot automatically.

1.3 Scope of project

The scopes of this project are laying out the GUI in MATLAB GUIDE and
create programming for the GUI’s. Secondly Prepare the PIC circuitry and serial 3
connections (DB9) circuit for interfacing part. For the third part is to build IR sensor
circuit and interface with PIC. And the last part is creating program for PIC using

PICBasic Pro Compiler to control the DC motor.

For this project, there are two scopes. The scope of project is dividing to software

part and hardware part:

For the software part, we have:

1. MATLAB programming

il. PIC programming

1. PICBasic Pro Compiler

For the hardware part, we have:
1. 2 ways serial parallel port (transmit and received input or output)

il. PIC 16F877A

1il. DC Motor and other components
1v. Distance sensor6V relays
V. LCD

1.4 Problem statement

The main objective in this project is to interface the MATLAB GUI with the
PIC. It is a difficult part to develop the program for MATLAB and the PIC
simultaneously to make the interfacing part. By using the PicBasic Pro Compiler
software to develop programming to control DC motor, it can reduces the difficulty
by comprises a list of statements that written in a programming language like
assembler, C, or PBASIC. With this opportunity, the men in charge do not have to

take long time to written and troubleshoot the program.

To interface MATLAB GUI with PIC controller we use RS232. For my
project it will use bidirectional communication to transmit and receive the data.
Previously, not much has develop application using PIC via RS232 bidirectional
communication in MATLAB GUI due to its difficulties. The development of this

project is for research purpose in MATLAB communication using rs232.

1.5 Thesis organization

This thesis consists of five chapters including of the first chapter. The

contents of each chapter will explain details about this project.

Chapter 2 contains a detailed description each part of project. It will explain
about the MATLAB and MATLAB GUI, PIC, sensor and DC motor. The project
methodology is in Chapter 3. This will explain how the project is organized and the

flow of the process in completing this project.

Chapter 4 will presents the expected result of simulation runs using
MATLAB GUI interface with PIC. It also will show how the sensor will function to
send an input signal to GUI and will transmit back to PIC to control the DC motor.
In this chapter also will explain how the sensor works as automatic controller.

Finally the conclusions for this project are presented in Chapter 5.

CHAPTER 2

LITERATURE REVIEW

2.1 Graphical User Interface (GUI)

2.1.1 GUI definition

A graphical user interface (or GUI, often pronounced "gooey"), is a particular
case of user interface for interacting with a computer which employs graphical
images and widgets in addition to text to represent the information and actions
available to the user. Usually the actions are performed through direct manipulation

of the graphical elements [1].

The first graphical user interface was designed by Xerox Corporation's Palo
Alto Research Center in the 1970s, but it was not until the 1980s and the emergence

of the Apple Macintosh that graphical user interfaces became popular. One reason

for their slow acceptance was the fact that they require considerable CPU power and

a high-quality monitor, which until recently were prohibitively expensive [2].

A graphical user interface (GUI) is a pictorial interface to a program. A good
GUI can make programs easier to use by providing them with a consistent
appearance and with intuitive controls like pushbuttons, list boxes, sliders, menus,
and so forth [3]. A true GUI includes standard formats for representing text and
graphics [3]. The GUI should behave in an understandable and predictable manner,
so that a user knows what to expect when he or she performs an action. For example,
when a mouse click occurs on a pushbutton, the GUI should initiate the action

described on the label of the button [4].

Many DOS programs include some features of GUIs, such as menus, but are
not graphics based. Such interfaces are sometimes called graphical character-based

user interfaces to distinguish them from true GUIs [4].

2.1.2 MATLAB GUI

A graphical user interface (GUI) is a graphical display that contains devices,
or components, that enable a user to perform interactive tasks. To perform these
tasks, the user of the GUI does not have to create a script or type commands at the

command line. Often, the user does not have to know the details of the task at hand

[5].

The GUI components can be menus, toolbars, push buttons, radio buttons,
list boxes, and sliders just to name a few. In MATLAB, a GUI can also display data

in tabular form or as plots, and can group related components [5].

There are two basic tasks in process to implement a GUI. The two basic tasks in

process of implementing a GUI are:

1. Laying out a GUI where MATLAB implement GUIs as figure
windows containing various styles of uicontrol (User Interface)
objects.

il. Programming the GUI, where each object must be program to

perform the intended action when activated by the user of GUI [5].

2.1.3 MATLAB GUIDE

GUIDE, the MATLAB graphical user interface development environment,
provides a set of tools for creating graphical user interfaces (GUIs). These tools

simplify the process of laying out and programming GUIs [6].

1. GUIDE is primarily a set of layout tools
1. GUIDE also generates an M-file that contains code to handle the

initialization and launching of the GUI

The M-file will provide a framework for the implementation of the callbacks,

the functions that execute when users activate a component in the GUI [6].

2.1.4 GUI operation

The GUI is already associated with one or more user written routines known
as callbacks. The execution of each callback is triggered by a particular user action
such as, mouse click, pushbuttons, toggle buttons, lists, menus, text boxes, selection

of'a menu item, or the cursor passing over a component and so forth 7].

By clicking the button triggers the execution of a callback. A mouse click or
a key press is an event, and the MATLAB program must respond to each event if the
program is to perform its function. For example, if a user clicks on a button, that
event must cause the MATLAB code that implements the function of the button to

be executed. The code executed in response to an event is known as a call back [7].

This kind of programming is often referred to as event-driven programming.
The event in the example is a button click. In event-driven programming, callback
execution is asynchronous, controlled by events external to the software. In the case
of MATLAB GUIs, these events usually take the form of user interactions with the
GUI [7].

The writer of a callback has no control over the sequence of events that leads
to its execution or, when the callback does execute, what other callbacks might be

running simultaneously [7].

Callbacks:
1. Routine that executes whenever you activate the uicontrol object.
il. Define this routine as a string that is a valid MATLAB expression or

the name of an M-file.

1il. The expression executes in the MATLAB workspace.

10

2.2 PIC Microcontroller

PIC is a family of Harvard architecture microcontrollers made by Microchip
Technology, derived from the PIC1650 originally developed by General Instrument's
Microelectronics Division. PICs are popular with developers due to their low cost,
wide availability, large user base, extensive collection of application notes,
availability of low cost or free development tools, and serial programming (and re-

programming with flash memory) capability[8].

2.2.1 History of PIC

The original PIC was built to be used with GI's new 16-bit CPU, the CP1600.
While generally a good CPU, the CP1600 had poor I/O performance, and the 8-bit
PIC was developed in 1975 to improve performance of the overall system by

offloading I/O tasks from the CPU [8].

The PIC used simple microcode stored in ROM to perform its tasks, and
although the term wasn't used at the time, it is a RISC design that runs one

instruction per cycle (4 oscillator cycles) [8].

In 1985 General Instruments spun off their microelectronics division, and
the new ownership cancelled almost everything which by this time was mostly out-
of-date. The PIC, however, was upgraded with EPROM to produce a programmable

channel controller, and today a huge variety of PICs are available with various on-

11

board peripherals (serial communication modules, UARTSs, motor control kernels,

etc.) and program memory from 512 words to 32k words and more[8].

2.2.2 The PIC16F877A Microcontroller

A PIC PICI6F877A Microcontroller chip combines the function of
microprocessor, ROM program memory, some RAM memory and input-output
interface in one single package which is economical and easy to use. The PIC
devices generally feature is sleep mode (power saving), watchdog timer and various

crystal or RC oscillator configuration, or an external clock [9].

Logicator system is designed to be used to program a range of 8, 18, 28 pin
reprogrammable PIC microcontroller which provide a variety of input output, digital
input and analogue input options to suit students project uses [9]. Reprogrammable
“FLASH Memory” chips have been selected as the most economical for student use.
If a student needs to amend to control system as the project is evaluated and
developed, the chip can simply be taken out of the product and reprogrammed with

an edited version of the floe sheet [9].

The features that available in PIC 16F877A:

1. General purpose i/0 pins

il. Internal clock oscillators

1il. 8/16 Bit Timers

1v. Internal EEPROM Memory

V. Synchronous/Asynchronous Serial Interface USART

12

vi. MSSP Peripheral for I’C and SPI Communications

vii. Capture/Compare and PWM modules

viii. Analog-to-digital converters

iX. USB, Ethernet, CAN interfacing support

X. External memory interface

Xi. Integrated analog RF front ends (PIC16F639, and rfPIC)

xii. KEELOQ Rolling code encryption peripheral (encode/decode)

marie -~ athm»
a2z 1D 3
Ri[f 3 ampn
Rz 4 n
s S0 N
Rd 6 aanmpn n
As O 7 M=
B3 10 n
Ei[] % 110 G
201 16FE77 3P o
meoii mE nm
amriz 1790 s

o iz mpn

ocRO 14 1T M
el 15 15D &1
ciC 16 1D cs
cz2Q 17 MD Cy
c3C 18 130 D
19 12p n
Di[C zo 10 3

Figure 2.1: IC Configuration

2.2.3 PIC Basic Pro Compiler

The PicBasic Pro Compiler (or PBP) makes it even quicker and easier to

program Microchip Technology’s powerful PICmicro microcontrollers (MCUs). The

13

English-like BASIC language is much easier to read and write than the quirky
Microchip assembly language [10].

