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ABSTRACT 

 

 

The aim of this thesis is to study the methods of the lattice Boltzmann equations in 

order to be  apply in two types of D2Q4 model in thermal fluid flow problems. LBM 

has  been found to be useful in application involving interfacial dynamics and complex 

boundaries. These methods utilize the statistical mechanics of simple discrete models to 

simulate complex physical systems. The theory of lattice Boltzmann method in nine and 

four velocity model are reviewed. The isothermal and thermal equation have been 

derived from the Boltzmann equation by descretiziton on both time and phase space. In 

this isothermal problem, a few simple isotherml flow simulation will be done by using 

the nine velocity model. The concepts of distribution function are considered beside the 

theory of Boltzmann equations.  Then the derivations of Navier-Stokes equation from 

the Boltzmann equations are also presented. Some simulation results are performed, to 

highlight the important features of the isothermal LB model. The application of lattice 

Boltzmann scheme in thermal fluid problem is investigated in chapter 3. By using the 

derivation of the discretised density distribution function, a 4-velocity model is applied 

to develop the internal energy distribution function. This model is validated to simulate 

the porous couette flow problem for thermal fluid flow problems. The performance for 

both types D2Q4 microscopic model is demonstrated in the simulations of porous 

thermal couette flow and natural convection flow in a square cavity. The simulation of 

thermal fluids flow is applied to two different types of four-velocity model that are 

Azwadi model and old model. The same simulation test is performed for both types and 

the accuracy and stability analysis of both models are stated. These models are 

compared and discussed to ensure its validity. 
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ABSTRAK 

 

 

Tujuan utama tesis ini adalah untuk mempelajari kaedah kekisi Boltzmann yang akan 

diaplikasikan pada dua jenis halaju model D2Q4 di dalam masalah terma. Kaedah kekisi 

Boltzmann telah pun diketahui berguna di dalam aplikasi yang membabitkan 

perhubungan di antara dinamik dan sempadan yang rumit. Algoritma ini adalah mudah 

dan dapat  dilaksanakan pada intisari sesuatu model dengan mengunakan beberapa ratus 

garisan. Kaedah ini menggunakan mekanik statik pada modal berasingan yang mudah 

hingga kepada yang kompleks. Teori kekisi Boltzmann ini akan dikaji pada halaju 

model empat dan sembilan hala. Persamaan isoterma dan terma diperolehi daripada 

persamaan Boltzmann dengan mendekritasikan masa dan juga ruang fasa. Kemudian 

masalah isoterma akan menjadi fokus utama pada awal bab ketiga. Dalam masalah 

isoterma ini, beberapa simulasi mudah akan dijalankan dengan menggunakan halaju 

model sembilan. Konsep pengagihan fungsi akan di pertimbangkan disamping teori 

persamaan Boltzmann. Kemudian, terbitan persamaan Navier Stokes daripada 

persamaan Boltzmann akan turut diperkenalkan. Beberapa keputusan simulasi 

ditunjukkan bagi membuktikan kepentingan modal isoterma kaedah kekisi Boltzmann. 

Seterusnya aplikasi kekisi Boltzmann akan dikaji dalam bab ketiga. Dengan 

menggunakan menterbitan fungsi pengagihan tenaga, satu model empat halaju akan 

digunakan untuk menghasilkan fungsi pengagihan tenaga dalaman. Model ini sahih 

untuk simulasi masalah pengaliran porous coutte dalam masalah terma. Hasil prestasi  

kedua-dua model D2Q4 akan dilakukan pada simulasi pengaliran porous coutte dan 

pengaliran pemanasan semulajadi pada ruang segiempat. Simulasi ini akan dijalankan 

ada model lama dan juga model azwadi. Ujian simulasi yang sama akan dilakukan pada 

kedua-dua model dan analisis ketepatan serta kestabilan kedua-dua model akan 

dibincangkan. Model ini akan dinilai dan diuji untuk membezakan prestasi kedua-dua 

model. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

1.1 INTRODUCTION 

 

 

        1.1.1  Navier-Stokes equations 

  

 The Navier–Stokes equations describe the motion of fluid substances that 

is substances which can flow. These equations arise from applying Newton's 

second law to fluid motion, together with the assumption that the fluid stress is the 

sum of a diffusing viscous term (proportional to the gradient of velocity), plus a 

pressure term. The mathematical relationship governing equation fluid flow is the 

famous continuity equation and Navier Stokes equation given by. The Navier–

Stokes equations dictate not position but rather velocity. A solution of the Navier–

Stokes equations is called a velocity field or flow field, which is a description of 

the velocity of the fluid at a given point in space and time. Once the velocity field 

is solved for, other quantities of interest such as flow rate or drag force may be 

found (X.He and L.S.Luo). Some exact solutions to the Navier–Stokes equations 

exist. Examples of degenerate cases; with the non-linear terms in the Navier–

Stokes equations equal to zero; are Poisuelle flow, Couette flow and the oscillatory 

Stokes boundary layer. But also more interesting examples, solutions to the full 

non-linear equations, exist; for example the Taylor–Green vortex. Note that the 

existence of these exact solutions does not imply they are stable: turbulence may 

develop at higher Reynolds numbers. 
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1.1.2.  Lattice Boltzmann Method (LBM) 

 

 Lattice Boltzmann methods (LBM) is a class of computational fluid 

dynamics (CFD) methods for fluid simulation. Instead of solving the Navier–

Stokes equations, the discrete Lattice Boltzmann (LB) equation is solved to 

simulate the flow of a Newtonian fluid with collision models such as Bhatnagar-

Gross-Krook (BGK). LB scheme is a scheme evolved from the improvement of 

lattice gas automata and inherits some features from its precursor, the Lattice Gas 

Automata (LGA).  

 

 The main motivation for the transition from LGA to LBM was the desire 

to remove the statistical noise by replacing the Boolean particle number in a lattice 

direction with its ensemble average, the so-called density distribution function. 

Accompanying this replacement, the discrete collision rule is also replaced by a 

continuous function known as the collision operator. In the LBM development, an 

important simplification is to approximate the collision operator with the 

Bhatnagar-Gross-Krook (BGK) relaxation term. This lattice BGK (LBGK) model 

makes simulations more efficient and allows flexibility of the transport 

coefficients. 

 Lattice Boltzmann models can be operated on a number of different 

lattices, both cubic and triangular, and with or without rest particles in the discrete 

distribution function. A popular way of classifying the different methods by lattice 

is the DnQm scheme. Here "Dn" stands for "n dimensions" while "Qm" stands for 

"m speeds". For example, D3Q15 is a three-dimensional Lattice Boltzmann model 

on a cubic grid, with rest particles present. 

 Although LBM approach treats gases and liquids as systems consisting of 

individual particles, the primary goal of this approach is to build a bridge between 

the microscopic and macroscopic dynamics. It is by deriving macroscopic equations 

from microscopic dynamics by means of statistic, rather than to solve macroscopic 

equations. 
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1.2  PROBLEM BACKGROUND 

 The lattice Boltzmann method is an alternative approach to the finite difference, 

finite   element, and finite volume techniques for solving Navier-Stokes equations. 

LB scheme is a scheme evolved from the improvement of lattice gas automata and 

inherits some features from its precursor, the LGA. The implementation of the 

Bhatnagar-Gross-Krook (BGK) approximation has been made for LB method to 

improve its computational efficiency. The algorithm of LBM is simple, and easily 

modified to allow for the application of other. 

  LBM originated from lattice gas automata (LGA) which is based on concepts 

from the kinetic theory of gases. Two dimensional, four velocity model is one of the 

most widely used today to modeling macroscopic flow phenomena. LGA views 

fluids as arrays of discrete particles living on a discrete lattice, evolving some 

interactive such as propagation and collision rules. Collision between the particles in 

D2Q4 model will occur, and the change in velocity of each particle including its 

performance will be found out. 

 

1.2.1 Project Objective 

  To find out the performances for both types D2Q4 microscopic velocity 

models. 

 

1.2.2 Project Scopes 

  The scopes of this project are limited to D1Q4 microscopic velocity 

model, at low Rayleigh number using heat transfer mechanism.  
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1.3  THESIS OUTLINE 

  The aim of this thesis is to study the methods of the lattice Boltzmann 

equations in order to apply in two types of D2Q4 model in thermal fluid flow 

problems. These methods utilize the statistical mechanics of simple discrete models 

to simulate complex physical systems. The theory of lattice Boltzmann method in 

nine and four velocity model are reviewed. Then the new concern here is in chapter 

4. Two types of four velocity model are studied and will be evaluated at low 

Rayleigh number heat transfer. The performance for both types D2Q4 microscopic 

model is demonstrated in the simulations of porous thermal couette flow and natural 

convection flow in a square cavity. Comparison of both models will be analyzed as 

the final result. 

  In chapter 2, the isothermal fluid flows problem will be the main subject. 

The concepts of distribution function are considered beside the theory of Boltzmann 

equations.  Then the derivations of Navier-Stokes equation from the Boltzmann 

equations are also presented. Some simulation results are performed, to highlight the 

important features of the isothermal LB model. 

  Then in chapter 3, the application of lattice Boltzmann scheme in thermal 

fluid problem is investigated. By using the derivation of the discretised density 

distribution function, a 4-velocity model is applied to develop the internal energy 

distribution function. This model is validating to simulate the porous couette flow 

problem for thermal fluid flow problems. The accuracy and stability analysis of the 

model are discussed. 

  In chapter 4, the simulation of thermal fluids flow is applied to two 

different types of four-velocity model. The same simulation test is performed for 

both types and the accuracy and stability analysis of both models are also discussed. 

These models are compared and tested to ensure its validity.  

  Finally in chapter 5, conclusions and discussion on future studies are 

presented. 
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CHAPTER 2  

 

 

 

 

LITERATURE STUDY 

 

 

2.1 LATTICE BOLTZMANN METHOD 

 

 The lattice Boltzmann method is a powerful technique for the 

computational modeling of a wide variety of complex fluid flow problems 

including single and multiphase flow in complex geometries. It is a discrete 

computational method based upon the Boltzmann equation. It considers a typical 

volume element of fluid to be composed of a collection of particles that are 

represented by a particle velocity distribution function for each fluid component at 

each grid point (X.HE, 1997). The time is counted in discrete time steps and the 

fluid particles can collide with each other as they move, possibly under applied 

forces. The rules governing the collisions are designed such that the time-average 

motion of the particles is consistent with the Navier-Stokes equation. 

