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Abstract--Recently, we have introduced the first 
version of ACOPIN, an Ant Colony Optimization 
(ACO) algorithm for clustering proteins in the protein 
interaction network (PIN). Based on the experimental 
results, we have discovered serious pitfalls; very 
difficult to define the boundaries among clusters and 
unable to identify the overlapping clusters. These 
pitfalls contribute to low accuracy of detected cluster 
especially for the larger size. In this paper, we improve 
ACOPIN to overcome these pitfalls. The improvement 
includes the construction tour of ant based on 
topological weight and functional similarity weight. 
Artificial ants themselves perform the ‘exploration’ and 
‘exploitation’ process in the PIN with the assistance 
from pheromone trails. We simulate the improved 
version onto one Yeast datasets and the result shows 
that the detected clusters has very high accuracy in 
terms of  functional homogeneity of proteins. 

 
 

INTRODUCTION 
 
Protein is one of important components in a cell. In 

order to make a cell functioning, protein needs to 
interact with other components such as DNA, RNA or 
other proteins. Interaction among proteins or protein-
protein interaction (PPI) is detected via high-
throughput methods such Yeast2-Hybrid, Mass 
Spectrometry and Protein Micro-Array.  

The network of these PPIs, called protein 
interaction network (PIN) are currently investigated in 
terms of topology, motifs, correlation structure and 
modular properties that are related to function [Park 
C.S Functional Module]. To perform this investigation, 
the most popular approach is detecting the clusters in 
PIN, which biologically refers to ‘functional modules’. 
Various clustering algorithms have been proposed, 
however due to the presence of noisy and intricate data, 
these algorithms have not been successful to achieve 
high performance of clustering process [1].     

Recently, we have introduced ACOPIN [2], an Ant 
Colony Optimization (ACO) for clustering proteins in 
the protein interaction network (PIN).  Based on the 
experimental results, we discover serious pitfalls where 
it was very difficult to define the cluster boundaries 
thus it produced low accuracy of detected clusters. In 
this paper, we improve the ACOPIN to overcome these 
pitfalls. The improvement includes the construction 
tour by artificial ants based on topological weight and 

functional similarity weight. Artificial ants themselves 
perform the ‘exploration’ and ‘exploitation’ with the 
assistance of pheromone trails update. We simulate the 
improved version onto one Yeast datasets and the 
result is very convincing and shows the highly 
effectiveness. 

The rest of the paper is organized as follows; 
Section 2 presents the background and the related 
work. Section 3 describes ACOPIN-v1 and the pitfalls. 
Section 4 describes the improvement tasks and Section 
5 reports part of experiment results. Finally, the 
conclusion of this paper is drawn in section 6. 

 
 

BACKGROUND AND RELATED WORKS 
 
Ant Colony Optimization (hereinafter known as 

ACO) is the one of the recent heuristic algorithm  
developed to solve combinatorial optimization 
problems such as Traveling Salesman Problem, 
Vehicle Routing Problem, Quadratic Assignment 
Problem, Job Shop Scheduling Problem, etc [3]. The 
original version of ACO, Ant System, was developed 
by Marco Dorigo and his colleagues in early 1990 [4]. 
ACO mimics the behavior of ants foraging that move 
from their nest to the food sources and return to nest in 
a shortest path. This mimic gives various inspirations 
to the researchers for designing the methods and was 
proven to solve the problem optimally. 
 
procedure ACO 
  initialiaze_parameter  

while termination_condition not met 
    schedule_activities     

     contructAntsolutions() 
       update_pheromone() 

   daemon_actions()  //optional 
    end schedule_activities 

 end while 
end procedure 

Fig. 1. High level view of ACO algorithm. 
 

Since 2003, the problem of clustering proteins in 
PIN has been vigorously investigated. The clustering 
approaches such as graph-based clustering, hierarchical 
clustering and distance-based clustering are the 
common approach that have been used. Based on the 
capability of ACO handling routing, scheduling  and 
optimization problem, we have tried to adapt ACO to 
this problem [2,5,6]. First, we study the ACO 



implementation in TSP problem. From there, we 
gather, why don’t artificial ants explore and exploit in 
PIN. To the best our knowledge, there is no existing 
ACO algorithm for clustering proteins in PIN. 