The PicBasic Pro Compiler is “BASIC Stamp II like” and has most of the
libraries and functions of both the BASIC Stamp I and II. Being a true compiler,
programs execute much faster and may be longer than their Stamp equivalents. PBP

is not quite as compatible with the BASIC Stamps as our original [10].

The PicBasic Pro Compiler produces code that may be programmed into a
wide variety of PICmicro microcontrollers having from 8 to 84 pins and various on

chip features including A/D converters, hardware timers and serial ports [10].

2.3 DC Motor

2.3.1 History of DC Motor

At the most basic level, electric motors exist to convert electrical energy into
mechanical energy. This is done by way of two interacting magnetic fields one
stationary, and another attached to a part that can move. A number of types of
electric motors exist, but most BEAMbots use DC motors in some form or another.
DC motors have the potential for very high torque capabilities (although this is
generally a function of the physical size of the motor), are easy to miniaturize, and
can be "throttled" via adjusting their supply voltage. DC motors are also not only the

simplest, but the oldest electric motors [11].

14

The basic principles of electromagnetic induction were discovered in the
early 1800's by Oersted, Gauss, and Faraday. By 1820, Hans Christian Oersted and
Andre Marie Ampere had discovered that an electric current produces a magnetic
field. The next 15 years saw a flurry of cross-Atlantic experimentation and
innovation, leading finally to a simple DC rotary motor. A number of men were
involved in the work, so proper credit for the first DC motor is really a function of

just how broadly you choose to define the word "motor”[11].

2.3.2 DC Motor Operation

In any electric motor, operation is based on simple electromagnetism. A
current-carrying conductor generates a magnetic field; when this is then placed in an
external magnetic field, it will experience a force proportional to the current in the
conductor, and to the strength of the external magnetic field. As you are well aware
of from playing with magnets as a kid, opposite (North and South) polarities attract,
while like polarities (North and North, South and South) repel. The internal
configuration of a DC motor is designed to harness the magnetic interaction between
a current-carrying conductor and an external magnetic field to generate rotational

motion [12].

Figure 2.2: Part of DC Motor

15

Every DC motor has six basic parts axle, rotor (a.k.a., armature), stator,
commutator, field magnet(s), and brushes. In most common DC motors (and all that
BEAMers will see), the external magnetic field is produced by high-strength
permanent magnets [12]. The stator is the stationary part of the motor this includes
the motor casing, as well as two or more permanent magnet pole pieces. The rotor
(together with the axle and attached commutator) rotates with respect to the stator.
The rotor consists of windings (generally on a core), the windings being electrically
connected to the commutator. The above diagram shows a common motor layout

with the rotor inside the stator (field) magnets [13].

The geometry of the brushes, commutator contacts, and rotor windings are
such that when power is applied, the polarities of the energized winding and the
stator magnet(s) are misaligned, and the rotor will rotate until it is almost aligned
with the stator's field magnets. As the rotor reaches alignment, the brushes move to
the next commutator contacts, and energize the next winding. Given our example
two-pole motor, the rotation reverses the direction of current through the rotor
winding, leading to a "flip" of the rotor's magnetic field, driving it to continue

rotating[13].

2.3.3 Advantage of DC Motor

The greatest advantage of DC motors may be speed control. Since speed is
directly proportional to armature voltage and inversely proportional to the magnetic
flux produced by the poles, adjusting the armature voltage and/or the field current

will change the rotor speed [13].

16

2.4 Sensor

2.4.1 Definition of Sensor and the application

A sensor is a device which measures a physical quantity and converts it into a
signal which can be read by an observer or by an instrument. For example, a
mercury thermometer converts the measured temperature into expansion and
contraction of a liquid which can be read on a calibrated glass tube. A thermocouple
converts temperature to an output voltage which can be read by a voltmeter. For

accuracy, all sensors need to be calibrated against known standards [14].

Sensors are used in everyday objects such as touch-sensitive elevator buttons
and lamps which dim or brighten by touching the base. There are also innumerable
applications for sensors of which most people are never aware. Applications include

automobiles, machines, aerospace, medicine, industry, and robotics [14].

A sensor's sensitivity indicates how much the sensor's output changes when
the measured quantity changes. For instance, if the mercury in a thermometer moves
lem when the temperature changes by 1°, the sensitivity is lcm/1°. Sensors that

measure very small changes must have very high sensitivities [14].

242 SHARP GP2Y0A21YKOF

17

GP2YO0A21YKOF is a distance measuring sensor unit, composed of an
integrated combination of PSD (position sensitive detector), IRED (infrared emitting
diode) and signal processing circuit. The variety of the reflectivity of the object, the
environmental temperature and the operating duration are not influenced easily to
the distance detection because of adopting the triangulation method. This device
outputs the voltage corresponding to the detection distance. So this sensor can also

be used as a proximity sensor [14].

Figure 2.3: Analog distance sensor

The features that available in this sensor type:

1. Distance measuring range : 10 to 80 cm
1. Analog output type

1ii. Package size : 29.5%13x13.5 mm

iv. Consumption current : Typ. 30 mA

v. Supply voltage : 4.5t0 5.5V

18

2.5 Relay

A relay is an electrically operated switch. Current flowing through the coil of
the relay creates a magnetic field which attracts a lever and changes the switch
contacts. The coil current can be on or off so relays have two switch positions and
they are double throw (changeover) switches. Relays allow one circuit to switch a

second circuit which can be completely separate from the first [15].

Figure 2.4: Coil and switch contact

Figure 2.5: 6V relays

19

In this project relay use to supply the voltage to DC motor. 6V relays need
more than 6V voltage to energized the contact. The output voltage from PIC is use to

energized the contact of relay [15].

26 LCD

A liquid crystal display (LCD) is an electro-optical amplitude modulator
realized as a thin, flat display device made up of any number of color or
monochrome pixels arrayed in front of a light source or reflector. It is often utilized
in battery-powered electronic devices because it uses very small amounts of electric

power [16].

Figure 2.6: Liquid crystal display

LCDs with a small number of segments, such as those used in digital watches
and pocket calculators, have individual electrical contacts for each segment. An
external dedicated circuit supplies an electric charge to control each segment. This

display structure is unwieldy for more than a few display elements [16].

20

2.7 MAX?233

The MAX220-MAX249 family of line drivers/receivers is intended for all
EIA/TIA-232E and V.28/V.24 communications interfaces, particularly applications
where £12V is not available. These parts are especially useful in battery-powered
systems, since their low-power shutdown mode reduces power dissipation to less
than S5uW. The MAX225, MAX233, MAX235, and MAX245/MAX246/MAX247
use no external components and are recommended for applications where printed

circuit board space is critical [17].

2.8 Darlington Transistor C1815

Darlington transistor is a semiconductor device which combines two bipolar
transistors in a single device so that the current amplified by the first is amplified
further by the second. This configuration gives a high current gain (written B, hg, or
hrg) and can take less space than two separate transistors because the two transistors
can use a shared collector. Integrated circuit packages are available, but it is still

common also to use two separate transistors [18].

Figure 2.7: Circuit diagram of Darlington transistor

21

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter will present the whole methodology of this project and details of
each part of hardware and software that use in this project. It will describe on how
the project is organized and the flow of the steps in order to complete this project.
The methodology is diverged in two parts, which is developing the hardware to
interface with MATLAB. The other is developing the programming for MATLAB
and the PIC to control DC motor. Then, another developing is the programming for

MATLAB and PIC to receive the input from sensor and control the motor.

22

3.2 Software Development

There are three mains method in order to develop this project. Before the
project is developing using MATLAB, it is needed to do the study on MATLAB
GUIDE and the hardware (especially PIC). The flowchart in Figure 3.1 illustrated
the sequence of steps for this project. The first method is developing GUI in
MATLAB and programs every GUI component. Secondly is to develop PIC
programming to control 5V DC and to receive data from sensor. And lastly is

hardware design which is use to interface with MATLAB GUI.

23

START
Case study
v
Determination of Hardware
And Software
< v
‘ MATLAB GUI study | Hardware Design g
¥ ¥
—b{ GUI Design | Identify PIC & Mobile
Robot Design
‘ Program Development | L]
¢ PIC Program Development
Identify Appropriate +
Coding Interfacing Circuit
Integrate Hardware & Design

Program oK

)

‘ Simulation & Analysis

NO

Testing

Figure 3.1: Flowchart of the whole project

Figure 3.1 show the flow of the whole project. The flow of the project is
divided into two main tasks that are hardware design and MATLAB GUI design. In
hardware design part flow, the main target is to create appropriate programming for
PIC to interface with personal computer via serial port to control DC motor and
receive input from sensor. The second part, the prior task is to develop program in
MATLAB to interface with PIC and the DC motor and the sensor. After that the both

part is combine and do the analysis until achieve the needed objective. The main

24

contribution of this project is to interface MATLAB GUI with the PIC using

bidirectional communication.

