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Abstract

The vehicle routing problem is a combinatorial optimization and integer programming problem seeking to service a number of 
customers with a fleet of vehicles. Vehicle routing problem has many applications in the fields of transportation, distribution and 
logistics. In this study, the vehicle routing problem subject to precedence constraints has been modeled as the Travelling 
Salesman Problem (TSP) with precedence constraints. Vehicle routing problem is difficult to solve using exact methods 
especially for large size instances due to computational expensive. Therefore, metaheuristic method based genetic algorithm has 
been developed to obtain feasible and optimal solution with less computation time. The conventional genetic algorithm procedure 
for TSP, with an order-based representation might generate invalid candidate solutions when precedence constraints are involved. 
In order to obtain feasible solution which does not violate precedence constraints, a route repair based topological sort technique 
is used and integrated in the genetic algorithm procedure. In this paper, a new algorithm is developed and the performances as
well as the quality of the solution were evaluated against large scale test problems. The results from the computational 
experiments demonstrate that the algorithm with ‘earliest position’ task selection mechanism, linear order crossover and 
inversion mutation has better results in terms of number of generations and computation time to converge to optimal solution. 
The genetic operators used in this study are capable to introduce new fitter offspring and does not trapped in a local optimum. 
Therefore, it can be stated that the genetic algorithm approach developed in this study is efficient in solving large scale vehicle 
routing problem subject to precedence constraints with the objective of minimizing the distance travelled.
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1. Introduction

The vehicle routing problem represents a very important part of any distribution systems. The vehicle routing 
problem has received a lot of attention in the past. Such problem are concerned with a set of problems of designing 
routes, beginning at one depot or some depots and ending at the depot/depots, for a fleet of vehicles serving a set of 
customers with known or stochastic demands, such as pickup or delivery of mails, foods, coals, weapons. Different 
management objectives and constraints can form variously specified problems. The common objectives include 
maximizing profit, minimizing cost or distance, or maximizing number of vehicles. The common constraints include 
vehicle capacity, time window, number of customers served by one vehicle, precedence constraints where one 
request must be served before another, compatibility constraints, and types of vehicle. In this paper vehicle routing 
problems with precedence constraints are considered, where the objectives is to find the best route with the 
minimum traveled distance to organize the delivery of some goods or service to customers on a map by a vehicle 
from one depot to a final customers. The vehicle routing problem subject to precedence constraints can be modeled 
as the Travelling Salesman Problem (TSP) with precedence constraints.

2. Literature Review 

The vehicle routing problem subject to precedence constraints can be described as follows. There is a depot and a 
set of customers. The travelling distance between the depot and the customers, as well as between any pair of 
customers is known. Then the problem consists of finding a set of route that minimize the total travelling distance 
required to serve all customers, while satisfying the precedence constraints. The vehicle routing problem with a 
single vehicle and precedence constraints is commonly seen as a traveling salesman problem (TSP) with precedence 
constraints (Moon et al., 2002). Fagerholt and Christiansen (2000) use the single vehicle VRSP-TW with additional 
allocation constraints to solve a subproblem arising in a ship scheduling application. If we introduce capacity 
constraints to the VRSP-TW, depending on the precedence constraints, we get a pickup and delivery problem with 
time windows (PDP-TW) (Desrosiers et al., 1995). Sigurd et al. (2004) use precedence constraints for an application 
that arise in the live animal transport.

Precedence constraints arise whenever one activity or series of activities must occur before beginning another 
activity or set of activities. Precedence embodies the logical sequence of real life activities that occurs in a problem 
such as a taxi cab first picking up its customer and, subsequently, delivering the customer. Some practical 
applications include the dial-a-ride problem, airline scheduling, bus routing, tractor-trailer problem, helicopter 
support of offshore oil field platforms and logistics and maintenance support. They also arise in less obvious 
situations such as VLSI circuit design, flexible manufacturing systems and evacuating casualties. For example, 
during the evacuation of a special needs population in anticipation of a disaster, medical personal might need to visit 
some patients before they can be transported to shelters. 