  This method naturally accommodates a variety of boundary conditions 

such as the pressure drop across the interface between two fluids and wetting 

effects at a fluid-solid interface. It is an approach that bridges microscopic 

phenomena with the continuum macroscopic equations. Further, it can model the 

time evolution of systems. Lattice Boltzmann Method can be reviewed as a 

numerical method to solve the Boltzmann equation. In LB method, the phase space 

is discretized. In a LB model, the velocity of a particle can only be chosen from a 

velocity set, which has only a finite number of velocities. 

 

      The Lattice Boltzmann Equation (LBE) method is described for 

simulating micro- and meso-scale phenomena. The method is employed to study 

multiphase and multicomponent flows in microchannels.  
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 The primary goal of LBM is to build a bridge between the microscopic 

and macroscopic dynamics rather than to dealt with macroscopic dynamics 

directly. In other words, the goal is to derive macroscopic equations from 

microscopic dynamics by means of statistics rather than to solve macroscopic 

equation.  

 The Boltzmann equation for any lattice model is an equation for the time 

evolution of fi (x,t), the single-particle distribution at lattice site x: 

 

      (2.1) 

 

    

 

 

 

 
 

 
 

  

 

 

 
 

 

 

Statistical Mechanics 

Density distribution function tf ,x

 
 Moment of distribution 

function 

Macroscopic variables 

Density, velocity, pressure, etc. 

eqff
txftttcxf ),(),(

 

Figure 2.1: Lattice Boltzmann Theory (Rosdzimin, 2008) 
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2.2 COLLISION INTERGRAL, Ω( f ) 

 

 Basic principle of LBM is including streaming step and collision step. 

The particles move to another place in the variable direction with their velocities 

(streaming step) and after they meet to each other, the collision happens (collision 

step) and the particles will separate again. (streaming step) ( Xiaoyi et al ,1996). 

We also can take an example from the „‟snooker‟. From this situation, means when 

a ball hit to another ball, its can firstly streaming and then its will collision and it 

become streaming again. Collisions between particles change their velocities, and 

make them move in and out of the domain.  A collision term describes the net 

increase of the density of the number of particles in the domain due to the collision. 

One of the simplest collision models is the Bhatnagar, Gross and Krook (BGK) 

simplified collision model.  

 

       

  

 Boltzmann came out with the H-theorem where the value of distribution 

function will always tend to the equilibrium distribution function, f
eq 

during 

collision process. The distribution function f can be relate to f
eq

 . 

 

 

2.3  BGK (BHATNAGAR, GROSS, AND KROOK) 

  

 n BGK model, the nonlinear collision term of the Boltzmann equation is 

replaced by a simpler term and the model makes the derivation of the transport 

equations for macroscopic variables much easier. A problem, which is easily 

solved by the BGK model, is that of relaxation of a state of a fluid to equilibrium. 

 

 

 

2.4  BOUNDARY CONDITION 

  

 The set of conditions specified for the behavior of the solution to a set of 

differential equations at the boundary of its domain. Boundary conditions are 

1
, , , ,eqf x c t t t f x t f x t f x t

1 eqf f f
(2.2) 

(2.3

) 
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important in determining the mathematical solutions to many physical problems. In 

a numerical simulation, it is impossible and unnecessary to simulate the whole 

universe. Generally we choose a region of interest in which we conduct a 

simulation. The interesting region has a certain boundary with the surrounding 

environment. Numerical simulations also have to consider the physical processes in 

the boundary region. In most cases, the boundary conditions are very important for 

the simulation region's physical processes. Different boundary conditions may 

cause quite different simulation results. Improper sets of boundary conditions may 

introduce nonphysical influences on the simulation system, while a proper set of 

boundary conditions can avoid that. So arranging the boundary conditions for 

different problems becomes very important. While at the same time, different 

variables in the environment may have different boundary conditions according to 

certain physical problems. Commonly there are several different types of boundary 

conditions.  

 

2.4.1    Periodic boundary condition 

 

 Periodic boundary conditions (PBC) are a set of boundary conditions that 

are often used to simulate a large system by modeling a small part that is far from 

its edge. Periodic boundary conditions are particularly useful for simulating a part 

of a bulk system with no surfaces present. Moreover, in simulations of planar 

surfaces, it is very often useful to simulate two dimensions (e.g. x and y) with 

periodic boundaries, while leaving the third (z) direction with different boundary 

conditions, such as remaining vacuum to infinity. This setup is known as slab 

boundary conditions. 

 

 

 

 

       

Figure 2.2: Periodic Boundary Condition 
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2.4.2  Bounce Back Boundary condition 

 

 The bounce-back boundary condition for lattice Boltzmann simulations is 

evaluated for flow about an infinite periodic array of cylinders. The bounce-back 

boundary condition is used to simulate boundaries of cylinders with both circular 

and octagonal cross-sections. The convergences of the velocity and total drag 

associated with this method are slightly sublinear with grid spacing. Error is also a 

function of relaxation time, increasing exponentially for large relaxation times. 

However, the accuracy does not exhibit a trend with Reynolds number between 0.1 

and 100. The bounce-back boundary condition is shown to yield accurate lattice 

Boltzmann simulations with reduced computational requirements for computational 

grids of 170×170 or finer, a relaxation time less than 1.0 and any Reynolds number 

from 0.1 to 100. For this range of parameters the root mean square error in velocity 

and the relative error in drag coefficient are less than 1 % for the octagonal cylinder 

and 2 % for the circular cylinder. 

 

2.4 DISCRETIZATION OF MICROSCOPIC VELOCITY 

 

 For the discreatization of microscopic velocity, from the Gauss-Hermitte 

integration, we can integrate from the continuous velocity to the 9-discrete velocity 

and also 4-discrete velocity. We focused on the two type of discrete velocity [S. 

Harris]. For the (poiseulle and couette flow) isothermal fluid flow, we are focusing 

on 9-discrete velocity model and for the (porous couette flow) thermal fluid flow, 

we are using 4-discrete velocity model.  
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2.5.1.  Isothermal Fluid Flow 

 

                         

                               Figure 2.3: 9-Discrete Velocity Model 

 Figure 2.2 showed the 9-discrete velocity model that is going to be used 

in simulation of isothermal fluid flow (poiseulle flow and coutte flow). 

 

2.5.1.1     The Macroscopic Equation for Isothermal  

 

 By using chapmann-enskog expansion procedure, we can have the 

navier-stroke equations accurate in continuity equations and in momentum 

equation:  

 

 

  

  The relation between the time relaxation τ, in microscopic level and 

viscosity of fluid ν, in macroscopic level is;  

 

 

 

 

 

 

 

 

 

 

2

0

2 1

6
P

t

2 1

6

(2.4) 

(2.5) 

(2.6) 
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2.5.2  Thermal Fluid Flow 

                         

                        Figure 2.4: 4-Discrete Velocity Model 

  Figure 2.3 showed the 4 discrete velocities model for that are going to be 

used in simulation of thermal fluid flow (porous couette flow). 

 

 

 

2.5.2.1.  The Macroscopic Equation for Thermal 

 

  By using the chapmann-enskog expansion procedure, we can get the 

derivation equation for the energy equation. 

 

 

 Where: 

 

 

2. 6 THEORY OF REYNOLD NUMBER 

 

 Reynolds number can be defined for a number of different situations 

where a fluid is in relative motion to a surface. These definitions generally include 

the fluid properties of density and viscosity, plus a velocity and a characteristic 

length or characteristic dimension. This dimension is a matter of convention - for 

example a radius or diameter is equally valid for spheres or circles, but one is 

chosen by convention. For flow in a pipe or a sphere moving in a fluid the diameter 

is generally used today. Other shapes (such as rectangular pipes or non-spherical 

21

2
g

T
uT T
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1
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g

(2.7) 
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objects) have an equivalent diameter defined. For fluids of variable density (e.g. 

compressible gases) or variable viscosity (non-Newtonian fluids) special rules 

apply. The velocity may also be a matter of convention in some circumstances, 

notably stirred vessels. 

 The Reynolds number can be obtained when one uses the dimensional 

form of the incompressible Navier-Stokes equations:    

                 
2 2v v f

t
  

 Each term in the above equation has the units of a volume force or, 

equivalently, an acceleration times a density. Each term is thus dependant on the 

exact measurements of a flow. When one renders the equation a dimensional, that 

is that we multiply it by a factor with inverse units of the base equation, we obtain a 

form which does not depend directly on the physical sizes. One possible way to 

obtain an a dimensional equation is to multiply the whole equation by the following 

factor: 

      
2

D

v
 

 we can rewrite the Navier-Stokes equation without dimensions: 

     
'2'

' ' ' ' ' ' '
'

v
v v p v f

t DV
  

Where the term:   
1

ReDV
 

Finally, dropping the primes for ease of reading: 

       21
.

Re

v
v v p v f

t
 

This is why mathematically all flows with the same Reynolds number are 

comparable. 

(2.9) 

(2.10

) 

(2.11) 

(2.12) 

(2.13) 

http://en.wikipedia.org/wiki/Non-Newtonian_fluid
http://en.wikipedia.org/wiki/Navier-Stokes_equations
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2.7         RAYLEIGH NUMBER 

  In fluid mechanics, the Rayleigh number for a fluid is a dimensionless 

number associated with buoyancy driven flow (also known as free convection or 

natural convection). When the Rayleigh number is below the critical value for that 

fluid, heat transfer is primarily in the form of conduction; when it exceeds the 

critical value, heat transfer is primarily in the form of convection. 

       The Rayleigh number is named after Lord Rayleigh and is defined as the 

product of the Grashof number, which describes the relationship between buoyancy 

and viscosity within a fluid, and the Prandtl number, which describes the 

relationship between momentum diffusivity and thermal diffusivity. Hence the 

Rayleigh number itself may also be viewed as the ratio of buoyancy forces and (the 

product of) thermal and momentum diffusivities. 

