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This article investigates the unsteady free convection flow of a micropolar fluid 

over a vertical plate oscillating in its own plane with Newtonian Heating (NH) 

condition. The problem is modeled in terms of partial differential equations with 

some physical conditions. Closed form solutions in terms of exponential and 

complementary error functions of Gauss are obtained by using the Laplace 

transform technique. They satisfy the governing equations and impose boundary 

and initial conditions. The present solution in the absence of microrotaion 

reduce to well-known solutions of Newtonian fluid. Graphs are plotted to study 

the effects of various physical parameters on velocity and microrotation. 

Numerical results for skin-friction and wall couple stress are computed in 

tables. Apart from the engineering point of view, the present article has strong 

advantage over the published literature as the exact solutions obtained here can 

be used as a benchmark for comparison with numerical/approximate solutions 

and experimental data.    

Keywords: Unsteady flow, Micropolar fluid, Wall couple stress, Newtonian 

heating, Closed form solutions  

 

1. Introduction 
 

Newtonian fluids described by Navier-Stokes equations are limited in terms of their applications. 

It is because they cannot precisely describe the characteristics of several physiological fluids exhibit 

microscopic effects arising from the local structure and micro-motions of the fluid elements. Each particle 

of these fluids is shape dependent, may be shrink or expand. More exactly, they may rotate independently 

without rotation and movement of the fluid. This will require an additional equation corresponding to 

angular momentum. Eringen [1, 2] was the first who introduce the theory of micropolar fluids describe the 

microrotation and microinertia effects. The mathematical model of such type of fluids can be used to 

discuss the behavior of polymeric suspensions, dirty oils, animal blood with rigid cells, liquid crystals, 

lubricants and many other biological fluids [3, 4]. A substantial work has done on the micropolar fluid 
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because of their important industrial applications. However, here we discuss some of the important studies 

most related to the present work. Amongst them, Agarwal et al. [5] have analysed the heat transfer flow of 

a micropolar fluid over a porous stationary wall. Kim [6] studied micropolar fluid flow with constant wall 

temperature which later on extended by Kim and Kim [7] by considering constant surface heat flux at the 

wall. Rahman and Sultana [8] examined radiation effect on micropolar fluid flow with variable heat flux. 

Reddy [9] considered the unsteady flow of a micropolar fluid with variable heat flux in the presence of 

magnetic field. In the same year, Pal and Talukdar [10] extended the same problem by considering 

chemical reaction effects. Amongst the various investigation on free convection flow of a micropolar 

fluid, the reader is referred to some new attempts made in [11-19], and the references therein. 

 In all of these studies cited above, the researchers usually use the constant or variable wall 

condition for temperature. However, there were several problems of physical interest where the heat is 

transported to the fluid via a bounding surface with a finite heat capacity and the above conditions fail to 

work and the Newtonian heating condition is incorporated. This idea was first introduced by Merkin [20] 

where he studied the boundary layer flow past a vertical plate and found the analytical asymptotic solution 

near the leading edge and the full solution along the whole plate is obtained numerically. Following the 

work of Merkin, Chaudhary and Jain [21], obtained the exact solution for boundary layer free convection 

flow of viscous fluid past a vertical plate with Newtonian heating. After that, various researchers studied  

the boundary layer heat transfer flows with Newtonian heating including the work of Mebine and Adigio 

[22], Narahari and Ishak [23] and Abid et al. [24, 25]. In all these studies, authors investigated the 

unsteady free convection flow of viscous fluid with Newtonian heating condition and exact solutions are 

obtained using the Laplace transform technique. In contrast, numerical solutions using using Runge-Kutta-

Fehlberg with fourth-fifth order technique for the steady boundary layer heat transfer flow of micropolar 

fluid with Newtonian heating past a stretching surface are recently obtained by Qasim et al. [26]. The 

literature survey shows that most of the Newtonian heating problems are limited to the Newtonian fluid 

and mostly, they are solved using any numerical or approximate technique, see for example [27-31]. In 

fact the Newtonian heating problems even for viscous fluid when someone is interested to get the exact 

solutions are much complicated and limited to few problems only. For non-Newtonian fluids exact 

solutions of such problems are scarce. 

 On the other hand, the exact solutions of micropolar fluids are limited even to simple problems. 

Amongst the exact investigators, Sherief et al. [32] studied the unsteady flow of a micropolar over a 

suddenly moved horizontal plate using the Laplace transform technique. However, for inverse Laplace 

transform, they used complex inversion formula involving contour integration with several difficult and 

unsolved integrals. In the present problem, we extended this idea by taking into account the free 

convection phenomena. More exactly, our interest is to study the unsteady free convection flow of a 

micropolar fluid over an oscillating vertical plate instead of a suddenly moved plate together with 

Newtonian heating condition. The exact solutions are obtained by using the Laplace transform technique. 