Real life vehicle routing problems are usually so large that exact methods cannot be used to solve them. As the 
vehicle routing problem is an NP-hard problem (Lenstra and Rinnooy Kan, 1981), exact algorithms are only 
efficient for small problem instances. Given the difficulty of vehicle routing problem, many heuristic algorithms do 
not seek global optimal solutions, but rather seek to provide fast near-optimal solutions and are customized to model 
specific situations. For the past two decades, the emphasis has been on metaheuristics, which are methods used to 
find good solutions quickly. Genetic algorithm belongs to the group of metaheuristics. Relatively few experiments 
have been performed using genetic algorithm to solve the vehicle routing problem, which makes this approach 
interesting. However, the conventional genetic algorithm procedure for TSP, with an order-based representation 
might generate invalid candidate solutions when precedence constraints are involved. In order to obtain feasible 
solution which does not violate precedence constraints, topological sort technique is used and integrated in the 
genetic algorithm procedure. In this paper, a new genetic algorithm is developed namely ‘GAnew’ and the 
performance as well as the quality of the solution is compared with the previous developed algorithm namely
‘GAold’. The GAold algorithm which is specifically used to solve TSP with precedence constraints has been 
developed by Moon et. al (2002).
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3. Problem formulation

We assume to have one vehicle available in a depot, and a set of customers to be visited. The vehicle routing 
problem with precedence constraints (VRP-PC) is one in which a set of v nodes and distances for each pair of nodes 
are given, the problem is to find a tour from node 1 to node n of minimal length which takes given precedence 
constraints into account. In VRP-PC some order of customers is given and we ought to visit customers in that order 
only. VRP-PC differs from traditional VRP whereby in VRP-PC, there is no need to return to the original depot. 
This is called open vehicle routing problem (Golden & Wasil, 2006). The important feature of this problem, which 
distinguishes it from the traditional VRP, is that the vehicle is not required to return to the depot, or if it is required 
to do so, it must be accomplished by revisiting the customers assigned to it in the reverse order. Therefor the vehicle 
route is not closed path but open ones. An example of directed graph also known as precedence diagram to illustrate 
VRP-PC is shown in Fig. 1. Each precedence constraint requires that some node i have to be visited before some 
other node j (Kotecha & Gambhava, 2003). In a directed graph, the vertices (circles) represent locations to serve and 
the edges represent the precedence relations between locations (Moon et al, 2002).

Fig. 1. Example of directed graph

Gambardella and Dorigo (1997) modelled the problem by considering a complete graph P = (V, R) with node set 
V and arc set R, where nodes correspond to activities 0,… i, …, n.. To simplify the explanation, reconsider the 
diagram in Fig. 1. The nodes set V consist of (1, 2, 3, 4, 5, 6). Precedence constraints given by set R which contain 
[(1, 2), (1, 3), (1, 6), (2, 4), (2, 5), (3, 5)]. This set is ascertained from arc (i, j) R if activity i has to precede 
activity j in any feasible solution. Each arc (i, j) is associated a cost tij. Given this definition, the VRP-PC can be 
stated as the problem of finding a tour sequence subject to the precedence constraints which minimise the total 
travelling distance. There is therefore equivalent to the problem of finding a feasible Hamiltonian path with minimal 
cost under precedence constraints given by set R (Kotecha & Gambhava, 2003).

Moon et al. (2002) have used the two-commodity network flow model to formulate TSP with precedence 
constraints. This model can also be used to solve VRP-PC. In this formulation, cij is the travel distance from vertex 
vi to vj and s is the first selected vertex in the graph. Commodity p is supplied by (n-1) units at a selected starting 
node and used by one unit at each node that is not the starting node while commodity q is consumed by (n-1) units at 
the starting node and supplied by one unit at the other nodes. Here n is the number of nodes or cities. Three variables 
are used for the two-commodity network model: xij

p is the quantity of commodity p from vertex vi to vj and xij
q is 

the quantity of commodity q from vertex vi to vj.
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The objective function (1) is to obtain the total travel distance for all vertices, and the sum of commodities p and 
q between vertices vi to vj on any feasible sequence (i.e. xij=1) is equal to n-1. Constraints (2) and (7) are used to 
ensure the feasibility of flow of commodity p while constraints (3) and (8) are for feasibility of commodity q.
Constraint (4) ensures a feasible tour, i.e. feasible sequence. Constraint (5) explains that, if xij=1, the sum of 
commodities p and q between vi and vj be n-1. Constraint (6) is for the precedence relationship between vertices. 

4. Methodology

Genetic algorithms are inspired by the theory of natural selection by Charles Darwin. A population of individuals 
or solutions is maintained by the means of crossover and mutation operators, where crossover simulates 
reproduction. The quality of each solution is indicated by a fitness value. This value is used to select a solution from 
the population to reproduce and when solutions are excluded from the population. The average quality of the 
population gradually improves as new and better solutions are generated and worse solutions are removed. 