      For free convection near a vertical wall, this number is  

         3Prx x s

g
Ra Gr T T x

v
 

In the above, the fluid properties Pr, ν, α and β are evaluated at the film 

temperature, which is defined as 

                   
2

s
f

T T
T  

For most engineering purposes, the Rayleigh number is large, somewhere around 

10
6
 and 10

8
. 

2.8  PRANDTL NUMBER 

  The Prandtl number Pr is a dimensionless number approximating the 

ratio of momentum diffusivity (kinematic viscosity) and thermal diffusivity. It is 

named after the German physicist Ludwig Prandtl. 

 It is defined as:                                  Pr
pC uv

k
 

(2.14) 

(2.15) 

(2.16) 

http://en.wikipedia.org/wiki/Fluid_mechanics
http://en.wikipedia.org/wiki/Dimensionless_number
http://en.wikipedia.org/wiki/Dimensionless_number
http://en.wikipedia.org/wiki/Dimensionless_number
http://en.wikipedia.org/wiki/Free_convection
http://en.wikipedia.org/wiki/Heat_conduction
http://en.wikipedia.org/wiki/Convection
http://en.wikipedia.org/wiki/Lord_Rayleigh
http://en.wikipedia.org/wiki/Grashof_number
http://en.wikipedia.org/wiki/Buoyancy
http://en.wikipedia.org/wiki/Viscosity
http://en.wikipedia.org/wiki/Prandtl_number
http://en.wikipedia.org/wiki/Free_convection
http://en.wikipedia.org/wiki/Dimensionless_number
http://en.wikipedia.org/wiki/Viscosity#Kinematic_viscosity
http://en.wikipedia.org/wiki/Thermal_diffusivity
http://en.wikipedia.org/wiki/Ludwig_Prandtl
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 Typical values for Pr are: 

I. around 0.7-0.8 for air and many other gases,  

II. around 0.16-0.7 for mixtures of noble gases or noble gases with 

hydrogen  

III. around 7 for water  

IV. around 10×10
24

 for Earth's mantle  

V. between 100 and 40,000 for engine oil,  

VI. between 4 and 5 for R-12 refrigerant  

VII. around 0.015 for mercury  

 In heat transfer problems, the Prandtl number controls the relative 

thickness of the momentum and thermal boundary layers. When Pr is small, it 

means that the heat diffuses very quickly compared to the velocity (momentum). 

This means that for liquid metals the thickness of the thermal boundary layer is 

much bigger than the velocity boundary layer. 

 The mass transfer analog of the Prandtl number is the Schmidt number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Air
http://en.wikipedia.org/wiki/Gas
http://en.wikipedia.org/wiki/Water
http://en.wikipedia.org/wiki/Earth
http://en.wikipedia.org/wiki/Mantle_(geology)
http://en.wikipedia.org/wiki/Mercury_(element)
http://en.wikipedia.org/wiki/Boundary_layers
http://en.wikipedia.org/wiki/Schmidt_number
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CHAPTER 3 

 

 

 METHADOLOGY 

 

 

3.1          FLOW CHART 

 

 

 

 

   

 

 

 

 

 

 

 

 

                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Flowchart for methodology 

 

THEORY OF LATTICE BOLTZMANN 

I. Governing equation 

II. Basic principle 

III. Collide function Bhatnagar-Gross-Krook (BGK) 

IV. Equilibrium distribution function 

V. Time relaxation 

VI. Discretization of microscopic velocity 

VII. Derivation of Navier- Strokes equation 

 

 

 

ISOTHERMAL FLUID FLOW 

I. Simulate flow in pipe (Poiseulle Flow) 

II. Simulate Couette Flow 

 

 

EXTENSION TO THERMAL LB MODEL 

I. Theory of Thermal LB model 

II. Simulate Porous Couette Flow 
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3.2  ALGORITHM 

 

 The algorithm flowchart for LBM is shown in Figure 3.2. It consists of 

two processes; advection and collision process. The initial values of density 

distribution  are specified at each grid point. Then, the system evolves in the 

following steps. 

 The advection term is solved by applying the streaming process of the density 

distribution function. 

 Then the collision process is solved by BGK collision model. 

 Next step is to define the boundary conditions based on the bounce back 

boundary conditions.  

 

 

 

 

 

 

 

 

 

                                        no                                                             yes 

                 

 

 

 

 

 

 

Figure 3.2: Original LBM Algorithm Flowchart. 
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3.3        SIMULATION RESULTS FOR ISOTHERMAL 

 

 To illustrate some of the important features of the lattice Boltzmann 

isothermal model, a number of simulations were performed. 

 

3.3.1  Poiseulle flow 

 Numerical simulation for the Poiseulle flow driven by a pressure gradient 

was carried out to test the validity of the isothermal lattice Boltzmann model. The 

pressure gradient is set between the inlet and the outlet end of the channel. The 

densities are set at different values between the two ends. The bounce back 

boundary condition is applied at the top and bottom walls. 

 It is observed that it reaches a steady state corresponding to the parabolic 

solution of the channel flow (I.J. Sobej, 1985). The criterion of steady state is set 

by    

      
NMi

txtxxi

i

ii
ff

2

,1,

 

where M and N are the mesh numbers in x and y direction. Two types of 

measurements were taken of the viscosity and the boundary conditions.  

Measurement of velocity u and the pressure are taken. The figure corresponds to a 

simulation using a lattice size of 4 x 33. 

                                                 

 

            Figure 3.3: Graph of Poiseulle Flow 
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3.3.2  Couette flow 

 A numerical experiment involving the time evolution of the Couette flow 

is presented, in which the top plate moves with constant velocity, while the bottom 

plate is held fixed. The initial conditions correspond to a null velocity everywhere 

except on the top boundary, where the velocity is u = (1,0). The x-component of the 

velocity on the top plate is maintained at U = 1.00 (top plate boundary condition in 

LBM units), whereas the bottom one is at rest. No pressure gradient is included for 

this case. 

   

       Figure 3.4: Graph of Couette Flow 

 Figure above shows a sequence of normalized velocity profile for 

different times. The lattice size for this experiment is 4 x 32 and the relaxation time 

is τ = 1.0 Do. The velocity profiles are drawn at times t = 200, 300… 800 in LBM 

units. Periodic boundary conditions are implemented in the x-direction. The 

solution for the steady state case is well known, and corresponds to the velocity 

increasing linearly from zero at the bottom to U at the top plate (C.S. Nor Azwadi 

and T.Tanahashi, 2006). 
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3.4  SIMULATION RESULT FOR THERMAL FLOW 

 In this section, we should apply a newly developed model to simulate 

heat transfer porous plate Couette flow problem (L.S. Suo,1999). 

 

3.4.1  Thermal Porous Couette Flow 

 Periodic boundary conditions are used at the entrance and exit of the 

channel, and the non-equilibrium bounce back boundary conditions for velocity. 

For temperature boundary condition, the non-equilibrium bounce back boundary 

condition is used.  

 The normalized temperature profile for Pr = 0.71, Ra= 100 and Re = 5, 

10, 20, 30, and 40 are shown in figure 3.4. 

                                                

 

              

              Figure 3.5: Temperature Profile at Pr= 0.71 and Ra= 100 

 

 

 

 

  Figure 3.6 shows the normalized temperature profile for Ra= 100 and Re 

= 10 with Pr = 0.2, 0.8 and 1.5. 
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      Figure 3.6: Temperature Profile at Ra=100 and Re=10. 

 

3.5  OLD VELOCITY MODEL VERSUS AZWADI’S VELOCITY 

MODEL 

 

3.5.1 Old Velocity Model 

 The original velocity model was proposed by He et al. He et al in their 

model introduces the internal energy density distribution function which can be 

derived from the Boltzmann equation. This model is shown to be a suitable model 

for simulating real thermal problems.  

 

 

 

 

 

 

 

Figure 3.7: 2 D Lattice structure of old velocity model 

 

3.5.2 Azwadi’s Velocity Model 

 The new type of lattice model which only use four-velocity was 

developed for internal energy density distribution function in incompressible limit. 

Both the evolution equations have been directly derived from the continuous 

Boltzmann equation and Maxwell-Boltzmann equilibrium distribution function.  
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Figure 3.8: 2 D Lattice Structure of Azwadi‟s velocity model 

 

3.6  SUMMARY 

 The main contributions in this thesis, the evaluation of two different 

types of four-velocity model are developed. The simulation of thermal fluids flow is 

applied to two different types of four-velocity model. The same simulation test is 

performed for both types and the accuracy and stability analysis of both models are 

also discussed. These models are compared and tested to ensure its validity. 
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION 

 

4.1  TEST CASES: NATURAL CONVECTION IN SQUARE CAVITY 

 

 The natural convection in a square cavity plays a very interesting role in 

a lot of engineering applications, such as the solar energy system, the cooling of the 

electronic circuits, the conditioning of the air and many others. 

  

 In this paper, the cavity testing is a square cavity where we analyzed the 

influence of the position of a heat stripe, placed on the left side of the cavity on 

natural convection heat transfer. The cavity is cooled on the right side of the wall at 

the same time. The top and the bottom of the cavity are adiabatic. 

  

 The temperature different between the left and right walls introduces a 

temperature gradient in a fluid, and the consequent density different induces a fluid 

motion, that is convection. 

 

 

 

 

 

 

 

 

Figure 4.1: Schematic Diagram for natural convection in a square cavity 

 

 

4.2 GRID DEPENDENCE TEST 

TH Tc 

   dT/dy=0 

 

   dT/dy=0 
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 Grid dependence test was carried out to find the most suitable grid size 

for every Rayleigh number simulation. In this study, the number of grid points is 

taken the same in both x and y directions. That is the grid is taken as N x N, where 

N is the grid number in each spatial directions. Figure 4.2 and Figure 4.3 show the 

grid dependency test‟s result for 2D natural convection in a square cavity at Ra = 

10
3
 and Pr = 0.71. 

