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ABSTRACT

This project describes the fatigue life estimation of cylinder block using strain-life 
method. The main objectives of this project are to predict the fatigue life of the 
cylinder block using strain-life method and to identify the critical locations and to 
investigate the effect of loading. Aluminum alloys are selected as a cylinder block 
materials. The fatigue life predicted utilizing the finite element based fatigue analysis 
code. The structural model of the cylinder block was utilizing the solidworks. The 
finite element model and analysis were performed utilizing the finite element 
analysis code. In addition, the fatigue life was predicted using the strain-life 
approach subjected to variable amplitude loading. TET10 mesh and maximum 
principal stress were considered in the linear static stress analysis and the critical 
location was identifying at node (109730). From the fatigue analysis, Smith-Watson-
Topper mean stress correction method was conservative life subjected to SAETRN 
loading. It is observed that the nitrided treatment and polished surface finish produce 
the longest life. Smith-Watson-Topper (SWT) mean stress correction is conservative 
method when subjected to SAETRN loading histories and the nitriding with polished 
combinations have been found the great influences on the fatigue life of cylinder 
block. 
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ABSTRAK

Projek ini menggambarkan kehidupan kelelahan anggaran blok silinder 
menggunakan kaedah ketegangan hayat. Objektif utama projek ini adalah untuk 
memprediksi hayat lesu blok silinder menggunakan kaedah kehidupan regangan dan 
mengenalpasti lokasi-lokasi penting dan untuk meneliti kesan daripada muat naik. 
Paduan Aluminium dipilih sebagai bahan blok silinder. Menjangkakan hayat lesu
memanfaatkan elemen hingga berdasarkan analisis kelelahan kod. Model struktur 
blok silinder dibuat menggunakan SolidWorks. Model elemen hingga dan analisis 
dilakukan menggunakan analisis elemen hingga kod. Selain itu, kehidupan kelelahan 
dipercayai menggunakan pendekatan hayat lesu mengalami amplitud pembolehubah 
bebanan. Unsur TET10 dan maksimum voltan utama yang dipertimbangkan dalam 
analisis linear stres statik dan lokasi kritikal dianggap di simpul (109730). Dari 
analisis kelelahan, Smith-Watson-Topper pembetulan voltan rata-rata adalah kaedah 
konservatif sasaran bebanan SAETRN. Berdasarkan keputusan yang terhad, teramati 
bahawa penjagaan dan dicelup nitided permukaan terpanjang tamat menghasilkan 
kehidupan untuk semua kondisi beban. Sebagai kesimpulan, Smith-Watson-Topper 
(SWT) pembetulan voltan rata-rata adalah kaedah konservatif dan kombinasi 
nitriding dengan kombinasi dicelup telah dijumpai pengaruh besar dalam kehidupan 
kelelahan silinder blok.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

The fatigue lives of vehicle components play an important role in the design 

of vehicles to assure the safety and reliability of vehicles. It is of great significance to 

predict and evaluate the fatigue lives of the components utilizing theories on fatigue 

life (Li et al., 2009). Fatigue usually involves the initiation and growth of a crack 

until it reaches a critical size, sometimes causing separation into two or more parts.

Internal combustion engine has many complicated parts including the 

cylinder block where it is one of the most complicated parts if the internal 

combustion engine. Usually, cylinder block connected with many parts like 

combustion chamber, intake and exhaust valve ports, valves with valves seat and 

guides, a fuel injector and a complex of cooling passages. In heat cycling, the 

cylinder block is related with heat cycling when an engine at stopping, the 

temperature of an engine is low and when it is running, the temperature is high. 

(Sasaki and Takahashi, 2006). Using the demand for an aluminum alloy cylinder 

block has increased and this material to reduce the weight of automobiles and 

important for environmental protection. It will improve fuel economy. Aluminum 

and alloys usually are used as cylinder block materials because the material has 

excellent properties of casting. It has high thermal conductivity, low thermal 

expansion and high tension or compression strength to be a good thermal. For the 

reason of light weight required, aluminum alloys are taken by the automotive 

engineer (Winter et al., 2005).
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Nowadays, the design of the components would be optimized for the best 

performance. Refer to technical and commercial requirements, operation of the 

internal combustion engines should with higher cylinder pressures (Mendes and 

Cardoso, 2007). According to Kim and Moon (2007), in designing a cylinder block, 

it changing the design in a particular region to produce the better, light weight, 

stronger, increase the safety, and the cost of production is reduce.