3.2.1 Development MATLAB GUI Using MATLAB GUIDE

The MATLAB graphical user interface development environment provides a
set of tools for creating graphical user interfaces (GUIs). These tools simplify the

process of laying out and programming GUIs.

There are 5 steps in build the MATLAB GUI. First Use a MATLAB tool
called guide (GUI Development Environment) to layout the components that show
in Figure 3.2. This tool allows a programmer to layout the GUI, selecting and
aligning the GUI components to be placed in it. The basic component of the

MATLAB GUI is shown in Table 3.1.

Table 3.1: Basic MATLAB GUI Component

Element Created By Description
Graphical Controls
Pushbutton uicontrol A graphical component that implements a pushbutton. It triggers a

Toggle button uicontrol

Radio button uicontrol

Check box uicentrol

Edit box uicontrol

List box uicentrol

Popup menus uicontrol

Slider uicontrol

Static Elements

callback when clicked with a mouse.

A graphical component that implements a toggle button. A toggle
button is either “on” or “off,” and it changes state each time that it
is clicked. Each mouse button click also triggers a callback.

A radio button is a type of toggle button that appears as a small
circle with a dot in the middle when it is “on.” Groups of radio

buttons are used to implement mutually exclusive choices. Each
mouse click on a radio button triggers a callback.

A check box is a type of toggle button that appears as a small
square with a check mark in it when it is “on.” Each mouse click
on & check box triggers a callback.

An edit box displays a text string and allows the user to modify
the information displayed. A callback is triggered when the user
presses the Enter key.

A list box is a graphical control that displays a series of text
strings. A user can select one of the text strings by single- or
double-clicking on it. A callback is triggered when the user selects
a string.

A popup menu is a graphical control that displays a series of text
strings in response to a mouse click. When the popup menu is not
clicked on, only the currently selected string is visible.

A slider is a graphical control to adjust a value in a smooth,
continuous fashion by dragging the control with a mouse. Each
slider change triggers a callback.

Frame uicontrol

Text field uicontrol

Menus and Axes

Creates a frame, which is a rectangular box within a figure. Frames
are used to group sets of controls together. Frames never trigger
callbacks.

Creates a label, which is a text string located at a point on the
figure. Text fields never trigger callbacks.

Menu items uimenu

Context menus uicontextmenu

Axes axes

Creates a menu item. Menu items trigger a callback when a mouse
button is released over them.

Creates a context menu, which is a menu that appears over a graph-
ical object when a user right-clicks the mouse on that object.

Creates a new set of axes to display data on, Axes never trigger
callbacks.

25

26

Menu ap Order M-File Froperty

_ Editor paitor Editor Ihspector Object
Align Browser
Object

& untitled. fip
L |- e — y Run

Fer| Gtelle Text

3 Pap-up Manu
'l Listhoy

T Trgjcle Eutran
1 eas

[E] Panel

8 Bution Graup

X Achuel Confral|

Figure 3.2: MATLAB GUIDE Layouts

Use a MATLAB tool called the Property Inspector (built into guide) to give
each component a name (a "tag") and to set the characteristics of each component,
such as its color, the text it displays, and so on. After that, we save the figure to the
file. When the figure is saved, two files will be created on disk with the same name
but different extents. The fig file contains the actual GUI that has been created, and
the M-file contains the code to load the figure and skeleton call backs for each GUI
element. These two files usually reside in the same directory. They correspond to the
tasks of laying out and programming the GUI. When you lay out the GUI in the
Layout Editor, your work is stored in the FIG-file. When you program the GUI, your

work is stored in the corresponding M-file.

27

Es Property Inspector r;”E”E'
uicontral (pushbuttond "Fush Button™)
FontAngle (] narmal A
Fonttame MS Sans Serf
FontSize 8.0
Fontlinits E] paints
Fontyeight E] harmal
[+ FaregraundCalar @_
Handlevisibility (] an
HitTest (=] an
HorizontalAlignment E] center
Interruptible E] an
kewPressFon
ListhoxTop 1.0
UF=V 1.0
Min 0.
[+ Position [2916.769 13.8 1.7649]
SelectionHighlight [+])on
[+ SliderStep [0.01 0.1]
string Fush Button
Style E] pushbuttan
Tag pushbutton
TooltipString

Figure 3.3: Property Inspector

After laying out the GUI component and set the property, the GUI will be

look like in Figure 3.4 for example according to the user creativity.

28

fManual kMode

Heverse

PORT

Check

Figure 3.4: Example GUI

And finally write code to implement the behavior associated with each
callback function in m-files show in Figure 3.5. A callback is a function that writes
and associates with a specific GUI component or with the GUI figure. It controls
GUI or component behavior by performing some action in response to an event for
its component. This kind of programming is often called event-driven programming.
This last step is the difficult one and has to make an extra reading on how to write

the coding before the GUI component can perform some task that user desire.

29

ﬂ Editer - C:\Program FilesWATLABT1\work\main.m

Fiig Edt Text Cel Tools Debug Deskiop Window Help LR ¢
79 % eventdata reserved - to be defined in a fucure version of HATLAE g
80 % handles structure with handles and user data (see GUIDATA)

81

82

83 % --- Executes on button press in pushbuttonl.

8¢ funetion pushbuttonl Callback(hObject, eventdata, handles)

85 - cloze

86 - figure(select)

87 % hibhject handle to pushbuttonl (see GCEO)

88 % eventdata reserved - to be defined in & future version of HATLAB
89 % handles structure with handles and user data (see GUIDATA)

a0

o1

92 % --- Executes on hutton press in pushbuttonZ.

m

93 function pushbuctoni Callback(hohject, eventdats, handles)
94 - closze
05 - figure(abatract)

96 % hihject handle to pushbuttond (see GCEO)

97 % eventdata reserved - to be defined in a future version of MATLAB

93 % handles structure with handles and user data (see GUIDATA)

a9 ¥
mein TR

Figure 3.5 Example M-files for GUI

3.2.2 Build MATLAB Programming

After layed out the GUI, it need to program its behavior. The code is to write
controls how the GUI responds to events such as button clicks, slider movement,
menu item selection, or the creation and deletion of components. This programming
takes the form of a set of functions, called callbacks, for each component and for the

GUI figure itself.

30

A callback is a function that writes and associates with a specific GUI
component or with the GUI figure. It controls GUI or component behavior by
performing some action in response to an event for its component. This kind of

programming is often called event-driven programming.

The GUI figure and each type of component have specific kinds of callbacks
with which it can be associated. The callbacks that are available for each component
are defined as properties of that component. Each kind of callback has a triggering

mechanism or event that causes it to be called. The kind of callback is shown in

Table 3.2.

Table 3.2: Various kind of Callback

Callback Property | Triggering Event Components

DeleteFen Component deletion. It can be | Axes, figure, button
used to perform cleanup | group,
operations just before the | context menu, menu,

component or figure is | panel,

destroyed. user interface
controls
KeyPressFen Executes when the user presses | Figure, user

a keyboard key and the | interface controls
callback’s component or figure

has focus.

ResizeFcn Executes when a user resizes a | Button group, figure,
panel, button group, or figure | panel
whose figure. Resize property

is set to On.

SelectionChangeF | Executes when a user selects a | Button group

cn different radio button or toggle

button in a button group

component.

WindowButtonDo

wnFcn

Executes when you press a
mouse button while the pointer
is in the figure

window.

Figure

WindowButtonMo

tionFcn

Executes when you move the

pointer within the figure

window.

Figure

WindowButtonUp

Fen

Executes when you release a

mouse button.

Figure

ButtonDownFcn

Executes when the user presses
a mouse button while the
pointer is on or within five
pixels of a component or
figure. If the component is a
control, its

user interface

Enable property must be on.

Axes, figure, button

panel, user

group,

interface controls

Callback

Component action. Executes,
for example, when a user
clicks a push

button or selects a menu item.

Context menu,
menu, user

interface controls

CloseRequestFcn

Executes before the figure

closes.

Figure

CreateFen

Component creation. It can be
use to initialize the component
when it is created. It executes
after the component or figure
is created, but before it is

displayed.

Axes, figure, button

group, context
menu, menu, panel,
user interface
controls

31

32

The GUI M-file that GUIDE generates is a function file. The name of the
main function is the same as the name of the M-file. For example, if the name of the
M-file is auto.m, then the name of the main function is auto. Each callback in the file
is a sub function of the main function. When GUIDE generates an M-file, it
automatically includes templates for the most commonly used callbacks for each

component. The major sections of the GUI M-file are ordered as shown in Table 3.3.

Table 3.3: Major Sections of the GUI M-file

Sechion Drescription

Comments Dhizplayed at the command line in response to the

help sommand. Edit these Az necessary for your
E N

Imitializat jon GUIDE imtialization tasks. Do met edat this code.

