DEVELOPMENT OF TERNARY PHASE DIAGRAM: OPTICAL AND MECHANICAL CHARACTERIZATION OF WATER/TAPIOCA STARCH/TRITON X-100 LIQUID CRYSTAL

By Muhd Fazreel B Muhammad Rosli

A thesis submitted in partial fulfillment of the requirement for the award of the degree of Bachelor of Applied Science (Physics, Electronics and Instrumentations)

DEPARTMENT OF PHYSICAL SCIENCES FACULTY OF SCIENCE AND TECHNOLOGY UNIVERSITY MALAYSIA TERENGGANU 2011

JABATAN SAINS FIZIK FAKULTI SAINS DAN TEKNOLOGI UNIVERSITI MALAYSIA TERENGGANU

PENGAKUAN DAN PENGESAHAN LAPORAN PENYELIDIKAN SFZ 4399A/B

Adalah ini diakui dan disahkan bahawa laporan penyelidikan bertajuk: DEVELOPMENT OF TERNARY PHASE DIAGRAM: OPTICAL AND MECHANICAL CHARACTERIZATION OF WATER/TAPIOCA STARCH/TRITON X-100 LIQUID CRYSTAL oleh MUHD FAZREEL B MUHAMMAD ROSLI no. matrik: UK16780 telah diperiksa dan semua pembetulan yang disarankan telah dilakukan. Laporan ini dikemukakan kepada Jabatan Sains Fizik sebagai memenuhi sebahagian daripada keperluan memperolehi Ijazah Sarjana Muda Sains Gunaan (Fizik Elektronik & Instrumentasi), Fakulti Sains dan Teknologi, UMT.

Disahkan oleh:

Penyelia Utarba MOHD IKMAR NIZAM BIN MOHAMAD ISA Nama: Cop Rasmi: Jabatan Sains Fizik Fakulti Sains dan Teknologi Universiti Malaysia Terengganu 21030 Kuala Terengganu

Tarikh: 26/6/4

Penyelia Bersama (jika ada) Nama: Cop Rasmi

Tarikh:

Hman

Ketua Jabatan Sains Fizik Nama: Cop Rasmi: DR. NOHD IKMAR NIZAN BIN MOHAMAD ISA Ketua Jabatan Seins Fizik Fakulti Sains dan Teknolog: Universiti Malaysia Terengganu

21030 Kuala Terengganu

Tarikh: 26/6/1

DECLARATION

I hereby that this FYP research report entitled Development of Ternary Phase Diagram: Optical and mechanical Characterization of Water/Tapioca Starch/Triton X-100 Liquid Crystal is the result of my own research except as cited in the references.

> Signature : Jby Name : Muhd Fazreel B Muhammad Rosli Matric No. : UK 16780 Date : 26/06/2011

CONTENTS

			Page
TITLE PAGE			i
DECLARATION			iii
ACKNOWLEDGEN	MENT		iv
ABSTRACT			v
ABSTRAK			vi
CONTENTS			
LIST OF TABLES			Х
LIST OF FIGURES			xi
ABBREVIATION			xiii
APPENDIX LIST			xiv
CHAPTER 1	INTR	ODUCTION	
	1.1	Project Background	1
	1.2	Problem Statement	3
	1.3	Project Objectives	4
	1.4	Research Significant	4
	1.5	Scope of Research	5
CHAPTER 2	LITE	RATURE REVIEW	
	2.1	Lyotropic Liquid Crystal	6
		2.1.1 Structures of Liquid Crystal	7
		2.1.2 Liquid Crystal in	
		Food Manufacturing	8
		2.1.3 Liquid Crystal in	
		Pharmaceuticals	9
		2.1.4 Liquid Crystal in Cosmetic	9
	2.2	Starch (Tapioca Starch)	10
		2.2.1 Starch as a Thickener in Food	
		Industry	10
		2.2.2 Starch as a Biopolymer in Foods	11
	2.3	Surfactant (Triton X-100)	11
		2.3.1 Surfactant in Cosmetic Products	11
CHAPTER 3	MET	HODOLOGY	
	3.1	Project Overview	12
	3.2	Project Flow Chart	13
	3.3	Sample Preparation of Water/Tapioca Starch/	
		Triton X-100	14