In this paper repair operation to encounter precedence constraints is needed to ensure all chromosomes in the 
population are valid tours which do not violated the precedence constraints added to the tours. Fig. 2 illustrates the 
genetic algorithm process flow with the sequence repairing operation denoted by ‘Route repair’. The genetic 
algorithm developed in this paper is called GAnew. The algorithm used combination ‘earliest position’ based 
topological sort technique for node selection, Roulette Wheel for chromosome selection, linear order technique for 
crossover and inversion mechanism for mutation. In contrast, the benchmarked algorithm from Moon et al. (2002) 
which is called GAold has use different combination of genetic operators. GAold utilized ‘priority’ based 
topological sort, Roulette Wheel selection, Moon crossover and Exchange mutation. The genetic algorithm 
procedure for GAnew is described as follows;

Initialization & Representation

For initial population, the random permutation method is used to generate chromosomes. The integer from 1 to N,
which is the number of locations or cities, is generated in random sequence. The number of chromosome generated 
is depending on the size of population. These sequences normally did not satisfy the precedence constraints. 
Therefore, the infeasible chromosomes must be repaired using the topological sort technique.
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Fig. 2. Genetic algorithm procedure for vehicle routing problem with precedence constraints

Route Repair

Since the chromosomes in the initial population are all randomly generated, the possibility of which generated 
chromosomes are infeasible due to the breaking of one or more precedence constraints is greater. The procedure of 
repairing chromosome in the initial population as well as after crossover and mutation operation is necessary before 
going through the evaluation process. The approach to overcome generating invalid sequence is based on a 
topological sort, which allows the genetic algorithm to generate only valid solutions in each generation. Every 
precedence graph has at least one topological sort. The topological sort is a node ordering in a directed graph such 
that if there is a path from a node vi and a node vj, then vj appears after vi in the ordering. In a directed graph, the 
nodes represent tasks or activities and the edges represent the precedence relations between tasks. More than a single 
sequence of tasks can be derived from a directed graph using the topological sort technique. Route repair based on 
the topological sort technique is explained in Step 1 through Step 3.

Step 1: Check available node

Initially, a chromosome is generated randomly and may not feasible. For example the chromosome structure 
represented as [4 1 3 6 5 2] in Fig. 1 is infeasible because it did not satisfy the precedence constraints. In order to 
repair the chromosome become feasible solution, nodes without predecessor are selected and store in available set. 
In this example, node 1 is the only node without predecessor and therefore node 1 is selected and being stored in 
sequence. Then the outgoing edges of node 1, which is node 2, 3 and 6, are removed. As a result, the new available 
set consist of node 2, 3 and 6 as displayed in Table 1. 
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Step 2: Select node in earliest position on chromosome

The selection of node to be stored in sequence is based on the ‘earliest position’ found in the chromosome. By 
referring to the available set [2 3 6], node 3 is firstly found in the chromosome [4 1 3 6 5 2]. Therefore, node 3 is 
selected as the second string to be stored in sequence and the updated sequence is now consists of [1 3].

Step 3: Remove edges from selected node

When node 3 is selected to be stored in sequence, the outgoing edge of this node should be removed. Therefore, 
the edge 3 5 is removed, and the new available set is consisting of [2 6]. Again, based on ‘earliest position’ 
selection of node approach, node 6 is first appeared before node 2 in the chromosome [4 1 3 6 5 2] and therefore 
node 6 is selected to be placed in updated sequence. The selection procedure is repeated until the length of the 
sequence is equal to N. The final feasible sequence that is generated from this approach is [1 3 6 2 4 5]. An example 
of initial population with population size of 12 and repaired chromosomes for this population are shown in Fig. 3(a) 
and Fig. 3 (b), respectively. Most of the chromosomes in Fig. 3(a) are not feasible which is violating the precedence 
constraints. However the chromosomes in Fig. 3(b) are all feasible after repair operation using topological sort 
techniques.