However, for finding the inverse Laplace transform, we have used direct formulas instead of using contour 

integration and the resulting solutions do not involve complex integrations and even using numerical 

computations, and hence easy to analyse for exact solutions. The obtained solutions are written in 
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simplified forms in terms of exponential and complementary error functions. The interesting feature of the 

present work is that these solutions do not involve complicated integrals which are mostly divergent and 

difficult to integrate even numerically as given by Sherief et al. [32]. On the other hand these solutions 

can be used as a check of accuracy for other micropolar fluid problems studied via approximate or 

numerical schemes. 

 

2. Mathematical Formulation 

 

 Let us consider the unsteady boundary layer flow of an incompressible micropolar fluid in the 

region 0y  driven by a plane surface located at 0y  with a fixed end at 0x .  It is assumed that at 

the initial moment ,0t  both the plate and the fluid are at rest with constant temperature T . At time 

 0t  the plate begins to oscillate in its plane ( 0y ) according to 

 ( )cos( ) ; 0.UH t t t iV  (1) 

According to the Newtonian heating condition, the temperature of the fluid is proportional to local surface 

temperature T . Under the usual Boussinesq approximation, the simplified equations governing the flow 

[11, 32] are  
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The appropriate initial and boundary conditions are given as:        
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     , 0, , 0, , , 0.u t N t T t T t                                              (7) 

To reduce the above equations into non-dimensional forms, we introduce the following non-dimensional 

quantities 
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Implementing equation (8) into equations (2)-(4), we obtain the following non-dimensional partial 

differential equations (
*
symbol is dropped for simplicity) 
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The corresponding initial and boundary conditions in non-dimensional forms are 

      ,0 0, ,0 0, ,0 0, for all 0,u y N y y y      (12)     

            0, cos( ), 0, 0, , 0, 1 0, , 0,
u

u t H t t N t n t t t t
y y


  

 
         

 (13)            

      , 0, , 0, , 0, 0,u t N t t t         (14) 
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We note that equation (13) gives 0  when ,0  corresponding to have 0sh  and hence no heat 

transfer from the plate exists [24, 27]. 

 

3. Analytical Solutions 
 

 Applying Laplace transforms to equations (9)-(11), and using conditions (12)-(14), we get the 

following solutions  
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The above solution for velocity (15) and microrotation (16) are valid for 8Pr a . The corresponding 

solution for 8Pr a , can be easily obtained by substituting 8Pr a  into equation (11) and follow a 

similar procedure as discussed above. On the other hand, the expression of skin-friction for micropolar 

fluid is given as 
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The expression of wall couple stress is given as 
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For lack of space, the solutions for the skin-friction and wall couple stress are not considered, but are 

discussed numerically for different values of parameters in section 5. 
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4. Limiting Cases 

 

 This section includes some limiting cases of the present analytical solutions. 

 

4.1 Stokes first problem 

 

 In this case we consider the flow situation when the fluid motion is induced by free convection 

together with sudden motion of the plate. In such a configuration the fluid is moving linearly and hence no 

oscillation is observed. In that case 0  . In fluid mechanics such a physical configuration is known as 

Stokes first problem. These solutions can be obtained as a special case from equation (13), by taking

0  , and is given as  
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a t y a
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
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 




 



 

    
         

     

    
       

       

                                           (21) 

  

 Note that the solutions given by equations (20) and (21), are also new and not available in the 

published literature.   

 

4.2 Absence of thermal effects 

 

 In the absence of free convection  0Gr  , the results for velocity and microrotation are 

obtained as: 
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     

     
                   
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  
 
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

    
                  

    
          

     

    (23) 

 

4.3 Newtonian fluid 

 

 In the absence of microrotation parameter  0  , the solution for velocity reduces to the 

corresponding solution for Newtonian fluid 
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2
2

4
11 erfc .

2 2

y

t
y y t

a t y e
t 

    
      

    

                                                            (24) 

In addition, the above result is agrees with the result reported by Chaudhary and Jain [21], when 0  

(impulsively motion of the plate) and 1  .  
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5. Graphical Results and Discussion 

 

 In this work, an unsteady free convection flow of a micropolar fluid over a vertical plate 

oscillating in its own plane with Newtonian Heating (NH) condition is analysed. Closed form solutions are 

obtained by using the Laplace transform technique. In order to explore the physics of the problem, the 

obtained analytical results for velocity and microrotation are computed numerically and then plotted 

graphically for different flow parameters such as microrotation parameter  , dimensionless spin gradient 

viscosity parameter  , Prandtl number Pr , Grashof number Gr , microelement n , conjugate parameter 

for Newtonian heating  , time t  and phase angle t . The numerical results for skin-friction and wall 

couple stress are computed and given in tables. The energy equation given by (4) is similar to equation (2) 

in [21], under the same boundary conditions. Therefore, the solution given by (17) is identical to equation 

(9) evaluated in [21]. Due to this reason, and in order to avoid the repetition, the corresponding graphical 

results are not included. 