1.2 PROBLEM STATEMENT

The failure of the cylinder block for two strokes linear engine is due to 

fatigue. To solve this problem, it is not limit of any limitation of the CAD and Finite 

Element Modeling and Analysis, but in how the product knowledge is improved and 

generated to making the decision and drive innovation (Murphy and Axtman, 2007). 

There are many practical engineering problems for which we cannot obtain exact 

solutions to get a better result in daily operation. So, optimization of the component 

to make the less time to produce the better, stronger, lighter, safer and less cost 

productions ( Rahman et al., 2008). Currently, to optimize the design of the cylinder 

block, aluminum alloy is suitable material according to their characteristics including 

lighter, low cost, and acceptable mechanical properties using the simulations for 

fatigue life analysis. In the end of the result, the component can give the most 

efficient designs, light-weighting, and have for market success in the automotive and 

manufacturing industry. 

1.3 SCOPE OF STUDY

The scopes of study are as follows:

i. Structural modeling

ii. Finite element method (FEM)

iii. Fatigue analysis under variable amplitude loading

iv. Surface treatment analysis
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1.4 OBJECTIVES OF THE PROJECT

The objectives of this project are as follows:

i. To predict the fatigue life of the cylinder block using strain-life method and 

identify the critical locations.

ii. To investigate the effect of loading on fatigue life. 

1.5     OVERVIEW OF THE REPORT

Chapter 1 introduces the background of the project. The problem statement and 

the scopes of this study also included in this chapter. Chapter 2 presents the literature 

study about finite element method, strain-life method and variable amplitude loading. 

Chapter 3 discusses the development of finite element modeling and analysis, fatigue 

life prediction technique and linear elastic analysis. Chapter 4 presents the results and 

analysis of the obtained results and discusses it elaborately. Chapter 5 presents the 

conclusion and recommendation of the future work.
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CHAPTER 2

LITERITURE REVIEW

2.1 INTRODUCTION

The purpose of this chapter is to provide a review of the past research related 

to the fatigue life method, variable amplitude loading and strain-life method.

2.2 FATIGUE LIFE PREDICTION METHOD

Metal fatigue, which results in fatigue cracks, is the process of premature 

failure or damage of a component subjected to the repeated application of loads 

which individually would be too small to cause failure. Fatigue cracks usually initiate 

on the surface of the component on the microscopic scale and they are referred to as 

crack initiation. During the fatigue life, crack growth usually occurs on the 

macroscopic scale in the direction normal to the applied tensile stress, and it is 

referred to as crack propagation. 

Takahashi et al. (2008) were studied on creep-fatigue life prediction methods 

for low-carbon nitrogen-controlled 316 stainless steel (316FR). The authors have 

been conducting long-term creep and creep-fatigue tests for several products of this 

steel. Results of these tests and evaluation of life prediction methods based upon 

them have been partially presented already. Superiority of the ductility exhaustion 

approach against time fraction approach was made clear. Afterwards, additional tests 

at lower strain range or longer hold time were started to evaluate the applicability to 

longer-term region. Some new data have been obtained from these tests and the 

observations obtained in the early stage were evaluated again. In order to address the 
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concerns about applicability of the life prediction method to multiaxial stress states, 

biaxial fatigue and creep-fatigue tests using cruciform specimens were additionally 

performed during this phase of the program. 

Adib and Pluvinage (2003) were proposed the theoretical and numerical 

aspects of the volumetric approach for fatigue life prediction in notched components. 

This paper discussed the complete investigation in theoretical base, intrinsic features, 

assumptions and its applicability for various notched components. The effective 

stress, effective plastic zone and relative stress gradient are determined by means of 

elastic–plastic finite element analysis. 

Ås et al. (2008) were studied surface roughness characterization for fatigue 

life predictions using finite element analysis. The authors aimed are to establish a 

method to improve the fatigue life prediction of components with rough surfaces. 

