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ABSTRACT 
Even the 2D model has become popular in a few areas of river modelling due to the availability 

of high-resolution data and development of computer technology, the 1D model has not lost its 

market. It has long been used in simulating fluvial hydrodynamics and the associated processes 

such as sediment transport, pollutant dispersion and flooding caused by overtopping or breaching 

of river banks. In some case of modelling a fluvial flood event, it is still difficult to resolve the 

problematic river reach in a 2D manner, thus it is desirable to have a 1D component that can deal 

with the highly dynamic and complex flow hydrodynamics under flood conditions. It is 

advantageous to have a model solving the fully 1D shallow water equations by the robust 

Godunov-type scheme so that the unsteady flow in different regimes, including shock-like flow 

discontinuity, can be reliable simulated (Toro, 2001). The same goes to the solute transport 

which is closely related to the water quality in shallow water bodies. Solute transport has great 

impacts on the local environment and ecosystem as it is a common process that take place in 

rivers, lakes and estuarine. When it is associated with an urban flood event it may also cause 

potential risk on public health. So, understanding the solute transport processes in shallow flows 

is thus of fundamental and practical importance to hydraulic and environmental engineering as it 

provides an essential tool for water quality management, environmental impact assessment and 

hydraulic design (Falconer, 1992).  
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INTRODUCTION 
Due to drastically increase in populations, flood incidence become more frequent especially in 

urban area. The occurrence of flood inundation is due to breach of flood defences or inadequate 

capability of the drainage systems after heavy rainfall. Flood risk is expected to increase 

significantly in and beyond the 21
st
 century due to climate change and rapid urbanisation. It has  

been reported that flooding is one of the major natural disasters to human life and assets. One-

third of all losses due to nature’s forces can be attributed to flooding (Bates and Roo, 2000) and 

recently, losses generated by flood disaster have increased drastically.  
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As the computer modelling has now become the primary tool in simulating flood flows, therefore 

it is essential to develop or improve the flood modelling system in order to cope with greater 

urbanisation and climate change. As in a flood event, the flood flows can be a major source of 

pollution as well as it picks up potentially harmful substances from surfaces such as oil, 

household chemicals and faecal material. Those detrimental substances will then be transferred 

to urban watercourses. This excess foul poses risks to human health and impact to the 

environment. Due to this, contaminated flow and solute transport are found as important aspects 

to be considered in developing an intensive flow model.  

 

This work presents a development of a 1D hydraulic model that has been extended to include the 

diffusion-advection process. The integrated model will be used to simulate the hydrodynamics 

flows in channels and rivers together with the evolution of flood flows in the large-scale 

floodplain. It is essential to have a reliable 1D fluvial flood model to simulate and provide an 

accurate description of the flow hydrodynamics in the river reach as in some cases it is difficult 

to resolve the problematic river reach in a 2D manner. As most of the 1D engines are based on 

the solution to an approximated form of the fully 1D shallow water equations (Cunge et al., 

1980), thus it is desirable to have a 1D component that can deal with the highly dynamic and 

complex flow hydrodynamics under flood conditions, with full consideration of the convective 

and source terms.  

 

 

METHODS 
Development of 1D Integrated Shallow Water Flow Model 

One of the main tasks is to develop the one-dimensional surface flow solved by the Godunov-

type numerical scheme. The 1D open channel flow model will be integrated with the pollutant 

transport that flows together during and after the flood event. The dependent variables are the 

changes in water level; h and the flow; q along the channel. Those variables are predicted by 

numerically solving the St. Venant or so called shallow water equations; as they have been 

experimentally confirmed (Cunge et al., 1980) and are accepted for many practical applications 

in modelling the unsteady flow in either one or two dimensional approach (Brufau  et al., 2002). 

The fundamental used in the mathematical modelling of rivers are formalized in the equation of 

unsteady one dimensional open channel flow and is written as in (1):  
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The unsteady flow can be described by two dependant variables, the water depth, h and the 

discharge, q=uh in a function of space, x and time, t. u is the average velocity. The flow variable 

vector; u , flux vector; f and the source term vector; s  are given as (2); 
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where  is the water level, Zb denotes the bed elevation so that h =  – Zb, g is the acceleration 

due to gravity, b is the channel width, Cf  = gn
2
/h

1/3
 is the bed roughness coefficient with n being 

the Manning coefficient while ch is the conservative solute concentration with c being the solute 

concentration and  sc is a source or sink term for the solute concentration. Employing directly the 

water level  (instead of water depth h) as a flow variable, the above shallow water equations 

automatically provide well-balanced solutions for wet-bed applications and facilitate 

constructing a numerical scheme to deal with wetting and drying (Greenberg and LeRoux, 1996).  