          

   

   Figure 4.2: Grid dependence test for Old model at Ra = 10
4
 and Pr = 0.71 

          

 

Figure 4.3: Grid dependence test for Azwadi‟s model at Ra = 10
4
 and Pr 

= 0.71 

 From the graph, it can be clearly seen that when N increase, the Umax 

value will also increased.  The grid sizes of 151 x 151 is sufficient for the simulation 

at Rayleigh number of Ra = 10
3
 for old model and 181 x 181 for Azwadi‟s model. 

 

 

 

1.6

1.65

1.7

1.75

1.8

0 50 100 150 200 250

u
 m

ax

grid size

Old model

1.6

1.65

1.7

1.75

1.8

1.85

0 50 100 150 200 250

u
 m

ax

Grid Size

Azwadi's Model



38 

 

4.3  NUSSELT NUMBER COMPARISON 

 

 The Nusselt number is a dimensionless number, which describes the 

relationship between convective heat transfer and conductive heat transfer. The 

Nusselt number is defined as the ratio of convection heat transfer to conduction 

heat transfer, where the heat conduction is under the same conditions as the heat 

convection except with a stagnant (motionless) fluid. 

  A Nusselt number of ~1 would indicate "slug flow" or laminar flow with 

convection heating having a magnitude similar to conduction heating. A large 

Nusselt number ~ 100 to 1000 means very active convection, a characteristic of 

turbulent flow. The convection and conduction heat flows are parallel to each other 

and to the surface normal of the boundary surface, and are all perpendicular to the 

mean fluid flow in the simple case. 

 

 Typically the average Nusselt number is expressed as a function of the 

Rayleigh number and the Prandtl number, written as: Nu = f (Ra, Pr). 

 

 The calculated average Nusselt numbers are taken from the simulation 

result of both models. The averaged Nusselt numbers are changing with the 

increasing number of Rayleigh numbers.  

 

Table 4.1: Table of Nusselt Number Comparison  

 

Rayleigh 

Number 
Benchmark 

Azwadi‟s 

Model 
Old Model 

1000 1.116 1.116 1.117 

10 000 2.201 2.108 2.203 

100 000 4.549 4.542 5.539 
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4.4 OLD MODEL RESULT VERSUS AZWADI’S MODEL RESULT 

 

Figure 4.4: Equivalent state for Azwadi‟s model 
 

 

 

Figure 4.5: Equivalent state for Old model 
 

          

 Temperature contours at equilibrium state for flows at Ra = 10
3
 ~

 
10

5
 are 

shown in figure. By increasing in Rayleigh number, a high degree of convection is 

observed such that distinct thermal boundary layers start appearing near the 

isothermal walls. The thickness of the boundary layer decrease as Rayleigh number 

increase. 
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4 

Ra = 10
5 



40 

 

 

Figure 4.6: Isotherms state for Azwadi's Model 
 

 

 
 

Figure 4.7: Isotherms state for Old Model 
 

 At lower Rayleigh number heat transfer was dominated by the 

conduction mode. This can be seen from the straight and equally spaced isotherm 

line. At Ra = 10
3
, the isotherms are almost parallel to the wall indicating that 

conduction is the dominant heat transfer mechanism. At Ra = 10
4
, isotherms start to 

be horizontally parallel to the wall at the cavity center. Finally at Ra = 10
5
, all 

isotherms are almost horizontally parallel to the wall indicating that the convection 

is the main heat transfer mechanism. The isotherms lines were distorted because of 

the buoyancy induced convection becomes more predominant than conduction. Hot 

fluid moves from the source until reaches the opposite of the wall and moves 

outwards along the cold wall under the effect of cooling. Increasing the Rayleigh 

number, isotherms are distorted more due to the stronger convection effect, leading 

to the stable stratification of the isotherms.  

Ra = 10
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Figure 4.8: Streamline for Azwadi‟s Model 
 

 

 

 

Figure 4.9: Streamline for Old‟s Model 
 

 

 Vortex appears at the center of the cavity with circular shape for both 

models. Circular vortex at the center of cavity was distorted when using higher 

Rayleigh number and shape become oval due to the convection effect. We can say 

that for Ra = 10
3
 and Ra = 10

4
, the grid size of 151 x 151 can give very accurate 

results for Old model and 181 x 181 for Azwadi model. However for Ra = 10
5
, both 

models requires high spatial resolution and it is found to be stable at grid size 201 x 

201. 
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CHAPTER 5 

 

 

 

CONCLUSIONS AND RECOMMENDATION 

 

 

 

5.1  CONCLUSIONS 

 Chapter one introduced the LBM and it advantages. The model of LBM 

developed from continuous Boltzmann equation, has evolved into a powerful tool 

for modeling complex flow. The LBM has a number of advantages over other 

conventional CFD methods. The algorithm can also be easily modified to allow for 

the application of other, more complex components. Thus the LBM is an ideal tool 

in fluid simulations. The project objective, project problems and backgrounds are 

also discussed in chapter one. 

 

   In chapter two, the literature reviews of the LBM and the boundary 

conditions involved are mention clearly. The lattice Boltzmann theory and the 

discretization of microscopic velocity for isothermal and thermal fluid flow are 

shown here. Several types of boundary conditions that used in the LBM simulation 

and also in the isothermal model and thermal model have been discussed here. 

Finally, the theory of Reynold number, Rayleigh number and also Prandtl number 

is discussed.  

 

 The methodology and the algorithm that been used for the simulation was 

explained in chapter three. Results of the numerical simulations for the Poiseulle 
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flow, Couette flow, and porous Couette flow using the isothermal and thermal 

lattice Boltzmann model have been performed. Results for all the above fluid flow 

problems show that LBM is a reliable CFD technique and agreed with the 

analytical solution and conventional approach. The differences between both 

models are also shown at the end of chapter three. 

 

 

 

 

 

Objective of the project was achieved and discussed at the end of chapter 

four. The grid dependency test was done to find out the most suitable grid size to 

be used in the simulations of natural convections in a square cavity. It was found 

out that the grid size 151 x 151 is suitable for old model and 181 x 181 for 

Azwadi‟s model. Then both models was simulated at Ra = 10
3
, Ra = 10

4 
and Ra = 

10
5
. The Nusselt numbers for each simulation was compared to the previous study 

and the result obtained agreed well with the benchmark. 

 

 These old and Azwadi‟s model were shown to be a suitable and suitable 

for the computational of low and moderate Rayleigh number. Results obtained give 

good agreement with the benchmark solution.  For the simulation at high Rayleigh 

number, we were forced to apply small value of time relaxation and this will 

increase the simulation time. The results obtained prove that both models are 

efficient to study flow and heat transfer in the future. The performance for both 

model are almost the same except that Azwadi‟s model give slightly higher 

accuracy. It is because the Azwadi‟s model gives more direction of velocity 

particle compared to the old model but this direction can only be seen clearly in 3D 

model. Time consuming for Azwadi‟s model is also higher than the old model. The 

time taken for simulation is effect by the direction of particle velocity. The higher 

the value of the direction leads to the increasing of time consuming for simulation. 
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5.2 RECOMMENDATION 

 

  The performance for both models can be seen clearly by doing the 

simulation for 3-D model instead of 2-D model. However, higher time consuming 

are required to run the 3-D simulation successfully. Therefore, some solutions to 

overcome the time consuming should be studied in details. In that way, the 

simulations can be done in shorter time.   
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B 
 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!   Lattice Boltzmann Method    !    

!   based on Square Lattice    ! 

! AZWADI MODEL     ! 

!   Natural convection     ! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

    

 program natural_convection 

 

     parameter(cd = 9, xd = 181, yd = 181, dd = 4) !UBAH XD, YD 

 =121,151,181,201 

 real*8  cx(1:cd), cy(1:cd) 

 real*8  dx(1:dd), dy(1:dd) 

 real*8  f(1:cd,1:xd,1:yd), f0(1:cd,1:xd,1:yd), 

ff(1:cd,1:xd,1:yd) 

 real*8  g(1:dd,1:xd,1:yd), g0(1:dd,1:xd,1:yd), 

gg(1:dd,1:xd,1:yd) 

 real*8  ux(1:xd,1:yd), uy(1:xd,1:yd), rho(1:xd,1:yd) 

 real*8  temp(1:xd,1:yd),sumf,sumg 

 real*8  vel(1:xd,1:yd) 

 real*8  u0, rho0, pi,tauv,th,tc,pt,ra,nyu,ok,di,tauc,ri,re 

 

 u0 = 0.0   ! wall velocity 

 rho0 = 1.0   ! constant density 

 pt = 0.71   ! Prandtl number 

 ra = 10000   ! rayleigh number 

 th = 1.0   ! left hot wall 

 tc = 0.0   ! right cool/initial wall temperature 

 

 write(*,*) 'calculation start' 

 write(*,*) 'nstep?'       ! 

 iteration step for display 

 read(*,*) nstep 

 write(*,*) 'nstep =',nstep 

  

 gra = (0.0577**2)/(yd) 

  

 nyu = (gra*((yd-1)**3)*(th-tc)*pt/ra)**0.5  

 tauv = 3*nyu + 0.5 

 di = nyu/pt !!!!!!!!!!!!!!!!!NEED MODIFICATION 

 tauc = di + 0.5 

 

 write(*,*) 'nyu  =',nyu 

 write(*,*) 'di   =',di 

 write(*,*) 'Tauv =',tauv 

 write(*,*) 'Tauc =',tauc 

 write(*,*) 'gra =',gra 

 write(*,*) 'everything is ok?,press 0 if ok' 

 read (*,*) ok 

 

 call initial1 

 (cx,cy,f,f0,g,g0,ux,uy,rho,temp,u0,rho0,th,tc,cd,xd,yd,dx,dy,dd,

x1, x2,y1,y2) 

 

 do iter = 1, 1000000 
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  call collide1 (f,f0,tauv,cd,xd,yd,g,g0,tauc,dd) 

 

  call force (cx,cy,ux,uy,temp,f,f0,gra,cd,xd,yd) 

 

  call stream1 (f,cd,xd,yd,g,dd) 

 

  call boundary1 

 (f,f0,rho,u0,cd,xd,yd,g,g0,temp,dd,x1,x2,y1,y2) 

 

  call calc1 

 (cx,cy,f,ux,uy,rho,u0,rho0,cd,xd,yd,temp,g,tc,th,dd,dx,dy,x1,x2,

y1, y2) 