Table 1. Selection of tasks using the “earliest position” technique

Chromosome: 4 1 3 6 5 2

available set updated sequence

1 [1]

2, 3, 6 [1 3]

2, 6 [1 3 6]

2 [1 3 6 2]

4, 5 [1 3 6 2 4]

5 [1 3 6 2 4 5]

 
 
 

                    
(a) (b)

Fig. 3 (a) Chromosomes in the initial population; (b) Chromosomes after repairing process

Evaluation and selection

The fitness value of each chromosome in the population is evaluated using the fitness function in Equation (1). 
This equation is still valid for VRP-PC with excluding the distance of returning to the starting depot. The Roulette 
Wheel selection is used to select parent chromosomes to be re-generated for the next chromosome. By using the 
proportional Roulette Wheel, all individuals are given a chance to be selected and the chances of the fitter individual 
to be selected as a parent for crossover are higher. 
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Generation of offspring

Linear order crossover is used to generate two new offspring. This operator is the most frequently used for the 
crossover operation when the chromosome representation is ordinal (Mokhlesian et al, 2010). This crossover 
operator can preserve both the relative positions between genes and the absolute positions relative to the extremities 
of parents as much as possible. Mutation operation based on inversion (flip) is applied in the chromosome after 
crossover process.

5. Results and analysis

Here, we test the performance of GAnew and GAold algorithm on 51 locations (customers) with 71 precedence 
constraints, and 100 locations with 141 precedence constraints. The first test problem consists of 51 locations and 71 
precedence constraints in which the distance between the locations are randomly generated within [1, 15].  In order 
to assist the experimentation, full factorial design of experiment with 3 parameters each with 2 levels, low (-1) and 
high (+1) level is implemented. Therefore, the total number of computational runs will be 8 runs for one replication.
Due to the large population size used in the experiment, each simulation experiment runs only one time in order to 
reduce computational time and resources.

The genetic algorithm parameters are set as follow; Population size (Popsize) at 500 and 1000, probability of 
crossover (Pc) at 0.6 and 0.9, and probability of mutation (Pm) at 0.001 and 0.2. The maximum number of 
generation is set to 200 for all the experiments. The experiment is done using GAnew algorithm and the results 
obtained in each experiment are given in Table 2. 

       Table 2. Results of experiment for 51 locations and 71 precedence constraints using GAnew algorithm 

Experiment # Popsize Pc Pm Gen # best

1 -1 -1 -1 96 209

2 +1 -1 -1 192 204

3 -1 +1 -1 112 224

4 +1 +1 -1 157 194

5 -1 -1 +1 122 209

6 +1 -1 +1 74 218

7 -1 +1 +1 109 219

8 +1 +1 +1 193 184

From this experiment, it can be ascertained that the algorithm with a combination of large population size and 
high crossover rate as well as the high mutation rate had produced better outcomes. The experiment #8 offers the 
best sequence of tour with minimum travelling distance. The sequence of this tour is [2-4-39-17-9-1-3-44-10-5-8-
13-14-15-20-16-19-21-23-22-25-31-27-28-33-32-30-49-6-11-40-45-24-18-36-12-7-26-38-37-48-50-47-29-34-41-
35-42-46-43-51]. This sequence confirmed that the chromosomes at the specified generation represent valid points 
in the search space, i.e. not violating the precedence constraints. The minimum total travelling distance is 184 and 
converged at generation 193. Thus, it can be expected that the quality of solution improves with the larger size of 
population and with a relatively high crossover and high mutation rate. The computation time to obtain the best 
solution is around 650 sec which is still in an acceptable amount of time to spend. Similar experiments were also 
carried out using the GAold algorithm in order to investigate and compare the quality of solution and the 
performance of the algorithm with the proposed GAnew algorithm. The same parameters setting are applied as in 
the GAnew algorithm.
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        Table 3. Results of experiment for 51 locations and 71 precedence constraints using GAold algorithm

Experiment # Popsize Pc Pm Gen # best

1 -1 -1 -1 150 268

2 +1 -1 -1 163 256

3 -1 +1 -1 83 277

4 +1 +1 -1 72 265

5 -1 -1 +1 101 272

6 +1 -1 +1 50 282

7 -1 +1 +1 51 279

8 +1 +1 +1 95 270

The results in Table 3 clearly show that the solution approaching minimum value with the utilization of high 
population size, low crossover rate and low mutation rate.  The best solution found from the experiment is 256 and 
converged at generation 163. In order to check the feasibility of the solution from GAold algorithm, the sequences 
of tour generated is recorded which is [1-10-2-4-9-15-49-5-6-12-23-3-8-14-22-30-13-19-20-17-21-27-28-33-32-29-
34-41-25-31-16-11-24-18-36-35-42-46-39-40-44-45-7-26-38-37-48-50-43-47-51].