Opening function Pearformes your initialization tasks before the user
has aceeas to the GUL

Crutpuat fumetion Returns outputs to the MATLAR command line

after the opening function returns control and
before control returns to the command line.

Component and Control the behavior of the GUI figure and of

figure callbacks individual components. MATLAR calls a callbaclk
in response to a particular event: for a component
or for the figure itaelf.

Utilityhalpar Parform miscellaneous functions not directly

functions associated with an event for the figure ora
camponent.

GUIDE automatically includes two callbacks, the opening function and the
output function, in every GUI M-file it creates. The opening function programming
1s importance in initialize the communication port in MATLAB GUI before it can
transmit data to the PIC. The data send from MATLAB GUI to PIC is in decimal
form and PIC will control the DC motor with the preset programming according to

the data received.

In opening and closing the communication port the command fclose (SerPIC)

is use to disconnect a serial port object from the device. The baud rate from

33

MATLAB GUI must be set same with the baud rate in PIC before it can transmit and
receive the data. For example if baud rate in MATLAB GUI is 9600bps, so the baud
rate in PIC also 9600bps.

3.2.3 Build PIC programming

The data from MATLAB GUI is send to PIC in decimal form, so the PIC is
program to read or receive the data also in decimal form. The communication
between MATLAB GUI and PIC is in standard asynchronous format where the
device uses its own internal clock resulting in bytes that are transferred at arbitrary
times. The baud rate is specifying according to MATLAB GUI. Some standard baud
rates are listed in Table 3.4. For PIC programming, 9600bps is using which same

with the MATLAB GUI.

The input data at PIC that transmit from MATLAB GUI is set to PORTC.0
before it run certain program to control the DC motor. Here is the example to
program the stepper motor run in clockwise and anticlockwise direction. If
MATLAB send data ‘001°, so the PIC will perform case 001 according the

programming.

34

Table 3.4: List of Standard Baud Rate

Baud Rate Bits 0 - 12
300 3313
600 1646
1200 813
2400 396
4800 188
9600" 84

1%200" 32

To program the PIC, make sure the oscillator that defines in programming is
same as use at hardware to avoid instability during transmit and receive data. The
SERIN2 command in the program support many different data modifier which may
be mixed and matches freely within single SERIN2 statement to provide various
input formatting. The modifier support is shown in Table 3.5. The number 84 on
“Serin2 Serl, 84, [dec3 B0]” command is refer to baud rate that equal to 9600bps

according Table 3.4.

Table 3.5: Modifier Support by SERIN2 Command

Modifier Operation
BIN{1..16} Receive binary digits
DEC{1l..3} Receive decimal digits
HEX{1l..4} Receive upper case hexadecimal

digits
SKIP n Skip n received characters

STR ArrayVar\n{\c} |Receive string of n characters
optionaly ended in character ¢

WAIT () Wait for sequence of characters

WAITSTR ArrayVar{'\n} | Wait for character string

35

3.3 Hardware Development

For hardware design, first is to design the power supply module which is to
supply 5V fixed to PIC and max232 IC. Power supply module is importance to PIC
and max232 to prevent damage if users give the higher input supply to device. The
schematic diagram for power supply module is like in Figure 3.6. Input to the power
supply must greater than 7V to 7805 voltage regulator IC to achieve the 5V output
supply to PIC and max233.

>1.0V

7805

1 VIN VOUT 3 [>y

GND

u ; 100u u

Figure 3.6: Power Supply Modules

Second is to design the connection from communication port (DB9 female
connection) from computer to the device which is the pin assignment is shown in
Table 3.6 below and the figure of RS 232 communication port shown on Figure 3.7.
In fact, only three pins are required for serial port communications: one for receiving
data, one for transmitting data, and one for the signal ground. The connection from
computer to device is only on pin 2, 3 and pin 5. The circuit in Figure 3.8 shows the

connection between RS232 with MA X232 and the PIC.

Figure 3.7: Pins and Signals Associated With the 9-pin Connector

Table 3.6: Serial Port Pin and Signal Assignments

Pin Label Signal Name Signal Tvpe
) Data
1 CD Carmer
Control
Eeceived
2 ED Data
Data
Transmitted
3 D Data
Data
Data
4 DTR Terminal Control
Ready
Sigmal
5 GND " G d
: Ground roun
6 DSR Data Set c I
. Ready ontro
_ Bequestto
7 ETS Control
Send
Clear to
8 CTS Control
Send
9 Bl Ring C |
. o
Indicator OnHo

36

37

it
Feset Button 10K T
5_,3 . i
J_ L['_' 16FETTA
= WICLRAbp - REF/PGO O—< > RET
AND ———o RADsanD RBE/PGC B— >+ REA
KTY C——0 RALMANT RBS p——__> RB5
Dallas < ——r RAZIANZ Adet-/Titet RB4 f— > RB4
o ResiaHZ e+ RB3/PGM — > RB3
o RewTDCKICIOUT RB2 B—— > REZ
O RES/ANGASS/CZOUT RB1 p—_> RB1 3V
RED <0 REDARD/ANS RBO/INT B—< > RBO T
57 RE1 {<_——0 RE1AR/ANE wid b
T REZ < —— REZACSMANT Wes 1 J_
0 wiid RO7/PSPF p——__> RO7
d \es RDG/PSPE B—< > ROG 100n
J_] O5CAMCLE RO&/PSPS p——__> RO&
= o oscaCLKD ROKPSP4 B— > RO4 —
= fRCOMIOSOMICKI RCVRWOT p——<_}Rx =
. ——g RC1MIOSIECPE RCAMHCK B— T
E j =g RCICCP RCS/S00 P> Sdo
SokiGel _r——0 RCISCHISCL RE4H50IMS0A PB—i_r Sdif5da
MHz RO0 C_—0 ROO/PSPD ROIPSFI B——_> RO3
RO <_——o RO1/PEPI RO2/PEPE p——__» ROZ
5V 5V
o
'_Tlinn
= 470R 470R,
o oo O—
Gnd [—
Serial I—|:I.—|: Cl- Tlowth AR Re
Part O [T gci+ Rlinp
' rde- Rlaep L
1 ; —
4] o u] 2 — W Tlin Qg =
?DD-E—ETEDLE TZin [£ M
B, © O RZin RZout O [»Fx
8o ® haza2
[y

Figure 3.8: Serial Port Connection to PIC

In this project the output data from MAX233 is send directly to PIC at PORTC.7
and the sensor is connect to PIC at PORTA.0. This connection is depending on the PIC
programming that has been developing before it can perform specific task according the
data send from the MATLAB GUI. The oscillator use in the circuit diagram also same

with the define one in the PIC programming to avoid instability.

38

The output on the PIC port is approximately 4.7 V low current which is cannot
run the stepper motor or DC motor directly. So, to run the motor, switching approach is
use by using additional source with high current supply. To done this method the
Darlington transistor (C1815) is use like the circuit in Figure 3.9. To run the DC motor
in forward or reverse direction it has to use relay because it cannot directly control via
PIC. Relays use to give direct current to motor. In this project, the PORTB.0 to
PORTB.3 will be use to control 5V DC motor like in Figure 3.9. The hardware

installation for this project is shown in Figure 3.10.

T T

-
o h 100u 1u
u

C1815
4.8k

RDO[_= FELAY 1
DC
) MOTOR

C1815

T 3.5 ﬁ ;‘
1

L FELATZ |

Figure 3.9: 5V DC Motor Connection

The input from sensor is connecting to PIC at PORTA.O. In this project, we
use analog distance sensor that can sense a range between 8cm — 80cm. Analog
distance sensor will give single output voltage. The input from sensor will convert
from analog to digital form. We write the program that will convert analog input to
digital. After the conversion, the digital output produce will display on LCD. The
program to convert from analog to digital is in program 1. Before the character
display at LCD, we must initialize LCD first. The program to initialize LCD is in

program 2.

Program 1:

ADCON1=4
Pauseus 50
ADCONO0.2=1
Pauseus 50
Return

' Subroutine to get pot x value
getx:

ADCONO = $41

Gosub getad

x = ADRESH

Return

mainloop:
Gosub getx
Lcdout $fe, 1, "Distance=", #x

if x>=100 then balik
IF X<=10 THEN balik
Goto mainloop

balik:
portb=%00000000
Lecdout $fe, 1, "MOTOR STOP"
pause 1000
goto start

Program 2:

Define LCD_DREG PORTD
Define LCD_DBIT 4
Define LCD_RSREG PORTE

Define LCD_RSBIT 0

39

' Set PortA 0, 1, 3 to A/D inputs
' Wait for channel to setup
' Start conversion
' Wait for conversion

'Set A/D to Fosc/8, Channel 0, On

' Get x value
'Send to LCD

' Do it forever

'Send to LCD

'Initialize lcd

Define LCD EREG PORTE
Define LCD_EBIT 1
Low PORTE.2 "LCD R/W line low (W)

Pause 500

' Wait for LCD to start

T T T Ty

Figure 3.10: Hardware circuit (main)

Figure 3.11: Mobile Robot

40

41

CHAPTER 4

RESULT AND DISCUSSION

4.1 Introduction

This chapter consists of the discussions on the results from the MATLAB
GUI layout that has been developing using MATLAB Graphical User Interface
Development Environment. The MATLAB GUI in this project can be divided to
four parts. First part is main menu of the whole GUI. Second part is interfacing

MATLAB GUI software.