It is a common practice to resort to St Venant shallow water equation in modelling (Birman and 

Falcovitz, 2006). The solute transport process is described by the advection-dispersion equations 

in one dimensional and is written together with the 1D shallow flow model so that they can be 

ran simultaneously. These equations consist of unsteady term which represents local time 

variation and the convective variation and adequately described the unsteady behaviour of the 

river flow whilst taking into account the longitudinal hydrostatic pressure gradient, the frictional 

resistance of the bed and the momentum of flow while retaining the mathematical balance 

between the flux gradient and source terms and also preserves steady state automatically.   

 

Numerical simulations and benchmark tests 

This work addresses numerical discretization using finite volume Godunov-type scheme. The 

interface fluxes prediction for the one-dimensional unsteady shallow water equation were 

directly obtained by implementing the Riemann problem as it is also form the bases of very 

efficient and robust Godunov-type method (Toro, 1999). The essential component of Godunov’s 

method is the solution of the Riemann problem which describes the interaction of two different 

constant (velocity and pressure) states. By applying HLL Riemann solver with the second order 

Runge-Kutta time stepping method, the accuracy of computation is expected. Using a finite 

volume Godunov-type scheme, the following discretized formula as in (3) is used to update the 

flow variables from time level k to k + 1: 

 

  iii

k

i

k

i t
x

t
sffuu 




 



2121

1
                         (3) 

 

where the subscript i denotes the cell index, Δx and Δt are respectively the cell size and time 

step, fi+1/2 and fi–1/2 are the interface fluxes through the two edges of cell i. In the context of a 

Godunov-type scheme, the fluxes are evaluated by solving local Riemann problems defined by 

the Riemann states on either sides of an interface. In this work, the HLL approximate Riemann 

solver (Amiram et al., 1983) is adopted for flux calculation due to its superior advantages in 

providing automatic entropy fix and facilitating wetting and drying. To improve the temporal 

accuracy of the scheme and the time marching, the second-order Runge-Kutta method is applied 

and (3) now becomes (4): 
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The Runge-Kutta coefficients and the intermediate flow variables are defined by (5) and (6) 

respectively. 
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The numerical scheme or the developed model is then examined under a wide variety of physical 

conditions experienced in open channel. Taking the works done by previous researchers as a 

benchmark, simulation using the proposed method was done and discussed in the following 

section. 

 

 

RESULTS AND DISCUSSION 
Simulations done in order to study the capability of the current model by applying a number of 

experimental and analytical tests involving changing in the channel width and  bed profile. The 

model successfully handles all of the tests and produces results agreeing well with experimental 

measurements or analytical solutions, which implies its potential in more practical applications.  
 

Tidal wave flow and flow over an irregular bed 

Presented here is test on tidal flow proposed by Bermudes and Vasquez (Bermudez and 

Vazquez, 1994). The tidal flow over an irregular bed which is defined by (7) 
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Where the channel length L is 14000 m. The initial condition are    xHxh 0, and   00, xu . The  

boundary conditions are as (8) 
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Having simulated using the proposed model, Figure 1 and 2 show the comparison of the 

numerical results with the analytical solution at t =7552.13 s. These excellent agreements  

suggest that the proposed scheme is accurate for tidal flow problems.  

 

 

a) Comparison of water surface 
 

b) Comparison of velocity 
 

Figure 1: Tidal wave flow 
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In order to validate its performance on irregular bed, another simulation was done by taking the 

tabulated data in Table 1 as the bed profile of a channel. Replacing the   160 H , L=1500 m 

and      xZHxH b 0  while maintaining the previous initial and boundary conditions as (7) 

and (8), the tidal wave over an irregular bed is validated. 

