
RDU110312 

 

QUANTUM DOTS FOR CLEAN ENERGY 
TECHNOLOGY 

 
(TITIK KUANTUM UNTUK TEKNOLOGI 

TENAGA BOLEH DIPERBAHARU) 
 
 
 

SAIFFUL KAMALUDDIN BIN MUZAKIR @ 
LOKMAN @ HJ ARSHAD 

 
 

RESEARCH VOTE NO: 
RDU110312 

 
Faculty of Industrial Sciences & Technology 

Universiti Malaysia Pahang 

 
2014 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to the root of our strength – family and friends 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

ACKNOWLEDGEMENTS 

 

In the name of Allah, the Most Gracious and Most Merciful. Praise be to Allah; 
the Lord of the universe. Peace and blessings be upon Prophet Muhammad (Peace be 
Upon Him) and people who walks on the path of His guidance until the judgement day. 
 

We are grateful to Allah for giving us the strength to complete the research 
despite obstacles that we have faced during the period of study. Thanks to those who 
have helped along the journey. 
 

Special thanks to Technical Unit of the Faculty of Industrial Sciences & 
Technology for their excellent services and technical support throughout the project. 
 

Last but not least the Nanostructured and Renewable Energy Materials 
Laboratory (n-REM Labs) members. Thank you for the moral support, fruitful 
discussion and brilliant ideas. 



iv 
 

ABSTRACT 

 

Solar cells are in focus for decades due to their capability to convert solar energy into 
electrical energy. Quantum dots sensitized solar cell (QDSC), in which the photovoltaic 
(PV) effect occurs at the interface between a quantum dot (QD) conjugated wide band 
gap metal oxide semiconductor (MOS) and a redox electrolyte, gained much 
consideration due to their relatively simpler device structure and similarity to dye 
sensitized solar cell (DSSC), in which dye molecules replace QDs. The QDs are 
potentially having larger absorption cross-section, tuneable band edges, and atomic-like 
energy levels. These salient features make QDs capable of delivering more than one 
electron per single absorbed photon of sufficient energy, a phenomenon known as 
multi-exciton generation (MEG). The MEG effect makes QDSCs capable of achieving 
PV conversion efficiency (PCE) as high as 60%. Despite the remarkable feature of QDs 
as a light absorber, QDSCs deliver much inferior practical PCE (~8.6 %). Besides, they 
show inferior PCE compared to DSSCs (~13%). Therefore, this doctoral research aims 
to establish the structure-property correlation in QDSCs. A combination of experimental 
results and quantum chemical calculations under the framework of density functional 
theory (DFT) was employed for this purpose. In this approach, firstly CdSe QDs were 
synthesized using chemical methods and studied their structure and properties. Secondly 
realistic cluster models were empirically developed using DFT and experimental results. 
The structure-property correlation was established by comparing the experimental and 
theoretical results. The calculated absorption cross-section, band edges, band gaps, and 
emitting states of QDs with and without surface ligands were compared with that of 
RuL2(NCS)2.2H2O; L = 2,2’–bipyridyl-4,4’-dicarboxylic acid (N3) dye in order to 
correlate the capability of light absorption of QDs or dye molecules on the overall 
performance of device. This procedure was adopted to (i) understand the fundamental 
differences of electronic states in the bare QDs and the dye structures and (ii) evaluate 
electron channelling in QDs-ligand conjugate thus correlating with electron injection 
efficiency from QDs to MOS. Five parameters were concluded to have distinct effects 
on the PV properties of QDSCs. They are (i) emitting states of QDs, (ii) ligand usage, 
(iii) QDs size distribution, (iv) absorption cross-section, and (v) redox potential of 
electrolyte. The QDs–MOS conjugates were chemically developed and 
spectroscopically demonstrated efficient electron injection from QDs to MOS. 
However, such structures raised serious concerns on long term stability under operating 
conditions. This research finally propose future possible methodologies for stable and 
efficient QDSCs. 
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ABSTRAK 

 