 
 

ACOPIN-V1: FIRST VERSION AND PITFALLS 
 

Clustering process of the first version (hereinafter 
known as ACOPIN-v1) is solely based on topological 
properties of PIN. The main idea of ACOPIN-v1 was 
to find an optimal path in a given PIN. In this solution, 
we described the protein-protein interactions as a 
connectivity graph or PIN (G = V, E) where nodes (or 
vertices, V) correspond to proteins and edges, E 
correspond to the interactions. This PIN is represented 
by the interaction  matrix aij, and we calculate the 
distances between nodes by transforming the 
interaction matrix aij to distance matrix dij using Bond 
Energy Algorithm (BEA)[5]. We apply a TSP-problem 
approach where artificial ants just explore the PIN 
without exploiting the information of the nodes 
(proteins). The information on edge (distances) is the 
only input used. In this case, we apply the ASDecision 
Rules when at junction to choose. The GO Terms is 
used to validate the initial predicted clusters and based 
on the probability only.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Fig. 2. The process flow of ACOPIN-v1. 

 
The cut-off value is used to define the boundaries of 

protein clusters, however, if too high, the clusters 
contain too many proteins some of which are not 
similar at all; on the other hand, when the cut-off is too 
low, the clusters are too small. More information on 
ACOPIN-v1 can be found in [2]). The flow chart and 
the high level view algorithm for ACOPIN-v1 is shown 
in Figure 2 and Figure 3 accordingly.  

procedure construct_solution 
  input = PIN instance{vertex i,j, dij} 
  output = {paths Pt, cluster C} 

for all ants; 
  place_ant_randomly 
  for each ant 
    perform tour() 

end procedure 
 
procedure update_pheromone 
 select_the_optimal_tour() 
 identify_cluster_by_using_cut-off() 
end procedure 

Fig. 3. ACOPIN-v1 algorithm. 
 
We interpret the optimal path as a clustering of PIN. 

We expect that proteins with similar functions are 
likely to be close together in the path. The reasoning 
for this is that proteins with similar functions are likely 
to interact with similar partners and so will have a short 
distance between them in the transformed matrix, this 
means they are likely to be close on the optimal path. 
However, the difficulty with this clustering method is 
that to the boundaries of the clusters are ill-defined (or 
in fact not defined at all) so one aspect of our work will 
need to be finding the optimum criteria for defining 
cluster boundaries.  

Another serious pitfall is that ACOPIN-v1 was not 
capable of detecting the overlapping clusters, where a 
protein can be included into two or more clusters. 
Table 1 shows the initial results of ACOPIN-v1. 

 
Table 1: Experimental Results For ACOPIN-v1 

Datasets # of proteins # of 
interactions 

# of clusters 
detected 

S. cerevisae 2640 6600     25 

H. Pylori 710 1420     14 

M. Musculus 329 286     12 

    
Table 2 shows the comparison of ACOPIN-v1 with 
state-of-the-art clustering algorithms, Restricted 
Neighborhoods Clustering (RNSC) [7]  and Markov 
Clustering (MCL) [8]. Based on the results, ACOPIN-
v1 is far away from both methods. Even though we 
managed to minimize the discard rate, the cluster size 
is big compared to the MCL and RNSC. 
 

Table 2: Comparative Results with State-of-the-Art Algorithms on 
S. Cerevisae Datasets (2640 proteins and 6600 interactions) 

Datasets # of cluster 
detected 

Average size of 
clusters 

% discard 

ACOPIN-v1  25 42.5     15.6 

MCL 186 10.1     40.3 

RNSC 151 8.9     26.6 

    
 

ACOPIN-V2: IMPROVED VERSION 
 
In the improved version (hereinafter known as 

ACOPIN-v2), we added another pre-processing task 
where we utilize aonther properties of PIN, the 
functional annotation of proteins. The findings by 

PPI Raw Datasets 

Data Pre-Processing 

ACOPIN 

Determine Threshold value (cut-off scores) 

Identify the initial clusters 

Cluster  Validation 

Dissimilarity matrix, Dij 

Final Detected Cluster 

GO Annotations 



[9,10,11] stated that to improve the accuracy of 
clusters, we should combine the topological properties 
with other biological information that exist in PIN, 
such as molecular functions, biological processes or 
cellular organization of proteins. Since the definition of 
‘cluster’ in PIN refers to the functional homogeneity, 
we only exploit the functional information of PIN. 
However, not all proteins are annotated and not all 
annotated proteins are functionally characterized. The 
unknown function of a annotated or unannotated 
proteins make this problem become more complex. 
With using the respective functional annotations, we 
calculate the functional similarity of the pairwise 
proteins.  