Figure 4(a) shows the performance graphs for 200 generations of 1000 chromosomes. The travelling distance are 
plotted against the number of generations for the two experiments, i.e. experiment number 8 for the GAnew 
algorithm and experiment number 2 for the GAold algorithm. It is observed that the ‘Best’ curves drop rapidly at the 
beginning of the run, but then as the population converges on the nearly optimal solution it drops more slowly, and 
finally flattens at the end. The iteration time for the proposed algorithm is larger than GAold algorithm. This is 
because a large number of generations are being utilized to converge on the best solution.
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Fig. 4.  Performance graph for (a) 51 locations and 71 precedence constraints; (b) 100 locations and 141 precedence constraints

To examine the robustness and the stability of the proposed approach, the experiment is carried out on another 
large scale test problem which 100 locations with 141 precedence constraints. In order to speed up the computation 
time, smaller population size and maximum number of generation (for stopping criteria) are used for both 
experiments (GAold and GAnew algorithms). Note that the population size, maximum number of generation, the 
probability of crossover and probability of mutation are set similar for both algorithms. The parameter settings are as 
follows, Popsize=100, Pc=0.9, Pm=0.01 and maximum number of generation is 400. 
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The performance graph in Fig. 4(b) demonstrates the best and the average travelling distance found by the 
algorithms in each generation. For the GAnew algorithm, the best and average travelling distance steadily reduced 
over generations. The results of the computational experiments for both test problems using both algorithms are 
summarized in Table 4.

From the performance graph it is observed that the ‘Average’ curve for GAold seems to be stagnant which was 
apparently being seen in both test problems. This indicates that the crossover technique used in the GAold procedure 
was not capable to introduce the new fittest offspring and therefore the search space contains almost identical 
individuals which have the same characteristics as their parents. GAold algorithm showed a very slow progress and 
finally fails to converge at the best/optimal solution. For all the experiments done, the progress of the curve in the 
performance graphs indicates that the combinations of linear order crossover and inversion mutation are able to 
preserve good chromosomes and add new chromosomes in the population. The use of inversion mutation on the 
other hand provides sufficient variance in fitness across the population to drive further evolution.

Table 4. Summary of results for all tests using GAnew and GAold algorithm

Test Problem
GAnew GAold

Gen# Best
Convergence 

time (sec) Gen# Best
Convergence 

time (sec)

51 tasks & 71 PC 193 184 650 163 256 1109
100 tasks & 141 PC 174 441 928 381 559 1240

In order to measure the diversity of the individual fitness in the population, the standard deviation is calculated 
and plotted. Fig. 5 shows the standard deviation versus the number of generations for 51 locations and 71 
precedence constraints. The standard deviation for GAold algorithm does not decrease and looks slightly increase 
towards the generations. This indicates that the population diversity is maintained, however the algorithm does not 
introduce new fitter individuals in the population. On the other hand the standard deviation for the proposed 
algorithm (GAnew) steadily decreases towards the generations. This implies that the population diversity is reduced 
and the population contains a large number of fitter individuals.
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6. Conclusion

In this paper, we have developed a genetic algorithm procedure for vehicle routing problem with precedence 
constraints in which route repair based topological sort is inserted in the procedure in order to generate only feasible 
chromosomes. The proposed algorithm (GAnew) has used ‘earliest position’ selection of chromosomes in order to 
reduce iteration time, hence improved genetic algorithm performance.  The proposed algorithm has used simple 
linear order crossover and inversion mutation to introduce new fitter chromosomes from generations to generations 
in order to prevent premature convergence. In conclusion, it can be stated that the GAnew algorithm had produced 
better result in terms of performance and the quality of solution.

In this paper, a single vehicle with precedence constraints is considered in the tour. In many real problem 
situations, more than a single vehicle with multiple constraints present in the tour. In future it is possible to develop
an efficient algorithm which can handle multiple vehicle routing problems with precedence constraints. It is also 
possible to consider multi-objective optimization for vehicle routing problem. This is an interesting subject to 
explore and a more realistic problem to be tackled as most of the real problems in logistics involve more than one 
objective to be achieved such as maximizing the profit while minimizing the cost or maximizing customer 
satisfaction (e.g. on time delivery) while minimizing on-hand inventories. Since the objective may conflict with each 
other, a sequence that can optimize both objectives at the same time may not exist. Therefore Pareto front must be 
constructed and can be used to assist the decision making. Furthermore, this type of problem is NP-hard, and 
obtaining multi-objective genetic algorithm is a practical option.
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