4.2 Main Menu of GUI

42

The main menu of the GUI in this project contain of four pushbutton which
link to motor control selection, general info about the project abstract, the credit and
lastly is an exit button to close the whole program. The main menu of the GUI and
info of the project is shown in Figure 4.1. For motor control pushbutton will explain
detail in the next sub chapter. In credit part shown in Figure 4.2 contains the detail
about the GUI developer and the supervisor. For the introduction to motor control
will show in abstract. This abstract window is shown in Figure 4.3. For the exit
button user will ask about the confirmation either to exit the GUI or not. The

confirmation figure is shown in Figure 4.4.

Universiti
Malaysia
PAHAN

P e gy = el a by

Main benu

Motor Contral

Figure 4.1: Main Menu

43

The main menu of GUI window consist four push buttons. The first push
button is credit, abstract motor control and lastly exit button to close the main menu
of GUIL. When we push exit button it will close the window and pop-up window will

display to do the action or not. The confirmation window is shown in Figure 4.5.

- ProjectBy
Saifullah Bin Ahmad

Bachelor of Electrical and Blectronic:
Engineering (05/03)

Duslode Mokl Rkt

ID rurber:
EA, 05050

o Lectwer
Faculty of Electrical & Electranic.
Enginesring
Universit Malaysia Pahang

Tel o: 0167565659

Figure 4.2: Credit

The credit window will display when we push the credit button on the main
menu. The credit will show GUI developer and the supervisor of the project. When

we push the close button, it will display back main menu window.

44

<) abstract
Untitled 1 L
ABSTRACT

A graphical user interface (GUN is a graphical display that
containg devices, or compaonents, that enable a user to perform
interactive tasks. To perform these tasks, the user of the GUI
does not have to create a script or type commands at the
command line. Often, the user does not have to know the details
of the task at hand. A PIC Microcontraller chip combines the
function of microprocessor, ROM program memory, some RAM
memaory and input-output interface in one single package which
iz economical and e asy to use. Dual mode maobile robot has
hardware and software part. For the software part, we use
MATLAB GUI and for the hardware, it consists PIC 16F37TA,
sensor, LCD, relay and others. There are two made to cantrol
the mohile using PIC 16FE77A by interfacing with MATLAE GLI.
The two modes are manual and autonormous mode. Faor the
manual we control the mobile with GUI. Far the autonomous
mode, distance sensor is use to control the mohile and stop
the mohile with certain distance that we have set up. The
distance will display on LCD at hardware. Rs232 cable is use
to connect hardware with software (PCY. This project is focus

on interfacing software and hardware by using rs232 cable.

Figure 4.3: Abstract

The abstract window will shown the description of the whole project. The

back button is use to back to main menu.

@ Are you sure want to exit?

| Yes || No |

Figure 4.4: Pop-up Window

45

The pop-up window will show when we push exit button. When we push
‘yes’ button, it will exit the program. If we push ‘no’ button, it will back to main

menu.

4.3 Interface MATLAB GUI Software

For motor control part, it divides into two parts where the first part is
interfacing software and the second part is advance GUI development for future. The
first part of the motor control GUI is the main objective of this project where to
interface between MATLAB GUI with the device (motor) to control the motor. The
figure of motor control menu is shown in Figure 4.5. The interface software is
developing only for 5V DC motor. The rest is for advance development. In the menu
motor control menu user can choose for manual mode or autonomous mode. For
manual mode motor control is shown in Figure 4.6. For the autonomous mode motor

control is shown in Figure 4.8.

FPlease Select Mode

Manual

Autonomous

Figure 4.5: Mode Selection

46

Figure 4.5 shown will the menu selection of manual mode and autonomous
mode. At this window, we can choose from two types of mode to control mobile

robot. The button back is use for return to main menu.

/ manual

Manual Mode

[Fanva]

Feverse

Figure 4.6: Manual Mode Motor Control

In manual mode window it has 3 main boxes. For manual mode box it consist
four buttons that use to control the motor. Each button has assigned to control the
mobile robot to move forward, reverse, left and right. In this window, we will be
able to check the port in open or close condition. Finally it has the stop button and

close button to exit the system.

47

Autonomous

Forward] l FHeverse

atop

Open/Close Port

FPort

Check

open

Figure 4.7: Autonomous Mode Motor Control

For autonomous mode, when we push start button the mobile robot will
move forward. When the sensor detects the block, it will display the distance
between robot and block. The distance will display at LCD at hardware board.
Before we push start button, we must first check the port by clicking the button
check. The communication port status is shown in Figure 4.8. If errors happen, user

must restart the MATLAB and run the GUI back.

¥ OpeniCiose Port =

@ PORT

Check

closed

Figure 4.8: Communication Port Status

48

The communication port status is use to check the port connection opens or
close. If the communication port status is close, we cannot use the entire button in
the GUI window because the data from GUI programming are no sent to serial port.

The push button is able to use when communication port status is open.

4.4 User information GUI

This part provides the user manual as guidance to use this MATLAB GUI
software. The manual is important for the first time user to get the information on
how to operate the GUI in right way. The user can get the information on how to
setting the port when we click on radio button, because if this software use in
different computer, the communication port configuration also differ. So the GUI
software cannot control the motor or in other word the interface between MATLAB
GUI and device is failed. The data is not sending to the PIC. The available port will
display at MATLAB window, so we should setting back the programming.

45 Result

45.1 DC motor

49

DC motor is control by programming the PIC that will control the motor by
clicking at push button on MATLAB GUI windows. The mobile robot is control

using DC motor. All the movement of mobile robot is control trough GUI window.

45.2 Sensor (GP2Y0A21YKOF)

GP2Y0OA21YKOF is a distance measuring sensor unit, composed of an
integrated combination of PSD (position sensitive detector). IRED (infrared emitting
diode) and signal processing circuit. The variety of the reflectivity of the object, the
environmental temperature and the operating duration are not influenced easily to
the distance detection because of adopting the triangulation method. This device
outputs the voltage corresponding to the detection distance. So this sensor can also

be used as a proximity sensor.
From the observation from distance sensor result, we have record some of
characteristic of distance in such of to sense an object. Table 4.1 will show the

accuracy of analog distance sensor to sense object.

Table 4.1: Observation from sensor

Paper type Reflectance ratio

White paper 90%

Gray paper 18%

50

3.5 T r r T
White paper (Reflectance ratio 90%)
3 N I — Gray paper (Reflectance ratio 18%)
3 m\
! \
_ \
2.5 II \l‘
= / \
Z 217 Y
=]
S 15H
oS |
> |
£ ||
& 1 { =
S,
J -‘-\-_‘-_‘-“1 —
0.5 ;‘]
I
0
0 10 20 30 40 50 60 70 80
Distance to reflective object L(cm)

Figure 4.9: Distance versus Output Voltage of the Sensor

453 LCD Display

LCD module is use to display the distance measure from analog distance

sensor. It also will display the mode and the status of motor.

Figure 4.10: Mobile Robot Distance

Figure 4.11: Motor Status

51

52

CHAPTER 5

CONCLUSION AND RECOMMENDATION

51 Conclusion

The GUI design and it implementation has fully develop to achieve the entire
objectives. The mobile robot is able control using GUI via serial port
communication. The development of the MATLAB GUI using MATLAB GUIDE
and PIC16F877A programming using Microcode Studio was done after detail study
and analysis. Through the development of this project it has conclude that the
MATLAB GUI can control the motor and interface with the device using serial
communication port with the proper hardware installation and a lot of knowledge to

programmed the PIC.

The main objectives of this project are to control DC motor and interface the
MATLAB GUI is fully achieved. The most important part in this project is
interfacing MATLAB GUI with PIC 16F877A.

53

5.2 Future Recommendation

For the futures recommendation, to improve this project, others features in
GUI is added and use as the main part of the project like slider to control the speed
of motor. By using this slider, the accuracy of analog distance sensor to sense object
is more precise and accurate. The input from sensor will send through serial port and

display at GUI window.

For other recommendation of this project is to use two mobile robot for two
mode we have. From GUI window, we can choose one of the two modes we have.
To make more looked interested in this project; we use wireless systems to replace
rs232 cable. By using wireless system, the mobile robot is able to control in wide

range.

5.3 Costing and Commercialization

The cost of the project is divided into two parts. First part is for components
that we get from laboratory and second part is for components we get from other
sources. For components from laboratory, it will cost approximately RM 95. For
components from other sources, it cost approximately RM 175. The total cost for
hardware cost is approximately RM275. For software part, it will cost more on to get
the license from MATLAB and usually the cost is high where the license must be

renew by year.