 The velocity and microrotation profiles for different values of microrotation parameter   are 

shown in figs. 1(a) and 1(b). The graphs show that an increase in the microrotation parameter   results in 

increase in the velocity while decreases the microrotation. The influence of spin gradient viscosity 

parameter   on the velocity and microrotation is plotted in figs. 2(a) and 2(b). It is observed that velocity 

increases with increasing  , while reverse effect is observed for microrotation. Form fig. 3(a), it is 

noticed that the velocity decreases with increasing of Prandtl number. This situation is in consistence with 

the physical observation because fluids with large Prandtl number corresponds to the higher viscosity and 

smaller thermal conductivity, which makes the fluid thick and hence causes a decrease in velocity of fluid. 

The influence of the fluid motion near the plate is maximum and fades away as the distance from the plate 

increases and finally its velocity goes to zero as, y  . On the other hand, microrotation increases with 

the increasing values of Pr  as shown in fig. 3(b). The influence of Grashof number Gr  on velocity and 

microrotation profiles are shown in figs. 4(a) and 4(b). Here 0Gr   represents the absence of free 

convection, while 0Gr   corresponds the cooling problem. It is observed that velocity increases with the 

increasing values of Gr , while microrotation decreases with an increase in Gr . Further, from these 

figures, it is noticed that Grashof number does not have any influence as the fluid moves away from the 

bounding surface. Figs. 5(a) and 5(b) show the effects of microelement n , which relates to the 

microgyration vector and shear stress on velocity and microrotation profiles. It is observed that the 

velocity decreases with the increasing values of n , while microrotation increases with increase in n . 

 The physical behaviour of conjugate parameter  , for velocity and microrotation profiles is 

studied in figs. 6(a) and 6(b). An increase in the conjugate parameter may reduce the fluid density and 

increase the momentum boundary layer thickness and finally increases the fluid motion. On the other 

hand,   is found to have an opposite effect on microrotation profiles as observed for velocity. Figs. 7(a) 

and 7(b) demonstrate the effects of time t  on the velocity and microrotation profiles. It is observed that 

velocity and microtation increase with an increase in t . The velocity and microtation profiles for different 
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values of phase angle t  are depicted in figs. 8(a) and 8(b). It is found that the velocity and microrotation 

show an oscillatory behavior. Three different values of phase angel are chosen. It is seen from fig. 8(a), 

that velocity profiles start from 1, 0 and -1 when the phase angel 0, and
2


  respectively. This graph 

satisfies the boundary condition (13), when we take 0, and
2


 . Similarly, the graphical results for 

microrotation are satisfying the imposed boundary conditions given by (13). Furthermore, the velocity and 

microrotation has maximum values near the plate and decreases with the increasing distance from the 

plate and approaches zero as y  . Finally, for the comparison of the present analysis with those 

existing in the literature, we have plotted fig. 9. It is found that for 0    and 0.00001n   

(equivalently 0n ), our results are identical with those obtained in [24]. It is also found from this figure 

that in the presence microrotation parameter  0   as well as spin gradient viscosity parameter 

 0  , the velocity has its maximum values. On the other hand, numerical results for the skin-friction 

and wall couple stress for different parameters are given in tables 1 and 2. The skin-friction is found to 

increase with increasing values of  ,  , Gr , n ,  , t  and t  while it decreases with the increasing of 

Pr . It is observed from tab. 2, that wall couple stress increases as ,Gr  n ,  , t  and t  are increased and 

decreases when  ,   and Pr  are increased.  