A.   Combining topological properties with functional 
information and functional similarity calculation.  

The purpose of this combination is to obtain 
similarity and dissimilarity matrices. The topological of 
PIN described the dissimilarity of two adjacent proteins 
where the higher the value, the higher the dissimilarity 
or in other words, the smaller the value, the higher the 
similarity. The functional properties, is calculated from 
annotated proteins. The similarity measurement is 
based on the average similarity of two annotated 
proteins. The higher value contributes to the higher 
similarity. Several methods have been developed to 
compute the similarity of two genes products 
(including proteins) based on their functional 
annotations. In our work, we use the Lin similarity 
measure [12]. As done by [9], before calculating the 
similarity between two proteins i and j, the similarity 
between the terms belonging to the term sets Ti and Tj 
must be calculated first. These terms are used to 
annotate respective proteins. Given the ontology terms 
tk ∈ Ti and tl ∈ Tj, the semantic similarity is defined as: 
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where p(tk) is the probability of term tk and pms(tk,tl) is 
the probability of the minimum subsumer of tk and tl, 
which is defined as the lowest probability found among 
the parent terms shared by tk and tl. Given two proteins, 
i and j, with Ti and Tj containing m and n terms, 
respectively, the protein-protein similarity is defined as 
the average inter-set similarity between terms from Ti 
and Tj: 
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where ),( lk ttsim is calculated using (1). 
 
Finally, we obtain the topological dissimilarity matrix 
and functional similarity matrix and these matrices will 
be the input to ACOPIN-v2 for clustering process.  

B.   Problem Formulation  

Similar to ACOPIN-v1, PIN is represented in an 
arbitrary undirected G = (V,E), where V = {v1, v2, 
v3 . . .,n} is the set of vertices (proteins) of G, and E  is 
the set of edges (interactions) of G. The distance dij 
between two vertices i and j in graph G is the 
topological properties calculation that describes the 
difference of common sharing partners. In the 
improved version, we add another distance that 
incorporated with PIN, Gene Ontology functional 
annotation where functional similarity, fij is the 
similarity measurement of functional annotation of 
annotated proteins. fij = 0 if one of the proteins or both 
of them are not annotated or doesn’t have any 
similarity at all.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
Fig. 4. The process flow of ACOPIN-v2. 

 

C.   An Improved ACOPIN (ACOPIN-v2)  

The ACOPIN-v2 consists of two major phases; finding 
optimal path and form preliminary clusters by forward 
and backward ants and merge this clusters to obtain 
final clusters.  
 
procedure ACOPIN-v2 
  input = PIN instance{vertex i,j, dij, fij} 
  output = {paths Pt, preliminary_cluster Cp, 

  final_cluster Cf} 
initialiaze() //initialize parameters 
and pheromones 

repeat 
      contruct_solutions() 
      update_statistic() 

Topological Distance 
Calculation 

Improved ACOPIN (ACOPIN-v2) 
(Described in sub-section C) 

Pairwise Re-arrangement 
& Obtain Adjacency Matrix 

Incorporate PPI with  
GO annotation 

PPI Database GO Database 

Functional Similarity  
Measurement 

 Dij Fij 

Predicted  Clusters 

Cluster Validation MIPS Complexes Database 



      update_pheromone() 
  until termination_condition met 
end procedure 

Fig. 5. High level view of ACOPIN-v2 algorithm. 
 
The contruct solution is modified with adding 3 major 
tasks; optimal tour, cluster tour and merge clusters.  
 
procedure construct_solution 
  for all ants; 
    place_ant_randomly; 
    for each ant 
      perform optimal_tour; 

for each path found in  
optimal_tour 

 perform cluster_tour; 
  form preliminary_cluster; 
 end for 
 end for   

end for 
merge_preliminary_cluster; 

end procedure 

Fig. 6. Construct solution algorithm. 
 

In optimal_tour()  process, forward ants are used to 
explore new paths in the network. They find the nearest 
neighbors and travel with a minimum cost. They will 
stop at the maximum number of nodes that they can 
travel. They are initiated toward randomly selected 
nodes hence no particular final destination node can be 
specified.  