   

  if (mod(iter,nstep) .eq.0) then 

   write(*,*) 'time step=', iter 

   write(*,*) 'velocity=',ux(xd/4,yd/4) 

   write(*,*) 'temperature= ',temp(xd/4,yd/4) 

  end if 

 

  call equilibrium1 

(cx,cy,f0,ux,uy,rho,cd,xd,yd,dx,dy,g0,temp,dd) 

!!!!!!!!!!!!!! check for convergence 

 if (mod(iter,nstep) .eq.0) then 

  write (*,*)'sum_f = ',sumf 

   do k = 1,cd 

    do i = 1,xd 

     do j = 1,yd 

      ff(k,i,j) = f(k,i,j) 

       end do 

    end do 

   end do 

 

   write (*,*)'sum_g = ',sumg 

   do k = 1,4 

    do i = 1,xd 

     do j = 1,yd 

      gg(k,i,j) = g(k,i,j) 

       end do 

    end do 

   end do 

     

    endif 

 

 if (mod(iter,nstep) .eq.1) then 

   sumf = 0. 

   do k = 1,cd 

    do i = 1,xd 

     do j = 1,yd 

      sumf = sumf +(f(k,i,j)-

ff(k,i,j))**2 

     end do 

    end do 

   end do 

 

   sumf = (sumf/9.0*(yd)*(xd))**0.5 

    

   !***** if converge*****::! 

   if (sumf .le. 1.0d-3) then  
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   write(*,*)'solution_f converge' 

!    go to 100 

   end if 

 

   sumg = 0. 

   do k = 1,4 

    do i = 1,xd 

     do j = 1,yd 

      sumg = sumg +(g(k,i,j)-

gg(k,i,j))**2 

     end do 

    end do 

   end do 

 

   sumg = (sumg/4.0*(yd)*(xd))**0.5 

    

   !***** if converge*****::! 

   if (sumg .le. 1.0d-3) then  

  

   write(*,*)'solution_g converge' 

!    go to 100 

   end if 

 

  if (sumg .le. 1.0d-3 .and. sumf .le. 1.0d-3) then 

  write(*,*)'both solution converge' 

 

  go to 100 

  end if 

   

  end if 

    

 end do 

100  bnu = 0.0 

 open (unit=30,file='u 

vel1.dat',status='replace',action='write',iostat=ierror) 

 write(30,*)'thermal diffusivity      ',di 

 write(30,*)'Prandtl number           ',pt 

 write(30,*)'hydro relax. time        ',tauv 

 write(30,*)'termo relax. time        ',tauc 

 write(30,*)'solution converge at     ',iter 

 

 do j = 1,yd  

 

 write(30,*) ux((xd+1)/2,j)*(yd-1)/di 

 

 end do 

 

 close(30) 

 

 open (unit=31,file='v 

vel1.dat',status='replace',action='write',iostat=ierror) 

 do i = 1,xd  

 

 write(31,*) uy(i,(yd+1)/2)*(yd-1)/di 

 

 end do 

 

 close(31) 

 



51 
 

 open 

(unit=32,file='variables.dat',status='replace',action='write',iostat=i

error) 

 write(32,*)'x-vel, y-vel, temp' 

 do j = 1,yd 

 do i = 1,xd  

 

 write(32,*) ux(i,j)*(yd-1)/di,uy(i,j)*(yd-1)/di,temp(i,j) 

 

 end do 

 end do 

 

 close(32) 

 end 

 

 subroutine initial1 

(cx,cy,f,f0,g,g0,ux,uy,rho,temp,u0,rho0,th,tc,cd,xd,yd,dx,dy,dd,x1,x2,

y1,y2) 

!--------------------------------------------------------------------- 

 real*8  cx(1:cd), cy(1:cd), w(1:cd) 

 real*8  dx(1:dd), dy(1:dd) 

 real*8  f(1:cd,1:xd,1:yd), f0(1:cd,1:xd,1:yd) 

 real*8  g(1:dd,1:xd,1:yd), g0(1:dd,1:xd,1:yd) 

 real*8  ux(1:xd,1:yd), uy(1:xd,1:yd), rho(1:xd,1:yd) 

 real*8  temp(1:xd,1:yd) 

 real*8  u0,  rho0, pi,tc,th 

 

 pi = 4.0*atan(1.0) 

    cx(1) =  0.0 

    cy(1) =  0.0 

    do k = 2,9 

 w(k) = 1. 

 if(mod(k, 2) .eq. 1.) w(k) = sqrt(2.) 

  cx(k) = w(k)*cos((k-2)*pi/4.0) 

        cy(k) = w(k)*sin((k-2)*pi/4.0) 

    enddo 

 

 dx(1) = 1.0   !!!!!!!!!!! NEED MODIFICATION 

 dy(1) = 1.0   !!!!!!!!!!! NEED MODIFICATION 

 dx(2) = -1.0  !!!!!!!!!!! NEED MODIFICATION 

 dy(2) = 1.0   !!!!!!!!!!! NEED MODIFICATION 

 dx(3) = -1.0  !!!!!!!!!!! NEED MODIFICATION 

 dy(3) = -1.0  !!!!!!!!!!! NEED MODIFICATION 

 dx(4) = 1.0   !!!!!!!!!!! NEED MODIFICATION 

 dy(4) = -1.0  !!!!!!!!!!! NEED MODIFICATION 

 

 do i = 1,xd 

   do j = 1,yd 

    rho(i,j) = 1.0 

 

    if (i.eq.1) then 

     ux(i,j) = 0.0 

     uy(i,j) = 0.0 

     temp(i,j) = th 

    else 

     ux(i,j) = 0.0 

     uy(i,j) = 0.0 

     temp(i,j) = tc 

    end if 
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   end do 

  end do   

 call equilibrium1 (cx,cy,f0,ux,uy,rho,cd,xd,yd,dx,dy,g0,temp,dd) 

 

 do k = 1,cd 

  do i = 1,xd 

   do j = 1,yd 

    f(k,i,j) = f0(k,i,j) 

   end do 

  end do 

 end do 

 

 do k = 1,dd 

  do i = 1,xd 

   do j = 1,yd 

    g(k,i,j) = g0(k,i,j) 

   end do 

  end do 

 end do 

 

 return  

 end 

 

    subroutine equilibrium1 

(cx,cy,f0,ux,uy,rho,cd,xd,yd,dx,dy,g0,temp,dd) 

!--------------------------------------------------------------------- 

 real*8  cx(1:cd), cy(1:cd), f0(1:cd,1:xd,1:yd) 

 real*8  dx(1:dd), dy(1:dd) 

 real*8  g0(1:dd,1:xd,1:yd) 

    real*8  ux(1:xd,1:yd), uy(1:xd,1:yd), rho(1:xd,1:yd) 

 real*8  temp(1:xd,1:yd) 

 real*8  u2, tmp 

 integer i, j, k, m 

 

    do i = 1,xd 

  do j = 1,yd 

    u2 = ux(i,j)**2 + uy(i,j)**2 

    f0(1,i,j) = rho(i,j)*(1. - 3./2.*u2)*4./9. 

    do k = 1,4 

    m = k*2    ; tmp = cx(m)*ux(i,j) + 

cy(m)*uy(i,j) 

    f0(m,i,j) = rho(i,j)*(1. + 3.*tmp + 

9./2.*tmp**2 - 3./2.*u2)/9. 

    m = k*2 + 1; tmp = cx(m)*ux(i,j) + 

cy(m)*uy(i,j) 

    f0(m,i,j) = rho(i,j)*(1. + 3.*tmp + 

9./2.*tmp**2 - 3./2.*u2)/36. 

    end do 

  end do 

 end do 

 

 do i = 1,xd 

  do j = 1,yd 

   do k = 1,dd 

    tmpg = dx(k)*ux(i,j) + dy(k)*uy(i,j) 

   !!!!!!!!!!! NEED MODIFICATION 

    g0(k,i,j) = rho(i,j)*temp(i,j)*(1 + tmpg )/4

  !!!!!!!!!!! NEED MODIFICATION 

   end do 

       end do 
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 end do 

 

 return 

 end 

 

 

   subroutine collide1 (f,f0,tauv,cd,xd,yd,g,g0,tauc,dd) 

!--------------------------------------------------------------------- 

 real*8  f(1:cd,1:xd,1:yd), f0(1:cd,1:xd,1:yd), tauv 

 real*8  g(1:dd,1:xd,1:yd), g0(1:dd,1:xd,1:yd), tauc 

 integer i, j, k 

 

    do k = 1,cd 

  do i = 1,xd 

   do j = 1,yd 

    f(k,i,j) = f(k,i,j) - (f(k,i,j) - 

f0(k,i,j))/tauv 

    if (f(k,i,j) .le. -1) then 

     write(*,*)i,j,'error' 

    endif 

   end do 

  end do 

 end do 

 

 do k = 1,dd 

  do i = 1,xd 

   do j = 1,yd 

    g(k,i,j) = g(k,i,j) - (g(k,i,j) - 

g0(k,i,j))/tauc 

    if (g(k,i,j) .le. -1) then 

     write(*,*)i,j,'error' 

    endif 

   end do 

  end do 

 end do 

 

 return 

 end 

 

 

 subroutine force (cx,cy,ux,uy,temp,f,f0,gra,cd,xd,yd) 

!--------------------------------------------------------------------- 

 real*8 f(1:cd,1:xd,1:yd), temp(1:xd,1:yd),cy(1:cd),cx(1:cd) 

 real*8 f0(1:cd,1:xd,1:yd) 

 real*8 ux(1:xd,1:yd), uy(1:xd,1:yd) 

 integer i, j, k 

 

 tempor = 0.0 

 do i = 1,xd 

       do j = 1,yd 

    tempor = tempor + temp(i,j) 

    tempave = tempor/(yd*yd) 

    end do 

 end do 

  

 do k = 1,cd 

      do i = 1,xd 

       do j = 1,yd 

    f(k,i,j) = f(k,i,j) + 3*gra*(cy(k)-

uy(i,j))*f0(k,i,j)*(temp(i,j)-tempave) 
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   end do 

  end do 

 end do 

 

 return 

 end 

 

 subroutine stream1 (f,cd,xd,yd,g,dd) 