 

 

  
Fig. 1: Influence of   on (a) velocity and (b) microrotation, when 0.5,Pr 3, 5, 0.5,Gr n    

0.5, 0.2, .
3

t t


     
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Fig. 2: Influence of   on (a) velocity and (b) microrotation, when 3,Pr 3, 3, 0.5,Gr n    

0.5, 0.5, .
3

t t


   

  
Fig. 3: Influence of Pr  on (a) velocity and (b) microrotation, when 0.5, 1.5, 5,Gr   

0.5, 0.5, 0.4, .
3

n t t


    

  
Fig. 4: Influence of Gr  on (a) velocity and (b) microrotation, when 0.5, 1.5,Pr 1,   

0.5, 0.5, 0.4, .
3

n t t


    
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Fig. 5: Influence of n  on (a) velocity and (b) microrotation, when 0.5, 1.5,Pr 1, 5,Gr    

0.5, 0.4, .
3

t t


     

  
Fig. 6: Influence of   on (a) velocity and (b) microrotation, when 0.5, 1.5,Pr 1, 3,Gr    

0.5, 0.2, .
3

n t t


  

  
Fig. 7: Influence of t  on (a) velocity and (b) microrotation, when 0.5, 1.5,Pr 1, 3,Gr    

0.5, 0.5, .
3

n t


   
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Fig. 8: Influence of t  on (a) velocity and (b) microrotation, when 0.5, 0.5,Pr 3,   

5, 0.5, 0.5, 0.5.Gr n t   

Fig. 9: Comparison of the present results at Pr 0.7, 5, 0.5,Gr    0.2, 0t t   with those 

obtained in [24].  

 

Table 1: Numerical results for skin friction 

 

t      Pr  Gr  n    t  *  

0.2 1.5 0.5 0.7 3 0.2 1 / 2  1.099 

0.4 1.5 0.5 0.7 3 0.2 1 / 2  2.230 

0.2 3.0 0.5 0.7 3 0.2 1 / 2  1.363 

0.2 1.5 2.0 0.7 3 0.2 1 / 2  1.123 

0.2 1.5 0.5 3.0 3 0.2 1 / 2  0.531 

0.2 1.5 0.5 0.7 5 0.2 1 / 2  1.591 

0.2 1.5 0.5 0.7 3 0.5 1 / 2  1.516 

0.2 1.5 0.5 0.7 3 0.2 2 / 2  3.295 

0.2 1.5 0.5 0.7 3 0.2 1   3.124 
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Table 2: Numerical results for wall couple stress 

t      Pr  Gr  n    t  *

mC  

0.2 1.5 0.5 0.7 3 0.2 1 / 2  0.224 

0.4 1.5 0.5 0.7 3 0.2 1 / 2  0.464 

0.2 3.0 0.5 0.7 3 0.2 1 / 2  0.154 

0.2 1.5 2.0 0.7 3 0.2 1 / 2  0.114 

0.2 1.5 0.5 3.0 3 0.2 1 / 2  0.019 

0.2 1.5 0.5 0.7 5 0.2 1 / 2  0.399 

0.2 1.5 0.5 0.7 3 0.5 1 / 2  0.623 

0.2 1.5 0.5 0.7 3 0.2 2 / 2  1.161 

0.2 1.5 0.5 0.7 3 0.2 1   0.262 

 

6. Conclusions 

 

 The closed form solutions for unsteady free convection flow of a micropolar fluid with Newtonian 

heating are obtained. Laplace transform method is used for solution.  These solutions are expressed in 

simpler forms in terms of exponential and complementary error functions. Graphs are plotted for 

embedded parameters and discussed. Numerical results for the skin-friction and wall couple stress are 

computed in tables. Results showed that velocity decreases significantly with the increasing of Prandtl 

number but it increases when either Grashof number or conjugate parameter is increased. The 

microrotation decreases with the increasing values of microrotation parameter. For correctness and 

verification, the present results are found in excellent agreement with published results for Newtonian 

fluid executing the same motion. Moreover, the classical solutions corresponding to the Stokes first 

problem for micropolar fluid are also obtained as a special case. 

 

Nomenclature 

pC  Heat capacity at a constant  

 pressure 
1 1J kg K      

Gr  Grashof number  

sh  Heat transfer coefficient 

j  Microinertia per unit mass 
2m    

k  Thermal conductivity 

n  Parameter related to microgyration 

 vector and shear stress 

N  Angular velocity 
1m s    

Pr  Prandtl number 

T  Fluid temperature  K  

T  Ambient temperature  K  

t  Time  s  

U  Amplitude of plate oscillations  m  

u  Velocity of the fluid 
1m s     

t  Phase angle 

)(tH  Unit step function 

erfc  Complementary error function 

Greek symbols 

   Vortex viscosity 
1 1kg m s      

  Microrotation parameter 

f  Volumetric coefficient of thermal 

 expansion 
1K     

  Conjugate parameter  
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0  Spin gradient viscosity 
1kg m s     

  Fluid density 
3kg m    

  Dynamic viscosity 
1 1kg m s      

  Spin gradient viscosity parameter 

  Dimensionless temperature 

 

  Frequency of oscillation 

Subscripts 

w  Condition at wall 

  Condition at infinity 

Superscripts 

   Dimensional variables
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