In cluster_tour process, a backward ant will receive 
the list of nodes in the respective paths from forward 
ants. The backward ants will travel and select the 
similar protein that have higher similarity. For those 
proteins that are not annotated or having lower 
similarity, they will be grouped with the nearest 
neighbors based on the topological measurements. 
Preliminary clusters also formed at this stage.  

Finally, we use ants and exploit the pheromones to 
merge the preliminary cluster that initially formed.  

D.   Cluster Validation  

To validate the predicted clusters by ACOPIN-v2, 
we apply the standard approach which is also being 
applied in ACOPIN-v1; by comparing the predicted 
cluster with the protein complexes in MIPS database 
[13]. During the validation, proteins that exist in the 
predicted cluster and also found in MIPS complexes 
dataset are considered valid. Otherwise, they will be 
discarded from the respective clusters. As a method for 
statistical evaluation of clusters, p-value was used to 
estimate whether a given set of proteins is accumulated 
by chance. p-value from hypergeometric distribution 
has been used as a criterion to assign each clster a main 
function. Here, we also calculated p-value for each 
identified module and assigned a function category to it 
when the minimum p-value occurred. The p-value was 
defined as the following formula: 
 
 

where |V| was the total number of proteins in the 
network, |M| was the number of proteins in an 
identified cluster, |F| was the number of proteins in a 
reference function, and k was the number of common 
proteins between the functional group and the 
identified cluster. Low p-value indicated that the 
module closely corresponded to the function because 
the network had a lower probability to produce the 
module by chance. 
 

 
SIMULATION AND RESULTS 

 
We simulate ACOPIN-v2 on the real PIN datasets 

that have gone through the pre-processing stage. The 
aim is to evaluate the efficacy of ACOPIN-v2 to 
improve the accuracy of detected clusters. The 
simulation tasks are divided to two categories; 
simulation on the small-scale data to show the 
operation of ACOPIN-v2 and use the similar data that 
experimented by previous ACOPIN to show the 
difference.  

We use PIN datasets from [14,15] that contains 214 
interactions among 70 proteins. The purpose of this 
simulation is to show the actual clustering operation 
that performed by ACOPIN-v2. Then we run 
ACOPIN-v2 to similar data used in ACOPIN-v1. In 
this simulation, first we use artificial ants (known as 
forward ants) to find the optimal path in PIN. We 
deploy multi-agent systems concept in this task where a 
number of ants will be placed randomly at chosen 
vertices and try to find the optimal path within the 
determined vertices. The optimal path is the shortest 
path that an ant will traverse and each vertex must be 
visited once only. Figure 5 shows the animation of this 
operation. Eight ants (forward ants) are placed at 
randomly chosen vertex. 

 
 

Fig. 7. Artificial ants are placed randomly in a graph-based 
representation of PIN data. 

P - value   = 

 

(3) 



After ants are placed randomly in the chosen vertex, it 
will try to find the nearest neigbor by using 
choose_nearest_neighbor() function and will stop at 
determined number of vertex. Figure 6 shows the paths 
found by each ants.  
 

Fig. 8. The optimal paths found by m ants. 
 

The number of forward or backward ants is defined 
based on the number of vertices in a PIN. This is to 
avoid the slow and computational cost in calculating 
and clustering data. Table 3 shows the experimental 
result for paths found by eight ants and the list of 
proteins in each path. The proteins are represented as 
numerical identification in pre-processing stage. 

 
Table 3: Simulation Result. All paths with list of proteins (in 

sequential order) 

Ant# Path#  Proteins (represented as vertex no) 

1  1 12,13,41,15,39, 33, 64,67,23 
2 2 24,17,26,42,51,52,11,55,61 
3 3 18,21, 2,3,16,7,40,9,28 
4 4 10,1,66,34,32,54,19,20,68 
5 5 35,13,14,25,43,44,5,4,6 
6 6 22,27,30,49,48,37,50,51,52 
7 7 46,53,29,31,70,62,63,65,69 
8 8 36,47,56,57,38,58,59 
   

Table 4 shows the detail information in each path. In 
this case, we print the path-1 only for the sample. We 
can see the proteins that grouped together with those 
that share common function. For unannotated proteins, 
we try to optimize it using function optimize() where 
they will be assigned to the nearest topological 
neighbors since the hypothesis stated that protein with 
shorter distance share higher similar partners and 
contribute to sharing similar functions. For instance, an 
unannotated protein DIP:2582N (Coactomer), has a 
short distance between annotated protein DIP:1318N 
(GTP cyclohydrolase I) and DIP:1470N (NIP1 
protein). Thus they will be temporarily grouped 
together and will be validated in post-process. 
 