Sel suria menjadi focus semenjak beberapa dekad kerana keupayaannya untuk menukar 
tenaga suria kepada tenaga elektrik. Sel suria terpeka titik kuantum (QDSC), yang mana 
kesan fotovoltaik (PV) berlaku di antara permukaan konjugat titik kuantum (QD)–
semikonduktor logam oksida berjurang tenaga lebar (MOS) dan elektrolit, menerima 
pertimbangan yang sewajarnya berikutan struktur peranti yang mudah dan persamaan 
dengan sel suria terpeka pewarna (DSSC), yang mana molekul pewarna menggantikan 
titik kuantum (QD). QD berpotensi untuk mempunyai keratan rentas spektrum serapan 
yang luas, mengubah jurang tenaga and ciri tahap tenaga seperti atom. Ciri-ciri penting 
ini menjadikan QD mampu mengujakan lebih dari satu elektron dengan setiap 
penyerapan satu foton dengan tenaga yang mencukupi. Fenomena tersebut dinamakan 
multi-exciton generation (MEG) yang menjadikan QDSC mampu mencapai kecekapan 
penukaran tenaga foto (PCE) sehingga 60 %. Namun, walaupun dengan adanya ciri-ciri 
luar biasa ini, penggunaan QD sebagai penyerap cahaya peranti QDSC hanya mampu 
menghasilkan PCE yang rendah secara praktikal (~8.6 %). Tambahan pula, kecekapan 
tersebut lebih rendah berbanding dengan kecekapan DSSC (~13%). Oleh itu, kajian 
peringkat kedoktoran ini menyasarkan pembuktian korelasi di antara struktur komponen 
dan ciri fotovoltaik QDSC. Gabungan keputusan ujikaji dan pengiraan peringkat kimia 
kuantum menggunakan density functional theory (DFT) telah digunakan untuk tujuan 
ini. Melalui pendekatan ini, pertama sekali QD CdSe telah disintesis menggunakan 
kaedah kimia dan struktur serta ciri-cirinya dikaji. Kedua, model kluster realistik 
dibangunkan secara empirik menggunakan DFT dan keputusan ujikaji. Korelasi 
struktur-ciri dibuktikan dengan melakukan perbandingan di antara keputusan ujikaji dan 
pengiraan teori. Ciri-ciri QD dan konjugat QD–ligan seperti keratan rentas spektrum 
penyerapan, aras tenaga, jurang tenaga dan keadaan teruja telah dibandingkan dengan 
ciri-ciri milik RuL2(NCS)2.2H2O; L = 2,2’–bipyridyl-4,4’-dicarboxylic acid (pewarna 
N3) untuk pembuktian korelasi di antara keupayaan penyerapan cahaya oleh QD dan 
molekul pewarna dengan prestasi keseluruhan peranti. Prosedur ini dijalankan untuk (i) 
memahami perbezaan keadaan elektronik kluster-kluster QD dan molekul pewarna 
secara asas dan (ii) menilai kecekapan penyaluran elektron di dalam konjugat QD–ligan 
yang berkait rapat dengan kecekapan suntikan elektron dari QD kepada MOS. Lima 
parameter telah disimpulkan mempunyai kesan kepada ciri PV QDSC iaitu, (i) keadaan 
tersinar QD, (ii) penggunaan ligan, (iii) taburan saiz QD, (iv) luas keratan rentas 
spektrum penyerapan dan (v) potensi redoks elektrolit. Konjugat QD-MOS telah 
dihasilkan secara kimia dan menunjukkan kecekapan suntikan elektron dari QD ke 
MOS secara spectroskopik. Walaubagaimanapun, struktur-struktur ini telah 
menimbulkan kebimbangan terhadap kestabilan jangka panjang pengoperasian peranti. 
Kajian ini mencadangkan metodologi yang mungkin boleh digunakan untuk 
menghasilkan QDSC yang stabil dan cekap. 
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4.6 (a) Broad XRD peaks of wurtzite CdSe QDs 
synthesized using microemulsion procedure extracted 
at 30 minutes of reaction time. (b) Sharp and distinct 
XRD peaks of wurtzite crystal were revealed upon 
precursors and concentration change. Vertical lines 
indicate the possible Bragg reflections (JCPDS-ICDD 
60630) 
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4.7 (a) HRTEM micrograph, (b) SAED pattern and (c) 
magnified view of SAED pattern of CdSe revealed the 
[103] plane 
 

65 

4.8 Existence of fully occupied (box), fully unoccupied 
(arrows) and partially occupied (circle) atomic layers in 
[103] plane could be the reason of quenched diffraction 
peak 
 

65 

4.9 [002] plane showed very distinct intensity of x-ray 
diffraction consists of fully occupied atomic layers by 
only Se atoms (arrows) 
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4.10 [110] plane showed very distinct intensity of x-ray 
diffraction consists of fully occupied atomic layers by 
Cd and Se atoms (boxes) 
 

66 

4.11 (a) TOP-Se and TOP-Cd preparation apparatus set up 
and (b) dissolved aliquots in chloroform for UV-Vis 
and PL measurements 
 

67 

4.12 Temporal evolution of the first excitonic peak position 
within (a) 4, (b) 64 and (c) 169 hours of reaction at 
room temperature. The first excitonic peak red-shifted 
(d) upon 5 hours of 50 °C heating and maintained till 
(e) 24 hours after cooling down to room temperature 
 

68 

4.13 Temporal evolution of the PL property of CdSe QDs 
within (a) 4, (b) 169 hours (same PL was observed for 
64 hours) of reaction at room temperature and (c) upon 
5 hours of 50 °C heating (same PL was observed upon 
24 hours of cooling) 
 