This project can be used in industries for pick and place operation to replace

SCARA robot that perfume same task. The operation system of this is project more

54

effective because it has software part. This project cost more cheaply than SCARA
robot and friendly users. This project approach of imparting advanced GUI
capability to microcontrollers using MATLAB can be used to develop
microcontroller-based low-cost control platforms. In addition, this approach can be
used to impart GUI capability to any microcontroller that supports serial

communication, such as the PIC series microcontrollers.

55

REFERENCES

UsersBrian R. Hunt, Ronald L. Lipsman, Jonathan Rosenberg, Kevin R.
Coombes, John E. Osborn, Garrett J. Stuck. A Guide to MATLAB: For
Beginners and Experienced. Published by Cambridge University Press. 2006.

MATLAB, high-performance numeric computation and visualization
software: building a graphical user interface. By MathWorks, Inc, Inc

MathWorks. Available at: http://www.mathworks.com

Chapman, Stephen J. MATLAB Programming for Engineers. Brooks Cole.
2001.

Scott T. Smith. MATLAB Advanced GUI Development: Advanced GUI
Development. 2006.

Robert DeMoyer and E. Eugene Mitchell. Use of the MATLAB Graphical
User Interface Development Environment for Some Control System

Applications. 1999.

Marc E. Herniter. Programming In MATLAB. Northern Arizona.
University, Brooks/Cole. 2001.

Yan-Fang Li, Saul Harari, Hong Wong, and Vikram Kapila.
Matlab-Based Graphical User Interface Development for Basic Stamp 2.
2004.

Dan O'Sullivan; Tom Igoe. Physical Computing: Sensing and Controlling the
Physical World with Computers. 2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

56

Chuck Hellebuyck. Programming P1C Microcontrollers with PICBASIC.

PicBasic Pro Compiler. MicroEngineering Labs, Inc. 2004.

Available at: http://www.melabs.com

Gerald A. Moberg. AC and DC Motor Control. Published by Prentice Hall
PTR. 1987.

Lab-Volt (Quebec) Ltd, Lab-Volt (Quebec) Ltd. Contributor Lab-Volt
(Quebec) Ltd Staff. DC Motor Drive. Published by Lab-Volt. 2006.

Christopher Edwards and Sarah K. Spurgeon. Sliding Mode Control: Theory
and Applications. Published by CRC Press. 1998.

David J. Perdue. Unofficial LEGO NXT Inventor's Guide. 2007.

Jonathan Chin. Cisco Frame Relay Solutions Guide. March 2004.

John Tovine. PIC Robotics: A Beginner's Guide to Robotics Projects Using
the PICmicro. Published by McGraw-Hill Professional. 2004.

Jan Axelson. Serial Port Complete: Programming and Circuits for RS-232
and RS-485 Links and Networks. Published by lakeview research llc. 1998.

Mohamed A. El-Sharkawi. Electric Energy: An Introduction
Published by CRC Press. 2004.

57

APPENDIX A
PIC PROGRAMMING

INCLUDE "bs2defs.bas" 'has some definition in it

DEFINE OSC 8 'define the oscillator speed in MHz
Define LCD_DREG PORTD '"initialize lcd

Define LCD DBIT 4

Define LCD_RSREG PORTE

Define LCD_RSBIT 0

Define LCD_EREG PORTE

Define LCD_EBIT 1

Serl VAR PORTC.0 'define input port
X var BYTE

TRISA = %00000001
TRISB = %00000000

Low PORTE.2 'LCD R/W line low (W)
Pause 500 ' Wait for LCD to start

Start:

portc = %00000000 'clear port C
Serin2 Serl, 84, [dec3 BO] 'get three digit decimal number data from ‘MATLAB
GUI

SELECT CASE B0

CASE 001 'forward

Lcdout $fe, 1, "MANUAL MODE" 'Send to LCD
PAUSE 1000

GOSUB forward

pause 100

goto start

CASE 002 'reverse
Lcdout $fe, 1, "MANUAL MODE" 'Send to LCD
PAUSE 1000

GOSUB undur

pause 100

goto start

CASE 003 'right

Lcdout $fe, 1, "MANUAL MODE"
PAUSE 1000

GOSUB right

pause 100

goto start

CASE 004

Lcdout $fe, 1, "MANUAL MODE"
PAUSE 1000

GOSUB left

pause 100

goto start

case 005

Lcdout $fe, 1, "MOTOR STOP"
portb=%00000000

pause 1000

goto start

case 006

pause 100

Lcdout $fe, 1, "AUTONOMOUS MODE"
portb=%00000101

PAUSE 1000

Lcdout $fe, 1, "MOTOR FORWARD"
PAUSE 1000

GOSUB mainloop

CASE 007
PAUSE 100

'Send to LCD

'left

'Send to LCD

'Send to LCD

'Send to LCD

'Send to LCD

LCDOUT $fe, 1, "AUTONOMOUS MODE" 'Send to LCD

portb=%00001010

PAUSE 1000

Lcdout $fe, 1, "MOTOR REVERSE"
PAUSE 1000

GOSUB mainloop

end select

goto start

forward:
portb=%00000101

Lcdout $fe, 1, "MOTOR FORWARD"
pause 1000

"Send to LCD

"Send to LCD

58

RETURN

undur:
portb=%00001010
Lcdout $fe, 1, "MOTOR REVERSE" 'Send to LCD
pause 1000
RETURN

right:
portb=%00001001
Lcdout $fe, 1, "TURN RIGHT" 'Send to LCD
pause 1000
portb=%00000000
Lcdout $fe, 1, "MOTOR STOP" 'Send to LCD
pause 100
RETURN

left:
portb=%00000110
Lcdout $fe, 1, "TURN LEFT" 'Send to LCD
pause 1000
portb=%00000000
Lcdout $fe, 1, "MOTOR STOP" "Send to LCD
pause 100
RETURN

' Subroutine to read a/d converter

getad:

ADCONI1=4 'Set PortA 0, 1, 3 to A/D inputs
Pauseus 50 ' Wait for channel to setup
ADCONO0.2 =1 ' Start conversion
Pauseus 50 ' Wait for conversion
Return

' Subroutine to get pot x value
getx:
ADCONO = $41 "Set A/D to Fosc/8, Channel 0, On
Gosub getad
x = ADRESH
Return

mainloop:
Gosub getx ' Get x value
Lcdout $fe, 1, "Distance=", #x 'Send to LCD
Pause 500 ' Do it about 5 times a second

if x>=100 then balik
IF X<=10 THEN balik
Goto mainloop

balik:
portb=%00000000
Lcdout $fe, 1, "MOTOR STOP"
pause 1000
goto start

end

' Do it forever

' Send to LCD

60

61

APPENDIX B
AUTONOMOUS MODE

function varargout = auto(varargin)

% AUTO M-file for auto.fig

% AUTO, by itself, creates a new AUTO or raises the existing

% singleton*.

%

% H=AUTO returns the handle to a new AUTO or the handle to

% the existing singleton®.

%

% AUTO('CALLBACK!'hObject,eventData,handles,...) calls the local

% function named CALLBACK in AUTO.M with the given input arguments.
%

% AUTO('Property','Value',...) creates a new AUTO or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before auto_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to auto_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help auto
% Last Modified by GUIDE v2.5 14-Oct-2008 14:15:38

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui Singleton, ...
'gui_OpeningFen', @auto OpeningFcn, ...
'gui_OutputFen', @auto OutputFen, ...
'gui_LayoutFen', [], ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else

62

gui_mainfen(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before auto is made visible.

function autoOpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to auto (see VARARGIN)

SerPIC=serial('COM3') %define the port available
Check=SerPIC.status %fto check port status data
handles.status=Check %store data
handles.op=SerPIC; % store data

guidata(hObject, handles); %save data

% Choose default command line output for auto
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes auto wait for user response (see UIRESUME)
% uiwait(handles.figurel);

% --- Outputs from this function are returned to the command line.
function varargout = auto_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in check?2.

function check2 Callback(hObject, eventdata, handles)

% hObject handle to check2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of check2

63

if (get(hObject,'Value')==get(hObject,'Max"));
SerPIC=handles.op % retrieve data

set(SerPIC,'BaudRate',9600,' DataBits',8,'Parity’,'none','StopBits', 1,'FlowControl','non
e);

fopen(SerPIC)

guidata(hObject,handles); %save data
else

SerPIC=handles.op

fclose(SerPIC)

guidata(hObject,handles)

end
guidata(hObject,handles);

% --- Executes on button press in pushbuttonl.

function pushbuttonl Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','006");

% --- Executes on button press in pushbutton2.

function pushbutton2 Callback(hObject, eventdata, handles)

close

figure(pop)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

function editl Callback(hObject, eventdata, handles)

% hObject handle to editl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of editl as text

% str2double(get(hObject,'String')) returns contents of editl as a double

% --- Executes during object creation, after setting all properties.
function editl CreateFcn(hObject, eventdata, handles)

% hObject handle to editl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

64

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

% --- Executes on button press in pushbutton3.

function pushbutton3_Callback(hObject, eventdata, handles)

close

figure(select)

% hObject handle to pushbutton3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton4.

function pushbutton4 Callback(hObject, eventdata, handles)

% hObject handle to pushbutton4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
SerPIC=handles.op

fprintf(SerPIC,'%s','005");

% --- Executes on button press in pushbutton5.

function pushbutton5 Callback(hObject, eventdata, handles)

% hObject handle to pushbutton5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
SerPIC=handles.op

Check=handles.status

u=SerPIC.status

set(handles.text9,'String',u)

% --- Executes on button press in pushbutton?.

function pushbutton7 Callback(hObject, eventdata, handles)

% hObject handle to pushbutton7 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'"%s','007");

65

APPENDIX C
MANUAL MODE

function varargout = manual(varargin)

% MANUAL M-file for manual.fig

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

MANUAL, by itself, creates a new MANUAL or raises the existing
singleton*.