	3.3.1 Tapioca Starch	15			
	3.3.2 Surfactant (Triton X-100)	16			
3.4	Polarizing Optical Microscope	17			
3.5	Liquid Crystal Phases	17			
	3.5.1 Lamellar Liquid Crystal	18			
	3.5.2 Cubic Liquid Crystal	19			
	3.5.3 Hexagonal Liquid Crystal	19			
3.6	Triangle Ternary Phase Diagram	20			
	3.6.1 How Ternary Phase Diagram Works	20			
	3.6.2 How to Read a Ternary Diagram	22			
	3.6.3 Determination Composition Value of Point	24			
3.7	Simultaneous to Wide Angle X-Ray				
	Scattering (SWAXS)	24			
3.8	Investigate Mechanical Properties Using Rheomete	r 26			
RES	ULT AND DISCUSSION				
4.1	Phase Investigated via Polarizing				
	Optical Microscope (POM)	28			
1.2	Ternary Phase Diagram of Water/				
	Tapioca Starch/Triton X-100 Liquid Crystal				
	system at room temperature	29			
1.3	Ternary Phase Diagram of Water/Tapioca Starch/				
	Triton X-100 Liquid Crystal system				
	at 15°C and 45°C	33			
4.4	Characterization of Liquid Crystal				
	using SWAXS				
	4.4.1 20:40:40 Water/Tapioca Starch/Triton				
	X-100 at 15°C, 25°C and 45°C	40			
	4.4.2 40:30:30 Water/Tapioca Starch/Triton				
	X-100 at 15°C, 25°C and 45°C	42			
	4.4.3 50:20:30 Water/Tapioca Starch/Triton				
	X-100 at 15°C, 25°C and 45°C	46			
1.5	Rheological Properties of the Liquid Crystalline				
	Phase	49			
4.6	Rheological Properties of the Liquid				
	Crystalline Phase Based to Viscosity-				
	Concentration (Surfactant & Amphiphile)				
	-Temperature				
	4.6.1 Relationship of Viscosity and Surfactant				
	Concentration (Triton X-100)	53			

CHAPTER 4

			Relationship of Viscosity and Amphiphiles Concentration (Triton X-100 & Tapioca Starch) Relationship of Viscosity and Temperature	53 54
		4.0.5	Relationship of viscosity and Temperature	54
	4.7		ogical Properties of the Liquid Crystalline Based to the Graph Produced	56
CHAPTER 5	CON	CLUSI	ON AND SUGGESTION	
	5.1	Concl		57
	5.2	Sugge	stion	59

REFERENCES APPENDIX BIBLIOGRAPHY

60

LIST OF TABLES

Table	e No.	Page
3.1:	Composition (by weight) of the samples used in	
	rheological measurement (Siddig, et al., 2004)	16
4.1:	Phases of Liquid Crystal detected in this study	30
4.2:	Lattice spacing value for the liquid crystal phases	
	at 15° C, 25° C and 45° C	48
4.3:	Relationship of temperature and viscosity	
	(value of viscosity according to the different temperatures)	55

LIST OF FIGURES

Figur	e No.	Page
3.1	The flow of project	14
3.2	(A) Images of Tapioca Starch under SEM	
	(B) EDS spectrum of Tapioca Starch	15
3.3	Schematic Diagram of an amphiphilic molecule	18
3.4	POM images the ternary system in lamellar phase.	
	(Cuihua, L et al., 2009)	19
3.5	Ternary Phase Diagram Triangle	21
3.6	Ternary Diagram Labeled For Component A	22
3.7	Ternary Diagram Labelled For Component A & B	22
3.8	Ternary Diagram labeled for components A, B & C	23
3.9	Ternary Diagram with points	24
3.10	Schematic graph for lamellar phase produced by instrument	
	SWAXS and the formula of lattice spacing, d for lamellar	26
3.11	(A) Overview of the SWAXS system (B) Side view of	
	the SWAXS system	26
4.1	Some example of samples prepared in this research	29
4.2	Phase diagram for the system of Water/Tapioca Starch/	
	Triton X-100 at room temperature $(25^{\circ}C)$. (L) is lamellar,	
	(M) is micelle solution and (L+H) is lamellar+hexagonal	30
4.3	Representative POM images of the ternary system in lamellar	
	phases. Maltases cross in (A) 50:0:50 Water/Tapioca Starch/	
	Triton at 25°C (B) 50:10:40 Water/Tapioca Starch/Triton	
	at 25°C (C) 80:0:20 Water/Tapioca Starch/Triton at 25°C	
	(D) 90:0:10 Water/Tapioca Starch/Triton at 25°C	32
4.4	Representing POM images of the ternary system in lamellar	
	phase. (A) Maltase crosses in 50:20:30 Water/Tapioca Starch/	
	Triton before using light in POM (B) Maltase crosses	
	in 50:20:30 Water/Tapioca Starch/Triton after using light in POM	33
4.5	Phase diagram for the system of Water/Tapioca Starch/	
	Triton X-100 at 15°C. (L) is lamellar, (M) is micelle solution,	
	(N) is nematic, $(N+L)$ is nematic+lamellar and $(M+L)$	
	is micelle+lamellar	34
4.6	Phase diagram for the system of Water/Tapioca Starch/	
	Triton X-100 at 45°C. (L) is lamellar, (N) is nematic and (M)	
	is micelle solution	35