69 

4.14 High PL intensity of (a) organometallic-based QDs (64 
hours of slow reaction), whereas very low PL intensity 
of (b) microemulsion-based QDs (2 hours of fast 
reaction) was observed. The intensity was normalized 
by absorbance at PL excitation wavelength of each 
sample 
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4.15 (a) Broad XRD peaks of wurtzite CdSe QDs. Vertical 
lines indicate the possible Bragg reflections (JCPDS-
ICDD 60630) 
 

73 

4.16 Basic structure of hexagonal P63mc CdSe crystal 
 

74 

4.17 Procedure of realistic cluster modelling 
 

75 

4.18 (From left) The front, side and rear view of optimized 
geometries of (a)   (CdSe)6, (b) (CdSe)13, (c) (CdSe)16, 
(d) (CdSe)26 and (e) (CdSe)32 
 

76 

4.19 Calculated infrared spectra shows positive frequencies 
confirming a minimum energy structure of (a) (CdSe)6, 
(b) (CdSe)13, (a) (CdSe)16, (a) (CdSe)26 and (a) (CdSe)32 
clusters 
 

77 

4.20 Comparison of calculated transition oscillator strength 
(dashed lines) with     experimental absorption spectra 
(solid lines) of (a) (CdSe)6 and (b) (CdSe)13 structures. 
Insets are magnified view of HOMO-LUMO transition 
at ~394 nm and ~410 nm respectively. The oscillator 
strength marked with “●” is the HOMO–LUMO 
transition 
 

79 

4.21 Comparison of calculated transition oscillator strength 
(dashed lines) with experimental absorption spectra 
(solid lines) of (a) (CdSe)16 and (b) (CdSe)26 structures. 
Insets are magnified view of HOMO-LUMO transition 
at ~462 nm and ~502 nm respectively. The oscillator 
strength marked with “●” is the HOMO–LUMO 
transition 
 

80 

4.22 Comparison of calculated transition oscillator strength 
(dashed lines) with experimental absorption spectra 
(solid lines) of (CdSe)32 structure. Inset is magnified 
view of HOMO-LUMO transition at ~650 nm; matched 
with the fitted 1S3/2 – 1Se transition (Appendix B8) 
marked with “●” 
 

81 

4.23 (a) Optimized structure of (CdSe)6 which contains 3C 
Cadmium atomic  sites made by (b) stacking of 6 
trigonal pyramids which also the surface atoms that 
involve in ligand adsorption 
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4.24 (a) Optimized structure of (CdSe)13 which contains 3C 
Cadmium atomic  sites made by (b) stacking of 13 
trigonal pyramids which also the surface atoms that 
involve in ligand adsorption 
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4.25 (a) Optimized structure of (CdSe)16 which contains 2C 
and 3C Cadmium  atomic sites made by (b) stacking of 
13 trigonal pyramids which also the surface atoms that 
involve in ligand adsorption 
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4.26 Cluster of (CdSe)26 which contains  (a) surface 3C 
(trigonal pyramid)  Cadmium atomic sites that involve 
in ligand adsorption, (b) interior 4C (tetrahedron) and 
(c) interior 5C (trigonal bipyramid) Cadmium atomic 
sites that do not involve in ligand adsorption 
 

84 

4.27 Cluster of (CdSe)32 which contains  (a) surface 2C, (b) 
surface 3C (trigonal pyramid) and (c) surface 4C 
(tetrahedron) Cadmium atomic sites that involve in 
ligand adsorption and (d) interior 4C Cadmium atomic 
sites that do not involve in ligand adsorption 
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4.28 Optimized structure of N3 dye molecule 
 

85 

4.29 Comparisons of calculated transition oscillator strength 
(dashed lines) with experimental absorption spectra 
(solid curve) of N3 dye structure. The oscillator 
strength marked with “●” is the electron transition from 
HOMO-LUMO transition 
 

86 

4.30 Calculated infrared spectra shows positive frequencies 
confirming a minimum energy structure of N3 dye 
molecule 
 

87 

4.31 (a) Optimized structure of mercaptoacetic acid (MAA) 
that contains (n = 9) atoms. The calculated IR spectra 
(red curve) matched well with the experimental IR 
spectra (black curve); shows (b) C-O stretching, (c) O-
H bending and (d) C=O stretching of –COOH 
functional group and (e) –SH stretching of mercaptan. 
21 (i.e., 3n-6) fundamental vibrations were calculated 
as indicated by blue vertical lines 
 
 
 
 
 

88 



xxii 
 

Figure No. 
 