H = MANUAL returns the handle to a new MANUAL or the handle to
the existing singleton*.

MANUAL('CALLBACK!',hObject,eventData,handles,...) calls the local
function named CALLBACK in MANUAL.M with the given input arguments.
MANUAL('"Property','Value',...) creates a new MANUAL or raises the
existing singleton®. Starting from the left, property value pairs are

applied to the GUI before manual OpeningFunction gets called. An
unrecognized property name or invalid value makes property application

stop. All inputs are passed to manual OpeningFcn via varargin.

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help manual
% Last Modified by GUIDE v2.5 11-Oct-2008 10:55:03

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

'gui_Singleton', gui Singleton, ...
'gui_OpeningFcn', @manual OpeningFen, ...
'gui_OutputFen', @manual OutputFen, ...
'gui_LayoutFen', [], ...

'gui_Callback', []);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});
end

if nargout

[varargout{1l:nargout}] = gui_mainfcn(gui_State, varargin{:});
else

gui_mainfen(gui_State, varargin{:});
end

% End initialization code - DO NOT EDIT

% --- Executes just before manual is made visible.

66

function manual OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to manual (see VARARGIN)

SerPIC=serial'COM3'") %define the port available
Check=SerPIC.status %fto check port status data
handles.status=Check %store data
handles.op=SerPIC; % store data

guidata(hObject, handles); %save data

% Choose default command line output for manual
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes manual wait for user response (see UIRESUME)
% uiwait(handles.figurel);

% --- Outputs from this function are returned to the command line.
function varargout = manual OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in check.

function check Callback(hObject, eventdata, handles)

% hObject handle to check (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of check

if (get(hObject,'Value')==get(hObject,'Max"));
SerPIC=handles.op % retrieve data

set(SerPIC,'BaudRate',9600,'DataBits',8,'Parity','none','StopBits', 1,'FlowControl','non
e);

67

fopen(SerPIC)

guidata(hObject,handles); %save data
else

SerPIC=handles.op

fclose(SerPIC)

guidata(hObject,handles)

end
guidata(hObject,handles);

% --- Executes on button press in fw.

function fw_Callback(hObject, eventdata, handles)

% hObject handle to fw (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','001");

% --- Executes on button press in rw.

function rw_Callback(hObject, eventdata, handles)

% hObject handle to rw (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','002");

% --- Executes on button press in I.

function 1_Callback(hObject, eventdata, handles)

% hObject handle to | (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'"%s','004");

% --- Executes on button press in r.

function r_Callback(hObject, eventdata, handles)

% hObject handle to r (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','003");

68

% --- Executes on button press in pushbutton5.

function pushbutton5 Callback(hObject, eventdata, handles)

close

figure(select)

% hObject handle to pushbutton5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton6.

function pushbutton6_Callback(hObject, eventdata, handles)

close

figure(pop)

% hObject handle to pushbutton6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton?7.

function pushbutton7 Callback(hObject, eventdata, handles)

% hObject handle to pushbutton7 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbuttonS.

function pushbutton8 Callback(hObject, eventdata, handles)

% hObject handle to pushbutton8 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
SerPIC=handles.op

Check=handles.status

u=SerPIC.status

set(handles.text5,'String',u)

% --- Executes on button press in pushbutton9.

function pushbutton9 Callback(hObject, eventdata, handles)

% hObject handle to pushbutton9 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'"%s','005");

APPENDICE D
PIC16F877A DATASHEET

MICROCHIP

PIC16F87XA

28/40/44-Pin Enhanced Flash Microcontrollers

Devices Included in this Data Sheet:

= PIG1GFaTEA
= PIC1G6FaTTA

= PIC1GFET3A
- PIC16FET4A

High-Performance RISC CPU:

Only 35 single-word instructions to learm

All single-cycle instractions except for program
branches, which are two-cycle

DC — 20 MHz clock input

DT — 200 ns instruction cycle
Up to 2K x 14 words of Flash Program Mamory,
Up to 3688 x & bytes of Data Memory (RAM],
Up to 256 x & bytes of EEPROM Data Memary
Pinout compatible to other 28-pin or 40/44-pin
PIC18CX XX and PIC16FX(X microcontrollers

Operating speed:

Peripheral Features:

Timerl: 8-bit timer'counter with 8-bit prescaler

Timer1: 18-bit timer/counter with prescaler,
¢an ke incremented during Sleep via external
crystaliclock

Timer2: 8-bit timerlcounter with 8-bit pericd
register, prescaler amd postscaler

Two Capture, Compars, PWM modules

- Capturs is 18-bit, max. rezglution is 12.5 nz

- Compare is 16-bit, max. resolution is 200 ns

- PWM max. resolution is 10-bit

Synchronous Senal Port (S5P) with SPI™
(Master mode) and 2™ [MasterSlave)
Umniversal Synchromous Asynchronous Receiver
Transmitier (USARTISCI) with S-bit address
detection

Parallel &nﬂn (F@ — & bits wide with
external RD, WR and C5 controls (40/44-pin only)
Brown-out detection circuitry for

Brown-out Reset (BOR)

Analog Features:

= 10-bit, up to 8-channel Analog-io-Digital
Converter (ASD)

Brown-out Reset (BOR)

Analog Comparator module with:

- Two analog comparators

- Programmable on-chip voltage reference
[WVREF) module

- Programmable input multiplexing from device
inputs and intermnal voltage reference

- Comparator cutputs @re extemally accessible

Special Microcontroller Features:

- 100,000 erasefwrite cycle Enhanced Flash
program memaory typical

1.000.000 erazafwrite cycle Data EEPROM
memory typical

Data EEPROM Retention = 40 years
Self-reprogrammable under software control
Im-Circuit Serial Programming™ (ICSP™)

via two pins

Single-supply 5V In-Circuit Serial Programming
Watchdog Timer (WDT) with its own on-chip RC
oscillator for reliable operation

Programmable code protection

Power saving Sleep mosde

Selectable oscillator options
In-Circuit Debug (ICD) via two pins

CMOS Technology:

= Low-power, high-spesd Flash/EEPROM
technology

Fully static design
Wide operating voltage range (2.0V to 5.5V)
Commercial and Industrial temperature ranges

= Low-power consumption

Program Memory Data MS5P
. EEFROM i0-bit | CCP Timers
Device Bvies # Single Word SRAM {Bytes) [fLe] AID (ch) | (PWM) | g5y Master | USART 8/16-bit Comparators
2= instructions |(BYtes) EC
FPIC1GFET3A | 7.2K 40248 182 128 27 5 2 [ves| 'es Yes N 2
FPIC1GFET4A | 7.2K 40248 182 128 33 | 2 |Yes| 'es Yes)| 2
FIC1GFETEA | 14.3K B1a2 386 258 27 5 2 |Yes| 'es Yes)| 2
PIC1GFETTA | 143K Big2 288 254 32 2 2 |Yes| Yes es 21 2

& 20032 Microchip Technodogy Inc.