!--------------------------------------------------------------------- 

 real*8  f(1:cd,1:xd,1:yd),g(1:dd,1:xd,1:yd) 

    real*8  tmp(1:cd,1:xd,1:yd),tmpg(1:dd,1:xd,1:yd) 

 integer i, j, k 

! 

      do k = 1,cd 

       do i = 1,xd 

        do j = 1,yd 

         tmp(k,i,j) = f(k,i,j) 

   end do 

  end do 

 end do 

 

 do k = 1,dd 

       do i = 1,xd 

        do j = 1,yd 

         tmpg(k,i,j) = g(k,i,j) 

   end do 

  end do 

 end do 

     

 do k = 1,cd 

       if(k .eq. 1) then 

        do i = 1,xd; do j = 1,yd 

     ii = i    ; jj = j 

         f(k,ii,jj) = tmp(k,i,j) 

   end do; end do 

 

  else if(k .eq. 2) then 

        do i = 1,xd-1; do j = 1,yd 

    ii = i + 1; jj = j 

         f(k,ii,jj) = tmp(k,i,j) 

  end do; end do 

 

  else if(k .eq. 3) then 

        do i = 1,xd-1; do j = 1,yd - 1 

    ii = i + 1; jj = j + 1 

         f(k,ii,jj) = tmp(k,i,j) 

   end do; end do 

 

  else if(k .eq. 4) then 

        do i = 1,xd; do j = 1,yd - 1 

    ii = i    ; jj = j + 1 

         f(k,ii,jj) = tmp(k,i,j) 

   end do; end do 

 

  else if(k .eq. 5) then 

        do i = 2,xd; do j = 1,yd - 1 

    ii = i - 1; jj = j + 1 

         f(k,ii,jj) = tmp(k,i,j) 

   end do; end do 
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  else if(k .eq. 6) then 

        do i = 2,xd; do j = 1,yd 

    ii = i - 1; jj = j 

         f(k,ii,jj) = tmp(k,i,j) 

   end do; end do 

 

  else if(k .eq. 7) then 

        do i = 2,xd; do j = 2,yd 

    ii = i - 1; jj = j - 1 

         f(k,ii,jj) = tmp(k,i,j) 

   end do; end do 

 

  else if(k .eq. 8) then 

        do i = 1,xd; do j = 2,yd 

    ii = i    ; jj = j - 1 

         f(k,ii,jj) = tmp(k,i,j) 

   end do; end do 

 

  else if(k .eq. 9) then 

        do i = 1,xd-1; do j = 2,yd 

    ii = i + 1; jj = j - 1 

         f(k,ii,jj) = tmp(k,i,j) 

   end do; end do 

  end if 

 end do 

 

 

 do k = 1,dd 

       if(k .eq. 1) then 

        do i = 1,xd-1; do j = 1,yd - 1 

    ii = i + 1; jj = j + 1 

         g(k,ii,jj) = tmpg(k,i,j) 

   end do; end do 

 

  else if(k .eq. 2) then 

        do i = 2,xd; do j = 1,yd - 1 

    ii = i - 1; jj = j + 1 

         g(k,ii,jj) = tmpg(k,i,j) 

   end do; end do 

 

  else if(k .eq. 3) then 

        do i = 2,xd; do j = 2,yd 

    ii = i - 1; jj = j - 1 

         g(k,ii,jj) = tmpg(k,i,j) 

   end do; end do 

 

  else if(k .eq. 4) then 

        do i = 1,xd-1; do j = 2,yd 

    ii = i + 1; jj = j - 1 

         g(k,ii,jj) = tmpg(k,i,j) 

   end do; end do 

 

  end if 

 end do 

         

 

 return 

 end 
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 subroutine boundary1 

(f,f0,rho,u0,cd,xd,yd,g,g0,temp,dd,x1,x2,y1,y2) 

!--------------------------------------------------------------------- 

 real*8  f(1:cd,1:xd,1:yd),f0(1:cd,1:xd,1:yd) 

 real*8  g(1:dd,1:xd,1:yd),g0(1:dd,1:xd,1:yd) 

 real*8  temp(1:xd,1:yd) 

 real*8  u0 

 real*8  rho(1:xd,1:yd) 

 

 ! BOUNCE BACK boundary conditon bottom 

 do i = 2,xd-1  !bottom 

 f(4,i,1) = f(8,i,1) 

 f(3,i,1) = f(7,i,1)  

 f(5,i,1) = f(9,i,1)  

 

 ! no slip bounce back 

 g(1,i,1) = g(3,i,1) 

 g(2,i,1) = g(4,i,1)  

 end do 

 

 do i = 2,xd-1  !upper 

 f(7,i,yd) = f(3,i,yd) 

 f(9,i,yd) = f(5,i,yd)  

 f(8,i,yd) = f(4,i,yd)  

 

 ! no slip bounce back 

 g(3,i,yd) = g(1,i,yd) 

 g(4,i,yd) = g(2,i,yd) 

 end do 

  

 ! left and right boundary condition 

 do j = 2,yd-1  !left boundary 

 f(2,1,j) = f(6,1,j) 

 f(3,1,j) = f(7,1,j)  

 f(9,1,j) = f(5,1,j)  

     

 g(1,1,j) = g(3,1,j) 

 g(4,1,j) = g(2,1,j) 

 end do 

 

 do j = 2,yd-1  !right boundary 

 f(5,xd,j) = f(9,xd,j)  

 f(6,xd,j) = f(2,xd,j) 

 f(7,xd,j) = f(3,xd,j)  

 

 g(2,xd,j) =g(4,xd,j) 

 g(3,xd,j) =g(1,xd,j) 

 

 end do 

 

 ! four corner boundary condition 

 f(9,1,yd) = f(5,1,yd) 

 f(8,1,yd) = f(4,1,yd) 

 f(2,1,yd) = f(6,1,yd) 

 g(4,1,yd) = g(2,1,yd) 

 

 f(7,xd,yd) = f(3,xd,yd) 

 f(6,xd,yd) = f(2,xd,yd) 

 f(8,xd,yd) = f(4,xd,yd) 

 g(3,xd,yd) = g(1,xd,yd) 
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 f(3,1,1) = f(7,1,1) 

 f(2,1,1) = f(6,1,1) 

 f(4,1,1) = f(8,1,1) 

 g(1,1,1) = g(3,1,1) 

 

 f(5,xd,1) = f(9,xd,1) 

 f(4,xd,1) = f(8,xd,1) 

 f(6,xd,1) = f(2,xd,1) 

 g(2,xd,1) = g(4,xd,1) 

 

 return 

 end 

 

 

   subroutine calc1 

(cx,cy,f,ux,uy,rho,u0,rho0,cd,xd,yd,temp,g,tc,th,dd,dx,dy,x1,x2,y1,y2) 

!--------------------------------------------------------------------- 

 real*8  cx(1:cd), cy(1:cd), f(1:cd,1:xd,1:yd) 

 real*8  dx(1:dd), dy(1:dd) 

 real*8  temp(1:xd,1:yd),g(1:dd,1:xd,1:yd) 

 real*8  ux(1:xd,1:yd), uy(1:xd,1:yd), rho(1:xd,1:yd) 

 real*8  u0,rho0,th,tc 

 integer i, j, k 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

  

 do i = 1,xd 

  do j = 1,yd 

   rho(i,j) = f(1,i,j); ux(i,yd)=0.0; uy(i,j) = 0.0; 

ux(i,j) = 0.0 

   do k = 2,cd 

    ux(i,j) =  ux(i,j) + f(k,i,j)*cx(k) 

    uy(i,j) =  uy(i,j) + f(k,i,j)*cy(k) 

    rho(i,j)=rho(i,j)+f(k,i,j)   

  

 

    end do 

   end do 

 end do 

 

 do i = 1,xd 

  do j = 1,yd 

   temp(i,j) = g(1,i,j);  

   do k = 2,dd 

    temp(i,j) = temp(i,j) + g(k,i,j) 

    end do 

  end do 

 end do 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!! 

 do i = 1,xd 

   do j = 1,yd 

    if (i.eq.1) then 

     ux(i,j) = 0.0 

     uy(i,j) = 0.0 

     temp(i,j) = th 

    else 
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    if (rho(i,j) .ne. 0.) then 

    ux(i,j) =  ux(i,j)/rho(i,j) 

    uy(i,j) =  uy(i,j)/rho(i,j) 

    temp(i,j) = temp(i,j)/rho(i,j) 

   else 

    ux(i,j)  = 0. 

    uy(i,j)  = 0. 

    temp(i,j) = 0. 

    end if 

    end if 

   end do 

  end do 

 

 

 do i= 1,xd 

   temp(i,1)=temp(i,2)   !adiabatic right 

wall 

   temp(i,yd)=temp(i,yd-1)     !cold 

left wall  

 end do 

 

    return 

 end 
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C 

 

 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!   Lattice Boltzmann Method    !   

!   based on Square Lattice     ! 

! OLD's MODEL               ! 