Title Page 

4.32 (a) Optimized structure of mercaptopropionic acid 
(MPA) that contains (n = 12) atoms. The calculated IR 
spectra (red curve) matched well with the experimental 
IR spectra (black curve); shows (b) C-O stretching, (c) 
O-H bending and (d) C=O stretching of –COOH 
functional group and (e) –SH stretching of mercaptan. 
30 (i.e., 3n-6) fundamental vibrations were calculated 
as indicated by blue vertical lines 
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4.33 (a) Optimized structure of mercaptosuccinic acid 
(MSA) that contains (n = 15) atoms. The calculated IR 
spectra (red curve) matched well with the experimental 
IR spectra (black curve); shows (b) C-O stretching, (c) 
O-H bending and (d) C=O stretching of –COOH 
functional group and (e) –SH stretching of mercaptan. 
39 (i.e., 3n-6) fundamental vibrations were calculated 
as indicated by blue vertical lines 
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4.34 (a) Optimized structure of mercaptobenzoic acid 
(MBA) that contains (n = 16) atoms. The calculated IR 
spectra (red curve) matched well with the experimental 
IR spectra (black curve); shows (b) C-O stretching, (c) 
O-H bending and (d) C=O stretching of –COOH 
functional group and (e) –SH stretching of mercaptan. 
42 (i.e., 3n-6) fundamental vibrations were calculated 
as indicated by blue vertical lines 
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4.35 Calculated Optimized structures of (a) (CdSe)13–MAA, 
(b) (CdSe)13–MBA, (c) (CdSe)13–MPA and (d) 
(CdSe)13–MSA  conjugates 
 

92 

4.36 Calculated Infrared spectra of (a) (CdSe)13–MAA, (b) 
(CdSe)13–MBA , (c) (CdSe)13–MPA and (d) (CdSe)13–
MSA  conjugates show positive frequencies confirming 
minimum energy structures 
 

93 

5.1 (a) Schematic diagram of device structure of DSSC, 
QDSC with ligand and without ligand respectively and 
(b) energetic diagram showing exciton dissociation at 
sensitizer-MOS interface 
 

95 

5.2 Simulated absorption spectra of (a) N3 dye, (b) 
(CdSe)6, (c) (CdSe)13, (d) (CdSe)16, and (e) (CdSe)26, 
generated from energy calculations of DFT. Vertical 
lines are the calculated oscillator strengths at excitonic 
peak position of each fluorophore. 
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5.3 Absorption cross section of (CdSe)x QDs with diameter 
of ~4 nm is predicted higher than that of N3 dye 
molecule 
 

98 

5.4 Off-set minimization could minimize the amount of 
energy lost during injection and increase the final 
conversion efficiency 
 

99 

5.5 Shows calculated HOMO and LUMO energy levels of 
(CdSe)6, (CdSe)13, (CdSe)16 and (CdSe)26 clusters. 
Presence of multi-size CdSe QDs hinders efficient 
charge injections to photoelectrode in QDSCs 
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5.6 Uniform and uneven LUMO distributions at Cd and Se 
atoms made (CdSe)6 cluster is electronically unstable 
as observed from (a) front, (b) side and (c) rear view. 
Boxes show the LUMO density of Se atoms is smaller, 
compared to that of Cd atoms 
 

101 

5.7 Uniform and even LUMO distribution made (CdSe)13 
cluster is electronically stable as observed from (a) 
front, (b) side and (c) rear view. 13 Cd atoms (arrows) 
are identified, possible for MSA ligand (inset) 
adsorption with overlapping wave function with –SH 
functional group (circle) 
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5.8 Nonuniform and uneven LUMO distributions at Cd and 
Se atoms made (CdSe)16 cluster is electronically 
unstable as observed from (a) front, (b) side and (c) 
rear view. Boxes show Cd atoms without LUMO 
density which is not possible for MSA ligand 
adsorption with wave function overlapping 
 

102 

5.9 In (CdSe)26 LUMO density is only localized at Se 
atoms as observed from (a) front, (b) side and (c) rear 
view, denotes that MSA ligand adsorption with wave 
function overlapping is not possible 
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5.10 (a) Non-uniform and uneven LUMO distributions at Cd 
and Se atom make the (CdSe)32 cluster electronically 
unstable as observed from (a) front, (b) side and (c) 
rear view. Circles show Cd atoms without LUMO 
density and arrows marked the external Cd atoms 
 

103 

5.11 LUMO is extended to the anchoring hydrogen in –
COOH group of N3 dye molecule as observed from (a) 
front, (b) side and (c) rear view 
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5.12 (a) Four anchoring hydrogen in carboxylic functional 
groups (circles) are observed in the optimized ground 
state structure. (b) The distance between the nearest 
LUMO site to the anchoring hydrogen is measured in 
the emitting state of N3 dye, which generated using 
TDDFT calculations 
 

105 

5.13 The LUMO of (a) MAA, (b) MBA, (c) MPA and (d) 
MSA, reveal the distance of the nearest LUMO site to 
the anchoring hydrogen in –COOH (dashed circle) and 
–SH (solid circle) functional groups. Insets are 
optimized structure of the ligands 
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5.14 (a) (CdSe)13–MAA and (b) (CdSe)13–MPA conjugates 
from front and rear view. Boxes show only small 
portion of LUMO on MAA and MPA molecules denote 
inefficient electron injection from (CdSe)13 to both 
ligands 
 