Methods for determining residual stresses and microstructure are well established, 

whereas surface roughness cannot readily be characterized in terms of fatigue life. 

Common methods employing reduction factors and roughness parameters are 

notoriously inaccurate, leading to large safety factors and overly conservative 

designs. A new method is proposed, in which microscopic surface measurements are 

used to create finite element models of surface topography. The influence of surface 

roughness on fatigue life can then be based on stress solutions instead of empirically 

derived reduction factors.

Chu (1997) was studied multiaxial fatigue life prediction method in the 

ground vehicle industry. Author was reviewed the features of multiaxial fatigue 

method through application to the analysis of three types of input history. These are 

load or strain controlled constant amplitude test results, a local strain history 

recorded by rosette strain gages installed at a critical location and an external load 

history of a real structural component.

Shim and Kim (2008) was studied the cause of failure and optimization of a 

V-belt pulley considering fatigue life uncertainty in automotive applications. Authors 

also analyzed a critical part by using plastic processing methods and investigated the 

cause of failure. The applied stress distribution of the pulley under high-tension and 
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torque was obtained by using FEA. Based on these results, the fatigue life of the 

pulley considering the variation in the fatigue strength was estimated with a 

durability analysis simulator. A study on the shape of the optimal design was 

performed to increase the fatigue life of the pulley, while minimizing the weight of 

the V-belt pulley in the compressor system of a vehicle.

2.3 VARIABLE AMPLITUDE LOADING

Constant amplitude fatigue loading is defined as fatigue under cyclic loading 

with constant amplitude and a constant mean load. However, engineering

components are usually subjected to variable amplitude loading which can be defined 

by complex loading histories of varying cyclic stress amplitudes, mean stresses and 

loading frequencies.

When components are subjected to variable amplitude service loads, 

additional uncertainties arise, whether the loading in laboratory tests related to the 

loads that could be expected to appear. Traditionally this problem is solved by using 

the simplifying assumption of damage accumulation, and constant amplitude tests in 

laboratory are transformed to variable amplitude severity by the Palmgren-Miner rule 

which says that a load cycle with amplitude ௜ܵadds to the cumulative damage (D), a 

quantity (1/ ௜ܰ). Here, ௜ܰdenotes the fatigue life under constant amplitude loading 

with amplitude ௜ܵand ni is the number of load cycles at this amplitude.

                                                          D = ෍ ௡೔ே೔
௠
௜ୀଵ                                                  (2.1)                                                

The lack of validity of this accumulation rule has been demonstrated in many 

applications and in consequence its usage will introduce uncertainties which must be 

compensated for by safety factors.

One possible way to diminish the deviations from the damage accumulation 

rule is to perform the laboratory experiments closer to the service behaviour with 

respect to the loads. A method for establishing a Wohler curve based on variable 

amplitude loads has recently been developed and is presented in a parallel paper 
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Johannesson et al. (2005). The use of this method should be customized to each 

specific application by performing laboratory tests with load spectra covering 

different service requirements. One idea is that service measurements are used to 

establish a few reference load spectra for use in laboratory tests. Based on the 

resulting variable amplitude Wohler curve, fatigue life can be predicted for load 

spectra similar to the reference types.

Sonsino (2006) was studied about fatigue testing under variable amplitude 

loading. Author was aimed at presenting how spectra and test conditions should be 

clearly described and how statistics can be applied when variable amplitude test 

results. The major reason for carrying out variable amplitude loading (VAL) tests is 

the fact that a prediction of fatigue life under this complex loading is not possible by 

any cumulative damage hypothesis. Therefore, for the purpose of fatigue lifting, 

experiences must be gained by such tests which allow to derive real damage sums by 

comparing Woehler- and Gassner-lines. Variable amplitude loading (VAL) tests are 

principally carried out like constant amplitude loading tests (CAL) on different load 

levels. As long as the frequency does not affect the fatigue life, or particular attention 

of the frequency content is not required, the frequency can be increased for 

shortening the testing time. However, depending on the interaction between the 

testing machine and the stiffness of the specimen, the overall testing frequency can 

be limited. In such cases, especially low load amplitudes can be accelerated by an 

amplitude and frequency adaptive control.