4.7	Schematic showing the aggregation of amphiphiles into	
	micelles and then into lyotropic liquid crystal phases	
	like lamellar as a function of amphiphile concentration	36
1 9	and temperature (A) Schematic image for the structure of missile that its	50
4.8	(A) Schematic image for the structure of micelle that its	
	hydrophobic tails are contacted with water (B) Schematic	
	image for the lamellar structure that has a double layer	38
4.0	of molecules arranged with hydrophobic tails are contact with water	30
4.9	Representative POM images of the ternary system in	
	nematic discotic phases. (A) 50:0:50 Water/Tapioca Starch/	
	Triton X-100 at 25°C (B) 50:0:50 Water/Tapioca Starch/	20
4 10	Triton X-100 at 45° C (A) SWAVS sector in a setting of 20,40,40 Weter (Tania as	39
4.10	(A) SWAXS scattering pattern of 20:40:40 Water/Tapioca	
	Starch/Triton X-100 at 15°C (B) SWAXS scattering pattern	
	of 20:40:40 Water/Tapioca Starch/Triton X-100 at 25°C	
	(C) SWAXS scattering pattern of 20:40:40 Water/Tapioca Starch/Triton X-100 at 45°C	41
4.11		41
4.11	3D View automatically calculates the value of lattice spacing, d SWAXS scattering pattern of lamellar and the value of lattice	42
4.12	spacing of lamellar phase for sample 40:30:30 Water/Tapioca Starch	
	/Triton X-100 at 15°C	43
4.13	SWAXS scattering pattern of lamellar and the value of lattice	43
4.15	spacing of lamellar phase for sample 40:30:30 Water/Tapioca	
	Starch/Triton X-100 at 25°C	44
4.14	SWAXS scattering pattern of lamellar and the value of lattice	
1.1 1	spacing of lamellar phase for sample 40:30:30 Water/Tapioca	
	Starch/Triton X-100 at 45°C	45
4.15	SWAXS scattering patterns of lamellar phase for sample 50:20:30	10
	Water/Tapioca Starch/Triton X-100 (A) at 25°C (B) at 45°C	46
4.16	3D View only provide the lattice spacing information to	
	the lamellar, hexagonal and cubic LC phase	47
4.17	Graph for shear rate (γ) versus shear stress (σ)	50
4.18	Graph Viscosity versus Shear Rate for sample 40:20:40	
	of Water/Tapioca Starch/Triton X-100 at room temperature	51
4.19	Graph Viscosity versus Shear Rate for sample 40:40:20	
	of Water/Tapioca Starch/Triton X-100 at room temperature	51
4.20	Graph Viscosity versus Shear Rate for sample 30:40:30	
	of Water/Tapioca Starch/Triton X-100 at room temperature	52
4.21	Graph Viscosity versus Shear Rate for sample	
	40:30:30 of Water/Tapioca Starch/Triton X-100	
	at room temperature	52
4.22	At low concentration, the polymer chains are not	
	in contact with each other. At high concentration,	
	the polymer chains are contact with other (Macosko, 1994)	54
4.23	Graph for viscosity (Pa s ⁻¹) versus temperature (°C)	55

ABBREVIATION

Liquid Crystal
Lyotropic Liquid Crystal
Thermotropic Liquid Crystal
Metallotropic Liquid Crystal
Polarizing Optical Microscope
Simultaneous to Wide Angle X-Ray Scattering
Shear Thickening Fluid
Scanning Electron Microscope
Energy Dispersive X-Ray Spectroscopy
Universiti Malaysia Pahang
Universiti Kebangsaan Malaysia

APPENDIX LIST

Appendix		
Figure 1:	Polarizing Optical Microsope (POM)	63
Figure 2:	Simultaneous to Wide Angle X-Ray Scattering (SWAXS)	63