D338582B-page 1

69

PIC16F87XA

Pin Diagrams (Continued)

40-Pin PDIP
T
MCLRNWPe —=[T1 o’ 40[]=—s RBTFGD
RADIAND «—w [2 B0 e REEPGC
RALANT =—e]2 38 [] - RES
RAZIANZNREF-CVREF +—w [4 37 [~ RB4
RANAMIVREF: a—e[5 35 [] =—e RBIPGM
RAATICKICIOUT = T 6] S
RASBNASECI0UT =[] 7 2 3u[]a—s RBI
REWRDANS =[] B E 33 [] =—s REOINT
REVWRIANG =8 J 32[]~— Voo
RE2TEANT =—e [T 10 E 3 Vs
VoD —e [T 11 3 [=—= ROTPASET
Wes_ o H1z WL 23— ROEPSES
OSCICLK — w13 + 23] =—e RDSPSRS
OSCCLKD ——H 14§ 27[1-—s RD4PSRS [
RCOTIOSOTICK e [15 25 [] =~—» RCTRXNDT &
RCUTI0SUCCPE - [15 25 +—w RCETHCK i
RCICCA! e [17 24] =—r RCEEDO EE
RCHSCKSCL =—e [T 18 23 [] =—+ RCASDISDA BEzg i By
RDPSPT a—e [10 22 [] +— RODWPSP3 z3<gw EQ
RO1/PSF] =— [20 21 [] =—s ROZPSF2 Tl unanm
s 3 H : 352 SRR RS
44-Pin PLCC II[I[IIII
n OooooooooOo
e T
RAUTOCKICIOUT o o PR s PR,
RASIANASSICIOUT - . [350 = R3z
A g B Eor
E1WRIANE =— [T 1p 36 == FEN
RE2ESIANT HE 11 PIC16FET4A gd%*— Eun
B0 — - -—
Veg — [}5 PIC16F87TA 33 . RO7RSeT
OSCUCLKl —= [14 320 == RDSPSPE
OSCICLED =[] 45 30— ROSESFS
RCUTIOSOTICK] = H 1 353-—-— :E;-E:);ET
eeorarsnnse™ '
B 1 0
% BoncoBes T
.
LJ'-q o R 0w B 3 -
Zonbhbhbany REdREERAQEL
hgmffﬁ:ﬁ%_ﬂr |_:E|$:I'JE":W:I'J§;F.:§'
LR R poveaeesEE
= s pie
EEE X E X EEEE S SLIE§§?§§WH
gk v
- (%]
srmtare [g F
&
ATTYTIRRERED
= Erim| NE
RCT/RE/DT =—= i 1
RO4MSPS ~—=CIT 2 32— RCHTIOSOTICK
AOSmeps +—= CIH 3 JHO— OSCICLKD
ADEmnEs =—= bt 30O =— GsCicLy
ROT/PSET =—=CIH S PIC16F8T4A 29%*— Vs
—= 1O 28 = Voo
Vo —-cmy PICIGFETTA hm . mmEmaw
REQINT =+—=CIHE 26 == RE1MWR/ANE
RE1 == s 25T —= REQRDIANS
RE2 ==t 10 2iHT == RASANASSICIOUT
DA e 1 23HT - Ay i g
REJFEM T RAATICKICIOUT
90383822z
' E“Eg:éﬁ
CERERN
e hE
FE:
s
2
=3

70

APPENDICE E
MAX 233 DATASHEET

19-4329; Rew 11; 203

+5V-Powered, Multichannel RS-232

General Description
Tho MAX2Z20 MAX240 family of lino drivore/rocoivore ie
intendied for all ENATIA-232E and V.28V 24 communica-
tione interfacos, particularly applications where =12V is
not available.

Thoeo parte aro cepocially usoful in battory poworod eye
tems, since their low-power shutdown mode reduces
powaor diggipation to loge than SpW. Tho MAX225,
MAXZ233, MAX235, and MAXZ245/MAXZAE/MAX 24T use
nny Axtarnal compnnants: and ars recnmmandad for apgli-
caticns where printed circuit board space is critical.

Applications

Portable Computers

Low-Power Modems

Interface Translation
Hattery-Howeared Hs-242 Systems
Multidrop R5-232 Networks

MAXIMN

Drivers/Receivers

Features

Superior to Bipolar

¢ Operate from Single +5V Power Supply
(+5V and +12V—MAXZIT/MAXZ39)

¢ Low-Power Receive Mode in Shutdown
(MAX223/MAX242)

¢ Meet All EIATIA-232E and V.28 Specifications

¢ Multiple Drivers and Receivers

+ 1-State Driver and Receiver Ouipuis

¢ Open-Line Detection (MAX243)

Ordering Information
PART TEMP RAMGE PIM- PACKAGE

MAXZ20CPE 0°C to +70°C 1€ Plastic DIP
MAKZZ0CSE O0C o +7OC 168 Marnow 30
MAKZ20CWE 0°C to +70°C 16 Wide 20
PRSI UL o+ /00 Lice"
MAXZ20EPE -A0°C to +BE°C 1€ Plastic DIP
MAXZ20ESE -A0FC to +B5°C 16 Marmow S0
MAXZ20EWE -A0°C to +BE°C 16 Wide 20
MAXKZ20EIE -A0°C to +BE°C 16 CERDIP
MAXZ20MJE -B5°C to +125°C 16 CERDIP

Ordering information continued &t end of data sheel.

rntart fartony frr rire speeficatinns

Selection Table

Power No. of Nominal ~ SHOM Rx
Part Supply R&-232 Ho. of Cape. Value & Thres- Activeln Data Rale
Humikssr] DriversAx_Eal. Caps (pF) Slale SHON (ki) Fealuns
MAXZZD +& 22 4 01 o 120 Ultra-low-power, Indusiry-standard pinout
MAX222 +& 22] 01 Yes 200 Lotw-power shiutdown
MAX223 MAX213) +5 45 4 1.040.1) Yes v 120 MAX(Z41 Bnd racalvers sciive In shuldown
MAX2ZE +& &E 0 Yes v 120 Avelizbie In 50
MANZIO0 MANI00) +5 D 1 1060 Yes 120 & drvara with hutdoam
MAX231 MA201) +5 and 2z 2 1.040.1)] 120 Standard +5+ 12V or batiery suppliee:;
+7 60 +13.2 same functions a8 MAXZ32
MARZIZ MANZ0Z) +5 3z 4 1oy e 120(64) Wiusky s R
MAX2324 +& 2z 4 01] 200 Highar skaw rate, small caps
MAX233 MA203) +5 22 0 o 120 Mo exciemal cape
MAX2I3A +5 22 0 o 200 ko eaciemal cape, high siew rate
MAX234 MAC20E) +5 40 4 1.040.1) o 120 Aeplaces 1438
MAKTIR MAYIR) +F 3 n e 120 Kin ArAmSl RAnE
MAX23E MA20E) +5 43 4 1.040.1) Yes 120 Shutdiown, free slaie
MAX23T MA2OT) +5 53 4 1.040.1)] 120 Comiplements: IBM PC serlal port
MAXZIS MAXZ08) +5 44 4 1o M 120 Rl 1400 2nd 1488
MAX238 (MAX209) +5 and 35 2 1.040.1)] 120 Standard +5+ 12V or batiery suppliee:;
+7 60 +13.2 Sngie-package solution for 186 PC sartal port
MAX240 +& &E 4 10 Yes 120 DiF or Netpack package
MAX2A MACE11) +5 45 4 1.040.1) Yes 120 ‘Comipiete 1M PC serkal port
MATAT 3 EH 1 i Vre v Exy FANACRLA S Triam S ARRHA
MAX243 +& 2z 4 01] 200 ‘Opar-ine datecton simpiiies cabing
MAX244 +& 51D 4 10 o 120 High siew rale:
MAKZAG 5 oD 0 e .-' 120 Igh =ew rale, Ink caps, two ahutcawn. modes
MAX24E +& 51D 0 Yes v 120 High siew rale, Ik caps, thies Ehuldown modes
MAX24T +& 59 0 Yes v 120 High siew rale, Ik czps, nine oparating modas
MAX248 +& 58 4 10 Yes v 120 High siew rale, selective nal-chip enabias
MAX243 +& 61D 4 10 Yes v 120 Avelizbie In quad Natpack package

ePZXVIN-OZZXVIN

71

+5V-Powered, Multichannel RS-232

1 BPUT
L
TOP VIEW =Y,
e e
R -
T [1] 0] Feas Il"—
N E 18] Rim TILEMOS
s I TR
an 3] 1] T2an Ll-1— £
i anmam [v
"E]I' 3 | Flow [IME]
Tar E MAZZ 5] Co -]
) [
&0 [1] C2. TILTMOS 0 .
DUTRLTS T
Ve [7] [14] v i L QUTAITS
et [g]] ci- o1 | L) °<] PR | RER
o [g] i2] V-(224) oot ¢ 209 o %5&31 P Al
W Mo HEDED o, RN
INTERRAL-10 | [v 3 :|
DIP/SO PwERsuRLY | 1) R
NTERNAL 10V W o0 @
POWER SUPLY - -
{) AREFOR 30 PACKAGE ONLY I_’_I?
Figure 11, MAXZ3FMAX2334 Pin Configurafior and Typical Operating Circuit
V50 NPT
1
TP VIEN =a[s
=
= Vi N
, L . S0 10V W ——I_
] Y VOLTAGE DOUBLER
1
= E|® ST ML
. 16 1 VILTAGE INVERTER ‘L
T 1] 1] T = T nd
S
Lt 5| T =
ar [2] 15| Tgur .
™] mmam [T il < Tt
Ty[e] MAex] = >
6o [5 1] - i
e [[11] co- | e > a3
ol 7 0] 2+ TILCMOS = k]
N % %C, BPLTS - 7 OUTAITS
" 7]
.-14%_‘“ ol lE,
DIR/SO ity
100
tn L [
[0
J__s

Figure 12, MAX234 Pin Configuraton and Typical Operating Circuit

6P XVIN-0OCSXVIN

	pengesahan_status_tesis.pdf
	cover_sv_declare.pdf
	front page.pdf
	Final_Thesis_08.pdf