108 

5.15 (a) Properly aligned energy level of QDSC components 
favors electron regeneration from electrolyte to 
HOMOCdSe. (b) Higher energy level of Eo of IonLic 
BMII than that of LUMOTiO2 prohibits electron 
injection from TiO2 to electrolyte, thus, electron 
regeneration in HOMOCdSe is retarded 
 

110 

5.16 Optimized structure of 1-butyl-3-methylimidazolium 
iodide ionic liquid (IonLic BMII) in gas phase at 
B3LYP/lanl2dz level of DFT. The optimized 
parameters and validation procedure are presented in 
Appendix K 
 

110 

5.17 Born-Haber thermodynamic cycle for standard redox 
potential calculations 
 

112 

5.18 (a) Energy level misalignment, i.e., Eo> LUMOTiO2 
preventing electron regeneration of N719 dye. (b) Eo 

shift due to addition of I2 redox couple, TBP and 
GuNCS co-additives is speculated; could favor N3 dye 
reduction 
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6.1 The PL of bare CdSe QDs and CdSe QDs–TiO2 
conjugate originates from radiative recombination of 
excited state electron from LUMOCdSe to HOMOCdSe. 
The number of electron recombination in the conjugate 
is lesser than that of the bare QDs due to electron 
injections to TiO2; that leads to quenching of PL 
intensity 
 

115 

6.2 FESEM micrographs shows mesoporous TiO2 layer 
(thickness ~12 μm) on FTO glass as observed at (a) 3 
000 and (b) 25 000 times magnification 
 

116 

6.3 Absorption spectra of (a) as synthesized CdSe QDs 
dissolved in acetonitrile, (b) bare TiO2 film, (c) CdSe–
TiO2 (DA), (d) CdSe–MSA–TiO2 and (e) CdSe–MPA–
TiO2. The size of the cluster estimated from the 
absorption spectra of the bare CdSe QDs to be ~3.69 
nm; assigned to (CdSe)32 cluster 
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6.4 (a) PL of as prepared CdSe QDs solution in 
acetonitrile. Electron injection from CdSe QDs to TiO2 
was determined by a quenched PL intensity of (b) 
CdSe–MPA–TiO2, (c) CdSe–MSA–TiO2 and (d) 
CdSe–TiO2 conjugate. The PL spectra have been 
normalized based on their individual absorbance 
intensity for a fair comparison 
 

118 

6.5 Hindered electron injection from CdSe QDs to TiO2 
due to inefficient electron channelling via MSA ligand 
(LUMOMSA > LUMOCdSe). The same energy level 
misalignment was observed for MPA-based conjugate. 
Energy levels were calculated and presented in chapter 
5, section 5.4.2.3 
 

118 

6.6 (a) Bare TiO2 nanowires before CdSe QDs attachment 
and (b) successful CdSe QDs attachment onto TiO2 in a 
form of core–shell nanowire by the SILAR technique 
as observed using transmission electron microscopy 
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6.7 XRD pattern of (a) bare anatase TiO2 nanowire film on 
FTO (JCPDS 84-1286) and (b) CdSe QDs conjugated 
TiO2 nanowire on FTO 
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6.8 (a) Similar absorption curve of bare CdSe and CdSe-
conjugated TiO2 showed a successful sensitization 
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6.9 Quenched PL intensity in the core-shell nanowire curve 
(dashed curve) shows a successful electron injection 
from CdSe shell to TiO2 core 
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6.10 Excited state electron mapping using quantum 
mechanical calculations shows (a) even and uniformly 
distributed excited state electron at surface atoms of 
(CdSe)13 and (b) localized excited state electron in the 
core atoms of (CdSe)32 cluster; which used in QD–TiO2 
conjugation using SILAR and DA procedure 
respectively 
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6.11 CdSe QDs attachment onto TNRs via immersion of 
FTO in TOP-Se and TOP-Cd solution within (a) 4 
hours, (b) 24 hours and (c) 168 hours. (d) Bare TNRs 
layer on FTO glass 
 

123 

6.12 XRD pattern of CdSe QDs conjugated TNRs on FTO. 
Vertical lines denote the standard diffraction data of 
rutile TiO2 (JCPDS 88-1175) 
 

124 

6.13 FESEM micrographs shows (a) bare TNRs grown on 
FTO (diameter of rod ~100 nm and length ~1 μm) and 
(b) CdSe QDs coated TNRs at 30 000 magnifications 
from top view (top) and cross-section view (bottom). 
Presence of CdSe QDs is unobservable 
 

124 

6.14 Uneven and small adsorption area of CdSe QDs on 
TNRs-FTO upon immersion for 4 hours as indicated by 
the dotted area 
 

125 

6.15 Absorption spectra of (a) CdSe QDs aliquots at 4 hours 
of reaction time, (b) bare TNRs – FTO and (c) TNRs – 
FTO immersed in TOP CdSe QDs aliquots for 4 hours 
 

