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difference   and mean particle size. Thus, many commercial units operated by using particles 
classification of Geldart group A or B. [2], [3] The mechanism of heat transfer between a bed and 
immersed heat transfer surface under condition of conventional fluidization consist of three additive 
components, including the particle convective component, the interphase gas convective component,  
and the radiant component of heat transfer   [4].  

 
 

 
The particle convective component, , is depend upon heat transferred by particle circulation between 
the bulk of the bed and the region directly adjacent to the heat transfer surface. The interphase gas 
convective component, , contributes to the process of heat transfer by convective mixing which 
augments the heat transfer in the gas gaps between the particles and the heat transfer surface and between 
neighboring particles. The radiant component of heat transfer, however, becomes significant only for the 
bed operates at temperature above 700 °C.   
A wide range of designs exist for the type of distributor plates used in fluidized beds [5]–[10]. The main 
three types are: (i) porous plate, (ii) multi-orifice distributors and, (iii) sparge pipe designs. The most 
important functional requirements are to create uniform fluidization and to ensure combustion. However, 
in most cases this is tied in with a requirement for low pressure losses in operation. In addition, the 
distributor design must allow for good thermal behavior and possible particle flowback. In a fluidized bed 
combustor where low pressure losses are essential, a shallow bed is required and multi-orifice distributor 
is then the best type. In this paper, the data for heat transfer coefficient for an electrically heated vertical 
tube immersed vertically in bubbling fluidized bed contains alumina particles belonged to group A and B 
of Geldart classification with mean diameter  ( = 100, 177 and 250 μm) is reported at temperature 
ranging from 50 oC to 250 oC.  
 

2. Experimental setup 

Nomenclature  
 Greek symbols 

 surface area, m2  pressure drop, N/m2 

 mean diameter, m  bed voidage, [-] 

 acceleration of gravity, m/s2  viscosity, N.s/m2 

 height, m  density, kg/m3 

 heat transfer coefficient, W/m2K   

 electric current, A Subscripts 

 heat flow rate from heater to bed, W  bed 

 Temperature, oC  fluid 

 air velocity, m/s  particles 

 electrical potential difference, V  solid 

 weight of the bed, kg  heater tube 

   particle convective 

   gas convective 

   radiation 

(1) 
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2.1 Classification of Alumina sands  
 
The physical properties of the particles used in the experiment are tabulated in Table 1. The average 

diameter of particles,  is obtained from the sieve analysis of solid particles using the following relation 

          

 
Particle classifications were done based on the work of Geldart D. [1] who first categorized the behavior 
of particle into four clearly recognizable groups: A, B, C and D based on particle density difference and 
mean particle size  . 
 

Table 1. Properties of alumina particles. 

 (μm) Particle density   (kg/m3) Geldart Classification 

100 2342 Group A 
177 2099 Group B 
250 2009 Group B 

 
2.2 Fluidized bed set up 
 

The experiments were conducted in the Energy and Sustainability Focus Group Laboratory 
in Faculty of Mechanical Engineering, University Malaysia Pahang by using a laboratory scale 
cylindrical glass column of 108 mm internal diameter and 260 mm long as shown in the Fig. 1.  

 

  

Fig. 1. Schematics of the fluidized bed and novel circular edge segments air distributor 

A centrifugal compressor supplies the fluidizing air at ambient conditions to the system and an orifice 
meter provides the measurement of air flow rate into the system.115 mm diameter circular segmented-
type air distributor plate of thickness 8 mm made of aluminium was used in the experiments. The 8 
segments with 6mm diameter circular edged openings was used giving open area ratio of 3%. The static 
bed height in all experiments is kept the same at 40 mm and is measured by a strip of scale tape located 
on the outside of the glass cylinder.  

