INVESTIGATE THE DELAY OF CRACK INITIATION USING STOP DRILLED HOLES ON MILD STEEL

RIDZUAN SHAH BIN RAZI VARATHAU RAJOO

BACHELOR OF MECHANICAL ENGINEERING UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG FACULTY OF MECHANICAL ENGINEERING

We certify that the project entitled "Investigate the Delay of Crack Initiation Using Stop Drilled Holes on Mild Steel" is written by Ridzuan Shah Bin Razi Varathau Rajoo. We have examined the final copy of this project and in our opinion; it is fully adequate in terms of scope and quality for the award of the degree of Bachelor of Engineering. We herewith recommend that it be accepted in partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering.

Examiner

Signature

INVESTIGATE THE DELAY OF CRACK USING STOP DRILLED HOLES ON MILD STEEL

RIDZUAN SHAH BIN RAZI VARATHAU RAJOO

Thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Mechanical Engineering

> Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this project and in my opinion, this project is adequate in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering.

Signature Name of Supervisor: Mr. Lee Giok Chui SMN,.KMN. Position: Supervisor Date: November 2009

STUDENT'S DECLARATION

I hereby declare that the work in this project is my own except for quotations and summaries which have been duly acknowledged. The project has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature Name: Ridzuan Shah Bin Razi Varathau Rajoo ID Number: MA06084 Date: November 2009

TABLE OF CONTENTS

	Page
SUPERVISOR'S DECLARATION	ii
STUDENT'S DECLARATION	iii
ACKNOWLEDGEMENTS	v
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS	xiv
LIST OF ABBREVIATIONS	XV

CHAPTER 1 INTRODUCTION

1.1	Introduction	1
1.2	Problem Statement	1
1.3	Project Objectives	2
1.4	Project Scopes	2

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	3
2.2	Crack	3
2.3	Stop Drilling Technique	4
2.4	Mechanical Properties	7

	2.4.1	Stress	7
	2.4.2	Strain	8
	2.4.3	Modulus of Elasticity	8
	2.4.4	Elasticity	8
	2.4.5	Yield Strength	8
2.5	Mecha	anical Testing	9
2.6	Finite	Element Method	9
	2.6.1	Basic Steps in Finite Element Analysis	10
	2.6.2	Advantages of Finite Element Analysis	10

CHAPTER 3 METHODOLOGY

3.1	Introduction	11
3.2	Flowchart	12
3.3	Preparation of Specimen	13
3.4	3.3.1 Specimen for the Testing 13.3.2 Specimen for the Testing 2Standard Tensile Test	14 15 16
3.5	3.4.1 Set up the Test Machine and Software Finite Element Analysis	17 21
3.6	3.5.1 Introduction3.5.2 Finite Element AnalysisModel Validation	21 21 24

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introduction	25
4.2	Tensile Test Result	25
	4.2.1 Result for Testing 1	25
	4.2.2 Result for Testing 2	30
4.3	Finite Element Analysis Result	33
	4.3.1 FEA Result for Testing 1	33
	4.3.2 FEA Result for Testing 2	41
4.4	Result Validation	45

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	47
5.2	Recommendation	48

49

REFERENCES

APPENDICES

		50
A1	Gantt Chart For FYP1	50
A2	Gantt Chart For FYP2	51
B1	Specimen with Full Dimension	52
B2	Specimen for Testing 1 in 3-D View	53
B3	Specimen for Testing 2 in 3-D View	54
C1	FEA Analysis Figure for Specimen P10	55
C2	FEA Analysis Figure for Specimen P11	56
C3	FEA Analysis Figure for Specimen P13	57
C4	FEA Analysis Figure for Specimen P22	58
C5	FEA Analysis Figure for Specimen P24	59

LIST OF TABLES

Table No	D. Title	Page
2.1	Result Obtained	6
3.1	Categories of Specimen for the Testing 1	14

3.2	Categories of Specimen for the Testing 2	15
4.1	Data for Testing 1	26
4.2	Data for Testing 2	30
4.3	The Data for Specimen P10	33
4.4	The Data for Specimen P11	35
4.5	The Data for Specimen P13	38
4.6	The Data for Specimen P22	41
4.7	The Data for Specimen P24	43
4.8	Result Comparison for Testing 1	45
4.9	Result Comparison for Testing 2	46

LIST OF FIGURES

Figure	e No. 7	Title	Page
2.1	Position of the Ancillary	Holes	4
2.2	The Dimension of Specim	ien	5

2.3	Schematic Representation of Crack Growth	7
3.1	The Actual Specimen	13
3.2	The Sketch of Stop Holes Position	14
3.3	The Arrangement of Stop Holes	15
3.4	Universal Tensile Machine DTU-900 MH Series	16
3.5	Clamping Position of the Plate	17
3.6	The software of Universal Tensile Machine DTU-900 MH Series	18
3.7	Code Editor Specifications	18
3.8	Pre-Testing Set up Window	19
3.9	The Graph Plotted by the Software	19
3.10	The Print Work Window	20
3.11	The Graph Viewed	20
3.12	Specimen in Symmetrical Geometry	21
3.13	Specimen in Full Geometry	22
3.14	Mesh Condition of the Model	22
3.15	Nodal and Boundary Condition Applied to the Model	24
4.1	Load Vs Diameter Graph	27
4.2	Yield Stress Vs Diameter Graph	28
4.3	Time Vs Diameter Graph	28
4.4	Load Vs Arrangement of Holes	31
4.5	Yield Stress Vs Arrangement of Holes	31
4.6	Time Vs Arrangement of Holes	32
4.7	The Analysis Figure for Specimen P10	34

4.8	Stress Distribution for Specimen P10	35
4.9	The Analysis Figure for Specimen P11	36
4.10	Stress Distribution for Specimen P11	37
4.11	The Analysis Figure for Specimen P13	39
4.12	Stress Distribution for Specimen P13	40
4.13	The Analysis Figure for Specimen P22	42
4.14	Stress distribution for Specimen P22	42
4.15	The Analysis Figure for Specimen P24	44
4.16	Stress Distribution for Specimen P24	44

LIST OF SYMBOLS

- A Cross Sectional Area
- *mm* Millimetre
- s Second
- t Thickness

l	Length
W	Width
d	Diameter
x	Horizontal distance
У	Vertical distance
Ν	Newton
σ_y	Yield Stress
Р	Load
Kt	Stress concentration factor
δ	Ancillary hole
E	Modulus of Elasticity
σ	Stress
Е	Strain

LIST OF ABBREVIATIONS

AISI	American Iron and Steel Institute
ASTM	American Society for Testing Materials
FE	Finite Element

FEA Finite Element Analysis

FEM Finite Element Model