125 

6.16 (a) PL of CdSe QDs aliquots upon 4 hours of reaction 
time, (b) successful electron injection from CdSe QDs 
to TNRs determined by drastic quenched of PL 
intensity and (c) upon exposure to air for 3 days, the PL 
intensity increased 
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6.17 Absorption spectra of (a) fresh TNRs – FTO immersed 
in TOP CdSe QDs aliquots for 4 hours and (b) upon 3 
days exposure to air 
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6.18 Absorption spectra of (a) CdSe QDs aliquots at 24 
hours of reaction time, (b) bare TNRs – FTO and (c) 
TNRs – FTO immersed in TOP CdSe QDs aliquots for 
24 hours 
 

128 

6.19 Wide and uneven coverage of CdSe QDs adsorption 
within 24 hours of TNRs – FTO immersion 
 

128 

6.20 (a) PL of CdSe QDs aliquots upon 24 hours of reaction 
time, (b) successful electron injection from CdSe QDs 
to TNRs determined by quenched of PL intensity 
 

129 

6.21 Wide and even coverage of CdSe QDs adsorption 
within 168 hours of TNRs – FTO immersion 
 

129 

6.22 Absorption spectra of (a) CdSe QDs aliquots at 168 
hours of reaction time, (b) bare TNRs – FTO and (c) 
TNRs – FTO immersed in TOP CdSe QDs aliquots for 
168 hours 
 

130 

6.23 (a) PL of CdSe QDs aliquots upon 168 hours of 
reaction time, (b) successful electron injection from 
CdSe QDs to TNRs determined by quenched of PL 
intensity 
 

130 

6.24 (a) Bare TNRs – FTO and (b) upon CBD for 24 hours 
showed wide and even adsorption area of CdSe QDs 
 

131 

6.25 Absorption spectra of (a) CdSe QDs aliquots at 24 
hours of reaction time, (b) bare TNRs – FTO and (c) 
TNRs – FTO immersed in CBD aliquots for 24 hours 
 

132 

6.26 (a) PL of CdSe QDs aliquots upon 24 hours of reaction 
time, (b) successful electron injection from CdSe QDs 
to TNRs determined by quenched of PL intensity 
 

132 

7.1 The structure – property correlation in QDSCs 
 

138 

A-1 Light polarized optical microscope images of lamellar 
phase liquid crystals consist of surfactant/oil/water wt 
% of (a) 90/0/10, (b) 90/10/0, (c) 80/0/20, (d) 80/10/10, 
(e) 80/20/0, (f) 70/0/30, (g) 70/10/20, (h) 70/20/10, (i) 
70/30/0, (j) 60/0/40, (k) 60/10/30 and (l) 60/20/20 
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A-2 Light polarized optical microscope images of lamellar 
phase liquid crystals consist of surfactant/oil/water wt 
% of (a) 60/30/10, (b) 60/40/0, (c) 50/0/50, (d) 
50/10/40, (e) 50/20/30, (f) 40/0/60, (g) 40/10/50, (h) 
40/20/40, (i) 30/0/70, (j) 30/10/60, (k) 20/0/80 and (l) 
10/0/90 
 

155 

A-3 Polarized (left) and non-polarize (right) optical 
microscope images of (a)   microemulsion phase 
composed by 10/90/0 wt % and (b) emulsion phase 
composed by 10/60/30 wt %. Note that the water 
droplets in emulsion phase are observable 
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A-4 Ternary phase diagram of S1670/1-heptanol/water 
system 
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B-1 Fitted Gaussian peaks (dotted curves) which assigned 
to (a) 1S3/2 - 1Se, (b)   1S1/2 – 1Se, (c) 1P3/2 – 1Se and (d) 
2S1/2 – 1Se transitions of experimental absorption 
spectra (solid curve) of CdSe QDs aliquots within 1 
minute of reaction time. (e) The cumulative fitted curve 
(dotted) overlapped exactly with the experimental 
curve (solid curve). The first excitonic peak (1S1/2 – 1Se 
transition) is at 591.79 nm of wavelength. The size of 
QDs was estimated ca. 4.24 nm using Eq. (4.1). Note 
that the peak for 2S1/2 – 1Se transition is extended to the 
low wavelengths region 
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B-2 Fitted Gaussian peaks (dotted curves) which assigned 
to (a) 1S3/2 - 1Se, (b)   1S1/2 – 1Se, (c) 1P3/2 – 1Se and (d) 
2S1/2 – 1Se transitions of experimental absorption 
spectra (solid curve) of CdSe QDs aliquots within 5 
minutes of reaction time. (e) The cumulative fitted 
curve (dotted) overlapped exactly with the 
experimental curve (solid curve). The first excitonic 
peak (1S1/2 – 1Se transition) is at 599.00 nm of 
wavelength. The size of QDs was estimated ca. 4.54 
nm using Eq. (4.1). Note that the peak for 2S1/2 – 1Se 
transition is extended to the low wavelengths region 
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B-3 Fitted Gaussian peaks (dotted curves) which assigned 
to (a) 1S3/2 - 1Se, (b)   1S1/2 – 1Se, (c) 1P3/2 – 1Se and (d) 
2S1/2 – 1Se transitions of experimental absorption 
spectra (solid curve) of CdSe QDs aliquots within 10 
minutes of reaction time. (e) The cumulative fitted 
curve (dotted) overlapped exactly with the 
experimental curve (solid curve). The first excitonic 
peak (1S1/2 – 1Se transition) is at 602.00 nm of 
wavelength. The size of QDs was estimated ca. 4.67 
nm using Eq. (4.1). Note that the peak for 2S1/2 – 1Se 
transition is extended to the low wavelengths region 
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B-4 Fitted Gaussian peaks (dotted curves) which assigned 
to (a) 1S3/2 - 1Se, (b)     1S1/2 – 1Se, (c) 1P3/2 – 1Se and 
(d) 2S1/2 – 1Se transitions of experimental absorption 
spectra (solid curve) of CdSe QDs aliquots within 15 
minutes of reaction time. (e) The cumulative fitted 
curve (dotted) overlapped exactly with the 
experimental curve (solid curve). The first excitonic 
peak (1S1/2 – 1Se transition) is at 605.21 nm of 
wavelength. The size of QDs was estimated ca. 4.82 
nm using Eq. (4.1). Note that the peak for 2S1/2 – 1Se 
transition is extended to the low wavelengths region 
 