(2) 
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The sands is heated by SMATEC™, 800 W electrically heated copper tube, fitted with a T-type 
thermocouple and mounted vertically 25 mm above the distributor, capable of heating up the bed up to 
400 oC. The ends of the tube are provided with Teflon support to reduce axial heat loss, which is 
estimated to be less than 1%. A DC power supply with a voltage regulation of 0.1% is used to energize 
the heater. A voltmeter and an ammeter with an accuracy of 0.5% are used to measure the electric power 
supplied to the heater. To measure bed and ambient temperature, two T-type thermocouples were located 
at the bulk of the bed and the outlet of the column respectively. The temperatures of the thermocouples 
were recorded simultaneously during the operation, via a computer controlled temperature measurement 
system. Data were logged via 32-channel expansion board and analog-digital converter to a PC. The 
temperature and pressure data were recorded for a 15 minutes period with a 1 second sampling time.  Due 
to the short length of the tube, the temperature was assumed uniform along the axial length of the surface, 
and the amount of average heat transfer coefficient was determined by using the equation 

 

4. Results and discussions 

 
 

 
 

Fig. 2. Bed and heater temperature as a function of gas velocity for 100 μm, 177 μm and 250 μm 
particles. 

(3) 



1756   Ahmmad Shukrie et al.  /  Energy Procedia   75  ( 2015 )  1752 – 1757 

 
Fig. 3. Effect of gas velocity on the average heat transfer coefficient for 100 μm, 177 μm and 250 μm 

particles. 
 
The temperature profiles of bed and immersed heater surface in fluidized bed chamber were plotted in 
Figs. 2 for temperature ranging from 50 oC  to 250 oC.  The temperature profiles for heater surface are 
fairly uniform at all operations as a result of constant increment of voltage to energize the heater except 
for the bed operating with 250 μm particles where a small decrement of temperature gradient is observed 
at higher operating temperature. The temperature profiles of bed, however, seem to be rather uniform and 
characterized by small temperature gradient for the bed operating with 100 μm and 177 μm particles 
respectively. Fig. 3. shows the value of the average heat transfer coefficient as a function of gas fluidizing 
velocity, for sand particles of diameter 100, 177 and 250 μm respectively. The qualitative variation of the 
dependence of heat transfer coefficient on gas velocity is in agreement with reported trends observed by 
previous investigators [11]–[16] in which, the heat transfer coefficient increases with the increase in value 
of gas velocity. The heat transfer coefficient attains a maximum value at the excess optimum fluidizing 
velocity. With further increase in velocity, the value of heat transfer coefficient decreases. Whereas an 
increase in operating pressure as the fluidizing gas velocity is progressively increased i.e. when the gas 
flow conditions are in the transitional or turbulent flow regime could be expected to lead to some 
reduction in the overall heat transfer coefficient because of a possible increase in continuous phase 
voidage and hence reduction in particle packing density at the heat transfer surface.  
For a new distributor plate design, the plate with an extended opening area to the peripheral of the bed 
was found to be effective at enhancing the circulation rate. Particle circulation was observed to increase 
linearly with an increase in gas velocities. The circulation rate was observed to slightly increase with the 
decrease in particle size. The trend is reported the same with the published work of [17]. The effect of 
pressure drop across the circular edge segments air distributor is actually the integrated effect of the 
geometric parameters on fluidization quality.  
 
Conclusions  
 
The effects of temperature variations between an electrically heated tube immersed vertically in fluidized 
bed and sand particles of various sizes were experimentally studied. The average heat transfer coefficient 
increases with increasing gas velocity towards a maximum value of the coefficient. An increase in 
operating pressure as the fluidizing gas velocity is progressively increased could be expected to lead to 
reduction in the overall heat transfer coefficient because of a possible increase in continuous phase 
voidage and hence reduction in particle packing density at the heat transfer surface.  The result also shows 
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that the value of maximum heat transfer coefficient decreases with increase in particle diameter due to 
increase in gas conduction path and decreases in particle surface area per unit volume for heat exchange 
with the heater surface. For future work, it is recommended that the scope of the present study be 
expended to diverse heat transfer surface and bed geometries. It can be concluded that bigger ratio of 
distributor pressure drop over bed pressure drop Pd/ Pb values will result in more complete fluidization. 
But the air blower consumes more energy at higher distributor pressure drops and, thus, a balanced 
consideration must be taken when choosing the proper air distributor. 
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