Kang et al. (2007) were studied a thermo-mechanical fatigue damage model 

for variable temperature and loading amplitude conditions. The approach in this 

study required a few steps to predict fatigue life of the exhaust systems subjected to 

thermo-mechanical loading. The first step was to obtain strain history at variable load 

amplitudes and temperatures. Then, it was necessary to identify a closed loading 

cycle. The closed loading cycle contained strain range, cycle time, mean stress, and 

equivalent temperature. This information was used to calculate mechanical fatigue 

damage and oxidation damage for the cycle. The next step was to calculate 

mechanical fatigue damage using the Smith–Watson–Topper equation with fatigue 

properties at room temperature. The last step for this approach was to determine the 
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oxidation damages due to high temperature effect. The total damage was the 

summation of the mechanical fatigue damage and the oxidation damage. A case 

study with automotive exhaust systems was conducted to validate this approach and 

showed that the approach correlated well with experimental results under variable 

amplitude thermo-mechanical loading.

Nolting et al. (2007) were investigated the variable amplitude fatigue of 

bonded aluminum joints. The purpose of this paper is to examine the effect of 

overload cycles and variable amplitude loading on the fatigue behavior of bare and 

clad adhesively bonded double strap joints. Four sets of fatigue tests were conducted. 

The first set was constant amplitude tests that compared the fatigue behavior of bare 

and clad joints. The next series of tests subjected the specimens to periodic overload 

spectra to determine the effect of overload cycles on fatigue life and failure mode. 

The third test series was effective stress range vs. fatigue life tests. These were 

periodic overload tests that are designed to estimate the upper bound of the damage 

caused by the small cycles in the loading spectrum. The effective stress range vs. 

failure life curve was used in conjunction with a linear cumulative damage 

summation to calculate the fatigue lives of specimens subjected to variable amplitude 

loading spectra. In the fourth series of tests, specimens were subjected to those 

variable amplitude loading spectra and the test results compared to the calculated 

fatigue lives.

Bayley et al. (2000) were studied fatigue crack initiation and growth in A517 

submerged arc welds under variable amplitude loading. Authors were presented a 

comparison between fatigue crack initiation and growth predictions for a submerged 

arc welded butt joint in ASTM A517 steel and the corresponding laboratory results. 

The fatigue tests of the butt-welded joint involved a variable amplitude spectrum 

consisting of three storm sequences per year. Fatigue crack initiation, coalescence 

and growth were monitored using a localized potential drop system. Multiple fatigue 

crack initiation sites were found along the weld toe of the specimen, and this was 

followed by fatigue crack coalescence. Fatigue life, crack initiation and growth 

predictions were carried out using S–N, local notch strain and fatigue crack 

propagation approaches respectively. A comparison between the predicted and 
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experimental fatigue lives indicated that the S–N and fatigue crack propagation 

approaches were conservative while the strain life predictions were un-conservative.

2.4 STRAIN-LIFE METHOD

The local strain–life approach for fatigue life prediction has been widely 

accepted by the automotive industry since 1977. The local strain–life method can be 

used for pro-active design stages for a number of trial geometry and fabrication 

alternatives because, provided that the material data are given, life estimates may be 

made prior to the existence of any actual components. Design cycle reduction, via 

this method, is beneficial regarding both time and cost.

Williams et al. (2003) were studied a practical method for statistical analysis 

of strain–life fatigue data. Author intends to provide useful guidelines for the 

deterministic and probabilistic analyses of strain–life data which will result in true 

representation of the cyclic stress–strain and strain–life fatigue parameters. 

Discussion of the notch analysis methods and the mean stress correction formulas is 

beyond the scope of this study. Compared to the ASTM standard practice for 

statistical analysis of strain–life fatigue data, this paper has the following unique 

features:

1. A linear regression model is restricted to the linear range of the data, e.g. 

either the low cycle fatigue (LCF) data or the high cycle fatigue (HCF) data.

2. A threshold of plastic strain amplitude of 0.0005 is suggested, below which 

the data points can be neglected to avoid measurement errors.

3. A method based on a modification of the Owen tolerance interval is 

incorporated to quantify the statistical variation of fatigue data.
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