 

Table 1. Bed elevation, zb at point x 

x 0 50 100 150 250 300 350 400 425 435 450 475 500 505 

Zb 0 0 2.5 5 5 3 5 5 7.5 8 9 9 9.1 9 

x 530 550 565 575 600 650 700 750 800 820 900 950 1000 1500 

Zb 9 6 5.5 5.5 5 4 3 3 2.3 2 1.2 0.4 0 0 

 

Figure 2 shows a comparison between the predicted surface and the analytical solution at t = 
10800 s. A comparison of velocities is depicted in Figure 3. Again, excellent agreement is 

obtained between the numerical and the analytical solutions. Hence confirms that the proposed 

scheme is also accurate for tidal flow over an irregular bed. 

 
Figure 2: The irregular bed profile 

 
Figure 3: Comparison of velocity between numerical and analytical solutions at t=10800s 
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Flows along a horizontally and vertically contracted channel. 

Along a 3 m horizontally and vertically contacted domain, the bottom topography is given by 

(9). 

  




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
otherwise                         0
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while the channel width varies as (10). 
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The first test case fixed the outflow at 1 m depth. When a unit-width discharge of q = 1.566 m
2
/s 

is imposed at the upstream boundary, thus a subcritical flow is developed as in Figure 4. 

Simulation starts from q = 1.566 m
2
/s and η = 1 m throughout the whole domain and run until the 

steady-state solution is reached. Figure 5 illustrates that the flow is critical at the narrowest 

section along the channel at  x = 1.5 m as the inflow changed to q = 1.879 m
2
/s. As the water 

continues flowing downstream, it turns into a supercritical condition. 

 

  
Figure 4: Subcritical flow Figure 5: Transcritical flow 

 

Figure 6 shows the supercritical flow developed when a greater amount of discharge is imposed 

at the upstream end. For all of the three cases, the numerical predictions match perfectly the 

analytical solutions. 

 

 
 

Figure 6: Supercritical flow 
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Fate of pollutant on a frictionless dry bottom 

For the time being, in order to check the efficiency of the integrated model in dealing with the 

fate of pollutant, the proposed integrated model has been tested on a simple bench mark test. 

Hence, a laboratory test done by Concerted Action on Dam Break Modelling (CADAM) is 

chosen to be simulated by the proposed model. The results are compared with the  analytical 

solutions.  

 

The laboratory test CADAM takes place in a 2000m long  by 200 m width channel. The 

upstream reservoir is separated with the downstream valley by a dam that is located 1000m away 

from the upstream end of the channel. The still water in the reservoir is polluted and the well-

mixed solute has a concentration of 1. As there is no diffusion considered, the solute 

concentration is 1 wherever there is water and 0 over the dry bed and thus the analytical solution 

for qc is the same as that of water depth in magnitude. The simulation is carried out on a uniform 

grid. Figure 7 presents the numerical water depth plotting against the analytical solution at t = 

50s. The predicted depth-averaged velocity is shown in Figure 8 and agrees closely with the 

analytical solution in most of the domain. Figure 9 demonstrates the solute concentration, which 

matches perfectly the analytical solution. The results confirm the capability of the current 

numerical scheme on simulating the pollutant  concentration.  

 

 

 
Figure 7:  Flow profile along the 2000 m channel Figure 8: Velocity profile along the channel 

 

 
Figure 9: Solute concentration distribution 
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CONCLUSIONS AND RECOMMENDATIONS 
Up to now, a 1D hydraulic model is developed by solving the governing St Venant equations 

with varying width using a Godunov-type finite-volume scheme in conjunction with the HLL 

approximate Riemann solver. HLL approximate Riemann solver is chosen to find the direct 

approximation of fluxes through the cell interfaces. The higher-order accuracy of the numerical 

approach is then achieved using a 2
nd

 Order Runge-Kutta time integration method. The model 

has been validated against several benchmark tests of open channel flow, where the numerical 

predictions are compared with analytical solutions and experimental data available in literature. 

Close agreement has been achieved for all the tests being considered and this confirms the 

effectiveness of the current 1D code.  

 

In the next stage, the 1D hydrodynamic model that integrated with the solute transport model 

will be used to simultaneously solving more test cases the. The integrated model later will be 

used to simulate an idealised real-world flood event. The specific contributions of these studies 

include: 

 A fully 1D hydrodynamic model that can deal with the highly dynamic and complex 

flow hydrodynamics under certain flood conditions. 

 An extended 1D model is expected to be capable to simulate the fate of pollutant 

simultaneously for high flood event in high dense areas. 

 The schemes used are able to deal with flow over irregular topography and some other 

issues as discussed in literature. 
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