!   Natural convection          ! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!    

   program natural_convection 

 

    parameter(cd = 9, xd = 81, yd = 81, dd = 4) !UBAH XD, YD 

=121,151,181,201 

 real*8  cx(1:cd), cy(1:cd) 

 real*8  dx(1:dd), dy(1:dd) 

 real*8  f(1:cd,1:xd,1:yd), f0(1:cd,1:xd,1:yd), 

ff(1:cd,1:xd,1:yd) 

 real*8  g(1:dd,1:xd,1:yd), g0(1:dd,1:xd,1:yd), 

gg(1:dd,1:xd,1:yd) 

 real*8  ux(1:xd,1:yd), uy(1:xd,1:yd), rho(1:xd,1:yd) 

 real*8  temp(1:xd,1:yd),sumf,sumg 

 real*8  vel(1:xd,1:yd) 

 real*8  u0, rho0, pi,tauv,th,tc,pt,ra,nyu,ok,di,tauc,ri,re 

 

 u0 = 0.0   ! wall velocity 

 rho0 = 1.0   ! constant density 

 pt = 0.71   ! Prandtl number 

 ra = 10000   ! rayleigh number 

 th = 1.0   ! left hot wall 

 tc = 0.0   ! right cool/initial wall temperature 

 

 write(*,*) 'calculation start' 

 write(*,*) 'nstep?'       ! 

iteration step for display 

 read(*,*) nstep 

 write(*,*) 'nstep =',nstep 

  

 gra = (0.0577**2)/(yd) 

  

 nyu = (gra*((yd-1)**3)*(th-tc)*pt/ra)**0.5  

 tauv = 3*nyu + 0.5 

 di = nyu/pt !!!!!!!!!!!!!!!!!NEED MODIFICATION 

 tauc = di+0.5 

 

 write(*,*) 'nyu  =',nyu 

 write(*,*) 'di   =',di 

 write(*,*) 'Tauv =',tauv 

 write(*,*) 'Tauc =',tauc 

 write(*,*) 'gra =',gra 

 write(*,*) 'everything is ok?,press 0 if ok' 

 read (*,*) ok 

 

 call initial1 

(cx,cy,f,f0,g,g0,ux,uy,rho,temp,u0,rho0,th,tc,cd,xd,yd,dx,dy,dd,x1,x2,

y1,y2) 
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 do iter = 1, 1000 

   

  call collide1 (f,f0,tauv,cd,xd,yd,g,g0,tauc,dd) 

 

  call force (cx,cy,ux,uy,temp,f,f0,gra,cd,xd,yd) 

 

  call stream1 (f,cd,xd,yd,g,dd) 

 

  call boundary1 

(f,f0,rho,u0,cd,xd,yd,g,g0,temp,dd,x1,x2,y1,y2) 

 

  call calc1 

(cx,cy,f,ux,uy,rho,u0,rho0,cd,xd,yd,temp,g,tc,th,dd,dx,dy,x1,x2,y1,y2) 

   

  if (mod(iter,nstep) .eq.0) then 

   write(*,*) 'time step=', iter 

   write(*,*) 'velocity=',ux(xd/4,yd/4) 

   write(*,*) 'temperature= ',temp(xd/4,yd/4) 

  end if 

 

  call equilibrium1 

(cx,cy,f0,ux,uy,rho,cd,xd,yd,dx,dy,g0,temp,dd) 

!!!!!!!!!!!!!! check for convergence 

 if (mod(iter,nstep) .eq.0) then 

  write (*,*)'sum_f = ',sumf 

   do k = 1,cd 

    do i = 1,xd 

     do j = 1,yd 

      ff(k,i,j) = f(k,i,j) 

       end do 

    end do 

   end do 

 

   write (*,*)'sum_g = ',sumg 

   do k = 1,4 

    do i = 1,xd 

     do j = 1,yd 

      gg(k,i,j) = g(k,i,j) 

       end do 

    end do 

   end do 

     

    endif 

 

 if (mod(iter,nstep) .eq.1) then 

   sumf = 0. 

   do k = 1,cd 

    do i = 1,xd 

     do j = 1,yd 

      sumf = sumf +(f(k,i,j)-

ff(k,i,j))**2 

     end do 

    end do 

   end do 

 

   sumf = (sumf/9.0*(yd)*(xd))**0.5 

    

   !***** if converge*****::! 

   if (sumf .le. 1.0d-3) then  
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   write(*,*)'solution_f converge' 

!    go to 100 

   end if 

 

   sumg = 0. 

   do k = 1,4 

    do i = 1,xd 

     do j = 1,yd 

      sumg = sumg +(g(k,i,j)-

gg(k,i,j))**2 

     end do 

    end do 

   end do 

 

   sumg = (sumg/4.0*(yd)*(xd))**0.5 

    

   !***** if converge*****::! 

   if (sumg .le. 1.0d-3) then  

  

   write(*,*)'solution_g converge' 

!    go to 100 

   end if 

 

  if (sumg .le. 1.0d-3 .and. sumf .le. 1.0d-3) then 

  write(*,*)'both solution converge' 

 

  go to 100 

  end if 

   

  end if 

    

 end do 

100  bnu = 0.0 

 open (unit=30,file='u 

vel1.dat',status='replace',action='write',iostat=ierror) 

 write(30,*)'thermal diffusivity      ',di 

 write(30,*)'Prandtl number           ',pt 

 write(30,*)'hydro relax. time        ',tauv 

 write(30,*)'termo relax. time        ',tauc 

 write(30,*)'solution converge at     ',iter 

 

 do j = 1,yd  

 

 write(30,*) ux((xd+1)/2,j)*(yd-1)/di 

 

 end do 

 

 close(30) 

 

 open (unit=31,file='v 

vel1.dat',status='replace',action='write',iostat=ierror) 

 do i = 1,xd  

 

 write(31,*) uy(i,(yd+1)/2)*(yd-1)/di 

 

 end do 

 

 close(31) 
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 open 

(unit=32,file='variables.dat',status='replace',action='write',iostat=i

error) 

 write(32,*)'x-vel, y-vel, temp' 

 do j = 1,yd 

 do i = 1,xd  

 

 write(32,*) ux(i,j)*(yd-1)/di,uy(i,j)*(yd-1)/di,temp(i,j) 

 

 end do 

 end do 

 

 close(32) 

 end 

 

 subroutine initial1 

(cx,cy,f,f0,g,g0,ux,uy,rho,temp,u0,rho0,th,tc,cd,xd,yd,dx,dy,dd,x1,x2,

y1,y2) 

!--------------------------------------------------------------------- 

 real*8  cx(1:cd), cy(1:cd), w(1:cd) 

 real*8  dx(1:dd), dy(1:dd) 

 real*8  f(1:cd,1:xd,1:yd), f0(1:cd,1:xd,1:yd) 

 real*8  g(1:dd,1:xd,1:yd), g0(1:dd,1:xd,1:yd) 

 real*8  ux(1:xd,1:yd), uy(1:xd,1:yd), rho(1:xd,1:yd) 

 real*8  temp(1:xd,1:yd) 

 real*8  u0,  rho0, pi,tc,th 

 

 pi = 4.0*atan(1.0) 

    cx(1) =  0.0 

    cy(1) =  0.0 

    do k = 2,9 

 w(k) = 1. 

 if(mod(k, 2) .eq. 1.) w(k) = sqrt(2.) 

  cx(k) = w(k)*cos((k-2)*pi/4.0) 

        cy(k) = w(k)*sin((k-2)*pi/4.0) 

    enddo 

 

 dx(1) = 1.0    

 dy(1) = 0.0    

 dx(2) = 0.0   

 dy(2) = 1.0   

 dx(3) = -1.0  

 dy(3) = 0.0   

 dx(4) = 0.0   

 dy(4) = -1.0  

 

 do i = 1,xd 

   do j = 1,yd 

    rho(i,j) = 1.0 

 

    if (i.eq.1) then 

     ux(i,j) = 0.0 

     uy(i,j) = 0.0 

     temp(i,j) = th 

    else 

     ux(i,j) = 0.0 

     uy(i,j) = 0.0 

     temp(i,j) = tc 

    end if 
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   end do 

  end do   

 call equilibrium1 (cx,cy,f0,ux,uy,rho,cd,xd,yd,dx,dy,g0,temp,dd) 

 

 do k = 1,cd 

  do i = 1,xd 

   do j = 1,yd 

    f(k,i,j) = f0(k,i,j) 

   end do 

  end do 

 end do 

 

 do k = 1,dd 

  do i = 1,xd 

   do j = 1,yd 

    g(k,i,j) = g0(k,i,j) 

   end do 

  end do 

 end do 

 

 return  

 end 

 

    subroutine equilibrium1 

(cx,cy,f0,ux,uy,rho,cd,xd,yd,dx,dy,g0,temp,dd) 

!--------------------------------------------------------------------- 

 real*8  cx(1:cd), cy(1:cd), f0(1:cd,1:xd,1:yd) 

 real*8  dx(1:dd), dy(1:dd) 

 real*8  g0(1:dd,1:xd,1:yd) 

    real*8  ux(1:xd,1:yd), uy(1:xd,1:yd), rho(1:xd,1:yd) 

 real*8  temp(1:xd,1:yd) 

 real*8  u2, tmp 

 integer i, j, k, m 

 

    do i = 1,xd 

  do j = 1,yd 

    u2 = ux(i,j)**2 + uy(i,j)**2 

    f0(1,i,j) = rho(i,j)*(1. - 3./2.*u2)*4./9. 

    do k = 1,4 

    m = k*2    ; tmp = cx(m)*ux(i,j) + 

cy(m)*uy(i,j) 

    f0(m,i,j) = rho(i,j)*(1. + 3.*tmp + 

9./2.*tmp**2 - 3./2.*u2)/9. 

    m = k*2 + 1; tmp = cx(m)*ux(i,j) + 

cy(m)*uy(i,j) 

    f0(m,i,j) = rho(i,j)*(1. + 3.*tmp + 

9./2.*tmp**2 - 3./2.*u2)/36. 

    end do 

  end do 

 end do 

 

 do i = 1,xd 

  do j = 1,yd 

  u2 = ux(i,j)**2 + uy(i,j)**2 

   do k = 1,dd 

    tmpg = dx(k)*ux(i,j) + dy(k)*uy(i,j) 

    

    g0(k,i,j) = rho(i,j)*temp(i,j)*(1. + 

2.*tmpg)/4.   

   end do 
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       end do 

 end do 

 

 return 

 end 

 

 

   subroutine collide1 (f,f0,tauv,cd,xd,yd,g,g0,tauc,dd) 

!--------------------------------------------------------------------- 

 real*8  f(1:cd,1:xd,1:yd), f0(1:cd,1:xd,1:yd), tauv 

 real*8  g(1:dd,1:xd,1:yd), g0(1:dd,1:xd,1:yd), tauc 

 integer i, j, k 

 

    do k = 1,cd 

  do i = 1,xd 

   do j = 1,yd 

    f(k,i,j) = f(k,i,j) - (f(k,i,j) - 

f0(k,i,j))/tauv 

    if (f(k,i,j) .le. -1) then 

     write(*,*)i,j,'error' 

    endif 

   end do 

  end do 

 end do 

 

 do k = 1,dd 

  do i = 1,xd 

   do j = 1,yd 

    g(k,i,j) = g(k,i,j) - (g(k,i,j) - 

g0(k,i,j))/tauc 

    if (g(k,i,j) .le. -1) then 

     write(*,*)i,j,'error' 

    endif 

   end do 

  end do 

 end do 

 

 return 

 end 

 