161 

B-5 Fitted Gaussian peaks (dotted curves) which assigned 
to (a) 1S3/2 - 1Se, (b)   1S1/2 – 1Se, (c) 1P3/2 – 1Se and (d) 
2S1/2 – 1Se transitions of experimental absorption 
spectra (solid curve) of CdSe QDs aliquots within 30 
minutes of reaction time. (e) The cumulative fitted 
curve (dotted) overlapped exactly with the 
experimental curve (solid curve). The first excitonic 
peak (1S1/2 – 1Se transition) is at 618.98 nm of 
wavelength. The size of QDs was estimated ca. 5.55 
nm using Eq. (4.1). Note that the peak for 2S1/2 – 1Se 
transition is extended to the low wavelengths region 
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B-6 Fitted Gaussian peaks (dotted curves) which assigned 
to (a) 1S3/2 - 1Se, (b)         1S1/2 – 1Se, (c) 1P3/2 – 1Se and 
(d) 2S1/2 – 1Se transitions of experimental absorption 
spectra (solid curve) of CdSe QDs aliquots within 60 
minutes of reaction time. (e) The cumulative fitted 
curve (dotted) overlapped exactly with the 
experimental curve (solid curve). The first excitonic 
peak (1S1/2 – 1Se transition) is at 630.00 nm of 
wavelength. The size of QDs was estimated ca. 6.23 
nm using Eq. (4.1). Note that the peak for 2S1/2 – 1Se 
transition is extended to the low wavelengths region 
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B-7 Fitted Gaussian peaks (dotted curves) which assigned 
to (a) 1S3/2 - 1Se, (b)   1S1/2 – 1Se, (c) 1P3/2 – 1Se and (d) 
2S1/2 – 1Se transitions of experimental absorption 
spectra (solid curve) of CdSe QDs aliquots within 120 
minutes of reaction time. (e) The cumulative fitted 
curve (dotted) overlapped exactly with the 
experimental curve (solid curve). The first excitonic 
peak (1S1/2 – 1Se transition) is at 645.01 nm of 
wavelength. The size of QDs was estimated ca. 6.44 
nm using Eq. (4.1). Note that the peak for 2S1/2 – 1Se 
transition is extended to the low wavelengths region 
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B-8 Fitted Gaussian peaks (dotted curves) which assigned 
to (a) 1S3/2 - 1Se, (b)       1S1/2 – 1Se, (c) 1P3/2 – 1Se and 
(d) 2S1/2 – 1Se transitions of experimental absorption 
spectra (solid curve) of extracted CdSe QDs after 30 
minutes of reaction time. (e) The cumulative fitted 
curve (dotted) overlapped exactly with the 
experimental curve (solid curve). The first excitonic 
peak (1S1/2 – 1Se transition) is at 650.03 nm of 
wavelength. The size of QDs was estimated ca. 7.76 
nm using Eq. (4.1). The peak red shifted from 618.98 
nm (aliquots) due to aggregation of QDs after five 
cycles of centrifugation and suspension in acetonitrile 
 