 
 

Table 4.  Preliminary clusters formed in Path1. 

Proteins in Path1 in 
sequential order 

A* 

 

Functional 
Homogeneity 
Partner(s) 

Topological 
Nearest 
Neighbors in 
Path1 

Common Shared 
Function 

12 (DIP:1549N) Y 13 (DIP:2520N) 
41 (DIP:1704N) 
33 (DIP:1470N)

 ATP-dependent 
protein binding 

13 (DIP:2520N) Y 47 (DIP:2582N) 
15 (DIP:1318N) 
33 (DIP:1470N) 
41 (DIP:1704N) 

 translation 
initiation factor 
activity 

41 (DIP:1704N) Y -  
15 (DIP:1318N) Y 23 (DIP:5181N) 

64 (DIP:6580N)
 serine-tRNA 

ligase activity
39 (DIP:2582N) N  15 (DIP:1318N) 

33 (DIP:1470N) 
 

33 (DIP:1470N) Y 47 (DIP:2582N) 
15 (DIP:1318N) 
64 (DIP:6580N)

 signal transducer 
activity 

64 (DIP:6580N) Y -   
67 (DIP:6520N) N  64 (DIP:6580N) 

23 (DIP:5181N) 
 

23 (DIP:5181N) Y 33 (DIP:1470N) 
64 (DIP:6580N)

 Rho GTPase 
activator activity

    
A* = Annotated (Y = Yes, N = No) 

 
In post-processing tasks, first we validate the 
preliminary clusters using the standard assesment. If 
we find that the unannotated proteins are not similar at 
all, then the protein will be discarded.Table 5 shows 
the final clusters merged from the preliminary clusters.  
 

Table 5.  Final clusters*  by merging preliminary clusters. 

Cluster# Size Common Shared Function 

1 7 ATP-dependent protein binding 
2 4 translation initiation factor activity 
3 3
4 8 serine-tRNA ligase activity 
5 4
6 16 signal transducer activity 
7 11
8 7  
9 11 Rho GTPase activator activity 
10 3  
11 5  

*for cluster size > 2 
 

We compare this result with ACOPIN-v1 and we find 
that there was a huge difference in terms of number of 
detected clusters, especially for larger datasets. Table 6 
shows  the comparative result between  two versions.  

 
Table 6.  Experimental results and comparison with ACOPIN-v1. 

Datasets # of 
proteins 

# of 
interactions 

# of clusters 
detected by 
ACOPIN-v1 

# of clusters 
detected by  
ACOPIN-v2 

∆ 

S. Cerevisae 2640 6600 25 121 96
H. Pylori 710 1420 14 56 42 
M. Musculus 329 286 12 14 2 

 
 

Next step is to comparing ACOPIN-v2 with the state-
of-the-art clustering algorithms. Table 7 shows the 
comparative results with two state-of-the-art clustering 
algorithms on Yeast datasets. The results show that the 
re is an increment in terms of number of cluster 
detected. The average size of clusters also increase due 
to the capability ACOPIN-v2 to detect the overlapping 



clusters. There is a decrement on the percentage 
discard rate, which means ACOPIN-v2 able to cluster 
the proteins that are sparsely connected. 
 
Table 7: Comparative Results with State-of-the-Art Algorithms on S. 

Cerevisae Datasets (2640 proteins and 6600 interactions) 
Datasets # of cluster 

detected 
Average size of 

clusters 
% discard 

ACOPIN-v2  121 38.6     16.6 

MCL 186 10.1     40.3 

RNSC 151 8.9     26.6 

    
 

CONCLUSIONS 
 
In this paper, we present an improved ACO 

algorithm for clustering proteins in a protein interaction 
network. This improved version resolve the pitfalls of 
first version. The enhancement was achieved by adding 
functional information to ACOPIN. We also propose 
the usage of forward and backward ants for optimal 
path and clustering process. The experimental results 
demonstrated the effectiveness of the improved 
ACOPIN for solving this problem and showed the 
impact of its new features, including the construction 
tour by artificial ants, the usage of forward and 
backward ants, and management of pheromone trails. 
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