 

 subroutine force (cx,cy,ux,uy,temp,f,f0,gra,cd,xd,yd) 

!--------------------------------------------------------------------- 

 real*8 f(1:cd,1:xd,1:yd), temp(1:xd,1:yd),cy(1:cd),cx(1:cd) 

 real*8 f0(1:cd,1:xd,1:yd) 

 real*8 ux(1:xd,1:yd), uy(1:xd,1:yd) 

 integer i, j, k 

 

 tempor = 0.0 

 do i = 1,xd 

       do j = 1,yd 

    tempor = tempor + temp(i,j) 

    tempave = tempor/(yd*yd) 

    end do 

 end do 

  

 do k = 1,cd 

      do i = 1,xd 

       do j = 1,yd 
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    f(k,i,j) = f(k,i,j) + 3*gra*(cy(k)-

uy(i,j))*f0(k,i,j)*(temp(i,j)-tempave) 

   end do 

  end do 

 end do 

 

 return 

 end 

 

 subroutine stream1 (f,cd,xd,yd,g,dd) 

!--------------------------------------------------------------------- 

 real*8  f(1:cd,1:xd,1:yd),g(1:dd,1:xd,1:yd) 

    real*8  tmp(1:cd,1:xd,1:yd),tmpg(1:dd,1:xd,1:yd) 

 integer i, j, k 

! 

      do k = 1,cd 

       do i = 1,xd 

        do j = 1,yd 

         tmp(k,i,j) = f(k,i,j) 

   end do 

  end do 

 end do 

 

 do k = 1,dd 

       do i = 1,xd 

        do j = 1,yd 

         tmpg(k,i,j) = g(k,i,j) 

   end do 

  end do 

 end do 

     

 do k = 1,cd 

       if(k .eq. 1) then 

        do i = 1,xd; do j = 1,yd 

     ii = i    ; jj = j 

         f(k,ii,jj) = tmp(k,i,j) 

   end do; end do 

 

  else if(k .eq. 2) then 

        do i = 1,xd-1; do j = 1,yd 

    ii = i + 1; jj = j 

         f(k,ii,jj) = tmp(k,i,j) 

  end do; end do 

 

  else if(k .eq. 3) then 

        do i = 1,xd-1; do j = 1,yd - 1 

    ii = i + 1; jj = j + 1 

         f(k,ii,jj) = tmp(k,i,j) 

   end do; end do 

 

  else if(k .eq. 4) then 

        do i = 1,xd; do j = 1,yd - 1 

    ii = i    ; jj = j + 1 

         f(k,ii,jj) = tmp(k,i,j) 

   end do; end do 

 

  else if(k .eq. 5) then 

        do i = 2,xd; do j = 1,yd - 1 

    ii = i - 1; jj = j + 1 

         f(k,ii,jj) = tmp(k,i,j) 
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   end do; end do 

 

  else if(k .eq. 6) then 

        do i = 2,xd; do j = 1,yd 

    ii = i - 1; jj = j 

         f(k,ii,jj) = tmp(k,i,j) 

   end do; end do 

 

  else if(k .eq. 7) then 

        do i = 2,xd; do j = 2,yd 

    ii = i - 1; jj = j - 1 

         f(k,ii,jj) = tmp(k,i,j) 

   end do; end do 

 

  else if(k .eq. 8) then 

        do i = 1,xd; do j = 2,yd 

    ii = i    ; jj = j - 1 

         f(k,ii,jj) = tmp(k,i,j) 

   end do; end do 

 

  else if(k .eq. 9) then 

        do i = 1,xd-1; do j = 2,yd 

    ii = i + 1; jj = j - 1 

         f(k,ii,jj) = tmp(k,i,j) 

   end do; end do 

  end if 

 end do 

 

 

 do k = 1,dd 

       if(k .eq. 1) then 

        do i = 1,xd-1; do j = 1,yd  

    ii = i + 1; jj = j  

         g(k,ii,jj) = tmpg(k,i,j) 

   end do; end do 

 

  else if(k .eq. 2) then 

        do i = 1,xd; do j = 1,yd - 1 

    ii = i ; jj = j + 1 

         g(k,ii,jj) = tmpg(k,i,j) 

   end do; end do 

 

  else if(k .eq. 3) then 

        do i = 2,xd; do j = 1,yd 

    ii = i - 1; jj = j  

         g(k,ii,jj) = tmpg(k,i,j) 

   end do; end do 

 

  else if(k .eq. 4) then 

        do i = 1,xd; do j = 2,yd 

    ii = i ; jj = j - 1 

         g(k,ii,jj) = tmpg(k,i,j) 

   end do; end do 

 

  end if 

 end do 

         

 

 return 

 end 
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 subroutine boundary1 

(f,f0,rho,u0,cd,xd,yd,g,g0,temp,dd,x1,x2,y1,y2) 

!--------------------------------------------------------------------- 

 real*8  f(1:cd,1:xd,1:yd),f0(1:cd,1:xd,1:yd) 

 real*8  g(1:dd,1:xd,1:yd),g0(1:dd,1:xd,1:yd) 

 real*8  temp(1:xd,1:yd) 

 real*8  u0 

 real*8  rho(1:xd,1:yd) 

 

 ! BOUNCE BACK boundary conditon bottom 

 do i = 2,xd-1  !bottom 

 f(4,i,1) = f(8,i,1) 

 f(3,i,1) = f(7,i,1)  

 f(5,i,1) = f(9,i,1)  

 

 ! no slip bounce back 

 g(2,i,1) = g(4,i,1)  

 end do 

 

 do i = 2,xd-1  !upper 

 f(7,i,yd) = f(3,i,yd) 

 f(9,i,yd) = f(5,i,yd)  

 f(8,i,yd) = f(4,i,yd)  

 

 ! no slip bounce back 

 g(4,i,yd) = g(2,i,yd) 

 end do 

  

 ! left and right boundary condition 

 do j = 2,yd-1  !left boundary 

 f(2,1,j) = f(6,1,j) 

 f(3,1,j) = f(7,1,j)  

 f(9,1,j) = f(5,1,j)  

     

 g(1,1,j) = g(3,1,j) 

 end do 

 

 do j = 2,yd-1  !right boundary 

 f(5,xd,j) = f(9,xd,j)  

 f(6,xd,j) = f(2,xd,j) 

 f(7,xd,j) = f(3,xd,j)  

 

 g(3,xd,j) =g(1,xd,j) 

 end do 

 

 ! four corner boundary condition 

 f(9,1,yd) = f(5,1,yd) 

 f(8,1,yd) = f(4,1,yd) 

 f(2,1,yd) = f(6,1,yd) 

 g(4,1,yd) = g(2,1,yd) 

 g(1,1,yd) = g(3,1,yd) 

 

 f(7,xd,yd) = f(3,xd,yd) 

 f(6,xd,yd) = f(2,xd,yd) 

 f(8,xd,yd) = f(4,xd,yd) 

 g(3,xd,yd) = g(1,xd,yd) 

 g(4,xd,yd) = g(2,xd,yd) 
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 f(3,1,1) = f(7,1,1) 

 f(2,1,1) = f(6,1,1) 

 f(4,1,1) = f(8,1,1) 

 g(1,1,1) = g(3,1,1) 

 g(2,xd,yd) = g(4,xd,yd) 

  

 f(5,xd,1) = f(9,xd,1) 

 f(4,xd,1) = f(8,xd,1) 

 f(6,xd,1) = f(2,xd,1) 

 g(2,xd,1) = g(4,xd,1) 

 g(3,xd,yd) = g(1,xd,yd) 

  

 return 

 end 

 

 

   subroutine calc1 

(cx,cy,f,ux,uy,rho,u0,rho0,cd,xd,yd,temp,g,tc,th,dd,dx,dy,x1,x2,y1,y2) 

!--------------------------------------------------------------------- 

 real*8  cx(1:cd), cy(1:cd), f(1:cd,1:xd,1:yd) 

 real*8  dx(1:dd), dy(1:dd) 

 real*8  temp(1:xd,1:yd),g(1:dd,1:xd,1:yd) 

 real*8  ux(1:xd,1:yd), uy(1:xd,1:yd), rho(1:xd,1:yd) 

 real*8  u0,rho0,th,tc 

 integer i, j, k 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

  

  

 do i = 1,xd 

  do j = 1,yd 

   rho(i,j) = f(1,i,j); ux(i,yd)=0.0; uy(i,j) = 0.0; 

ux(i,j) = 0.0 

   do k = 2,cd 

    ux(i,j) =  ux(i,j) + f(k,i,j)*cx(k) 

    uy(i,j) =  uy(i,j) + f(k,i,j)*cy(k) 

    rho(i,j)=rho(i,j)+f(k,i,j)   

  

 

    end do 

   end do 

 end do 

 

 do i = 1,xd 

  do j = 1,yd 

   temp(i,j) = g(1,i,j);  

   do k = 2,dd 

    temp(i,j) = temp(i,j) + g(k,i,j) 

    end do 

  end do 

 end do 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!! 

 do i = 1,xd 

   do j = 1,yd 

    if (i.eq.1) then 

     ux(i,j) = 0.0 
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     uy(i,j) = 0.0 

     temp(i,j) = th 

    else 

    if (rho(i,j) .ne. 0.) then 

    ux(i,j) =  ux(i,j)/rho(i,j) 

    uy(i,j) =  uy(i,j)/rho(i,j) 

    temp(i,j) = temp(i,j)/rho(i,j) 

   else 

    ux(i,j)  = 0. 

    uy(i,j)  = 0. 

    temp(i,j) = 0. 

    end if 

    end if 

   end do 

  end do 

 

 

 do i= 1,xd 

   temp(i,1)=temp(i,2)   !adiabatic right 

wall 

   temp(i,yd)=temp(i,yd-1)     !cold 

left wall  

 end do 

 

    return 

 end 
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