165 

C-1 Fitted Gaussian peaks (dotted curves) which assigned 
to (a) 1S3/2 - 1Se, (b)     1S1/2 – 1Se, (c) 1P3/2 – 1Se and 
(d) 2S1/2 – 1Se transitions of experimental absorption 
spectra (solid curve) of CdSe QDs aliquots within 4 
hours of reaction time at room temperature. (e) The 
cumulative fitted curve (dotted) overlapped exactly 
with the experimental curve (solid curve). The first 
excitonic peak (1S1/2 – 1Se transition) is at 345.75 nm 
of wavelength. The size of QDs was estimated ca. 1.05 
nm using Eq. (4.1). Note that the peaks for 1P3/2 – 1Se 
and 2S1/2 – 1Se transition are extended to the low 
wavelengths region 
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C-2 Fitted Gaussian peaks (dotted curves) which assigned 
to (a) 1S3/2 - 1Se, (b)     1S1/2 – 1Se, (c) 1P3/2 – 1Se and 
(d) 2S1/2 – 1Se transitions of experimental absorption 
spectra (solid curve) of CdSe QDs aliquots within 64 
hours of reaction time at room temperature. (e) The 
cumulative fitted curve (dotted) overlapped exactly 
with the experimental curve (solid curve). The first 
excitonic peak (1S1/2 – 1Se transition) is at 408.17 nm 
of wavelength. The size of QDs was estimated ca. 1.62 
nm using Eq. (4.1). Note that the peak for 2S1/2 – 1Se 
transition is extended to the low wavelengths region 
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C-3 Fitted Gaussian peaks (dotted curves) which assigned 
to (a) 1S3/2 - 1Se, (b)     1S1/2 – 1Se, (c) 1P3/2 – 1Se and 
(d) 2S1/2 – 1Se transitions of experimental absorption 
spectra (solid curve) of CdSe QDs aliquots within 5 
hours of reaction time at 50 ̊C. (e) The cumulative 
fitted curve (dotted) overlapped exactly with the 
experimental curve (solid curve). The first excitonic 
peak (1S1/2 – 1Se transition) is at 471.20 nm of 
wavelength. The size of QDs was estimated ca. 2.11 
nm using Eq. (4.1). Note that the peak for 2S1/2 – 1Se 
transition is extended to the low wavelengths region 
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F-1 Proposed (CdSe)36 QDs geometry from (left to right) 
front and side view 
 

202 

F-2 Proposed (CdSe)40 QDs geometry from (left to right) 
front and side view 
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F-3 Proposed (CdSe)45 QDs geometry from (left to right) 
front and side view 
 

209 

F-4 Proposed (CdSe)48 QDs geometry from (left to right) 
front and side view 
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L-1 
 

Good agreement between experimental (black solid 
boxes) and calculated (red circles) absorption spectra 
with first excitonic peak at ~380 nm. The vertical blue 
lines are calculated oscillator strengths that matched 
the first excitonic peak of both calculated and 
experimental spectra. Note that the calculated spectra 
were based on absorption of a single molecule; whereas 
the experimental spectra were based on multi-molecule 
system that could possibly be the cause of the shift of 
the first excitonic peak position 
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L-2 Calculated infrared spectra show positive frequencies 
confirming a minimum energy structure. 72 (3n-6) 
fundamental vibrations were calculated as indicated by 
the red vertical lines. The number of atom in the 1-
butyl-3-methylimidazolium iodide molecule, n = 26 
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CHAPTER 1 

 

 

INTRODUCTION 

 

1.1 BACKGROUND 

 

 The quantum dots (QDs), the semiconducting nanocrystals of size less than their 

exciton Bohr radius with size-dependent opto-electronic properties, have been 

fascinating materials to scientists and engineers for nearly two decades. This fascination 

stems from two reasons: firstly, QDs are midway between molecules and crystals 

thereby giving opportunities to understand the evolution of properties of bulk materials 

compared to their molecules. Secondly, their size dependent opto-electronic properties 

make them promising candidates for a diverse range of applications. Figure 1.1 shows 

that when a bulk semiconductor is reduced to the size of QDs, one can observe that the 

density of states (DoS) of QDs is very similar to that of atoms, which enable them to be 

called artificial atoms (Alivisatos, 1996a). 

 

Applications of QDs, where semiconductor physics meets nanotechnology, are 

now envisaged in diverse areas such as opto-electronics (Su et al., 2013), healthcare (Li 

et al., 2013), computation (Dietl et al., 2000), PVs (Rühle et al., 2010), and advanced 

electronics (Hai et al., 2013). The principle attraction in the use of QDs for PVs is 

related to the thermodynamic limit of the energy conversion efficiency of solar cells. 

Shockley and Queisser calculated the thermodynamic limit of conversion efficiency for 

solar cells to be 32% (Shockley et al., 1961). This limit arises from the difference 

between the energy absorbed by the photoactive semiconductor and its bandgap. As the 

electron injection or separation occurs only from the bottom of the conduction band, the 

above difference in energy is lost as heat through excitation of the lattice vibrations, 

otherwise called phonon relaxation (see Figure 1.2.a). In other words, the electrons are 

“cooled” by transferring the difference in energy to the lattice. 


