RDU090304

VARIOUS IMPACT RESISTANCE CAPABILITIES OF TAPIOCA STARCH BASED SHEAR THICKENING FLUID (STF)

(PELBAGAI KETAHANAN TERHADAP IMPAK BAGI CECAIR MENEBAL RICIH BERASASKAN TEPUNG UBI)

SAIFFUL KAMALUDDIN BIN MUZAKIR @ LOKMAN IZAN IZWAN BIN MISNON NAZIKUSSABAH BINTI ZAHARUDIN

RESEARCH VOTE NO: RDU090304

Fakulti Sains & Teknologi Industri Universiti Malaysia Pahang

2011

ACKNOWLEDGEMENT

In the name of Allah, the most Gracious and most Merciful. Special thanks to Research & Innovation Department of UMP for providing fund for this project. Great efforts from the team members Izan Izwan and Nazikussabah, thank you. Last but not least, my students, Muhd Fazreel and Arishah Muhassim, without you guys we will never reach this level. Lastly, keep on exploring on things that we believe. Never give up upon failures; sometimes we will see the beauty of failure in the following day.

VARIOUS IMPACT RESISTANCE CAPABILITIES OF TAPIOCA STARCH BASED SHEAR THICKENING FLUID (STF)

ABSTRACT

STF is a non-Newtonian flow behaviour often observed in concentrated colloidal dispersions characterized by significant, sometimes discontinuous increase in viscosity with increasing shear stress. Examples are concentrated particle colloidal suspensions such as photographic dies, paints, coatings and lubricants. When such fluid is subjected to a high-enough shear stress, it can lead to a rapid, sometimes discontinuous, increase in viscosity. The change in viscosity is due to the change of molecular arrangement structure in the colloidal suspension which usually will change from disordered liquid to ordered liquid crystals. Triangle Ternary Phase Diagram can be classified as a diagram that represents the equilibrium between the various liquid crystal (LC) phases that are formed between three components. The optical and mechanical properties of ternary mixtures of Water/Tapioca Starch/Triton X-100 were studied by Polarizing Optical Microscope (POM), Simultaneous to Wide Angle X-Ray Scattering (SWAXS) and Rheometer. POM and SWAXS were used for phase identification and structure characterization. Rheometer was used to investigate the rheological properties of LC. Three different temperatures were used in this study: 15°C, 25°C and 45°C. Several texture and optical pattern were examined under the POM. The ternary phase diagram systems obtained in this work tend to form different LC phases with the increase of concentration and temperature of the mixtures. Two types of LC were formed namely Lyotropic (LLC) and Thermotropic (TLC). Lamellar and micelle phase were formed in the LLC while nematic phase was formed in TLC. Optical investigation was done by examining the change of phase in the LC according to the change of temperature and amphiphile concentration. The phase transitions of TLC was found to depend on the temperature, while for the LLC, it depends on both the temperature and concentration. SWAXS was studied with the finding of lattice spacing, d value of LC: 96.61 Angstrom for the sample 40:30:30 of Water/Tapioca Starch/Triton X-100 at 25°C as an example. The values of d are in agreement with the Bragg's Law where the values of d increases with increasing temperature. Furthermore, the viscosity-shear rate-shear stress plot was discussed based to the rheological properties.

PELBAGAI KETAHANAN TERHADAP IMPAK BAGI CECAIR MENEBAL RICIH BERASASKAN TEPUNG UBI

ABSTRAK

Penebalan ricih adalah satu sifat perngaliran bukan Newtionian yang seringkali dapat dilihat di dalam larutan koloidal yang pekat yang mana dapat dicirikan dengan peningkatan kelikatan dengan apabila dikenakan tekanan ricihan secara menaik. Sebagai contoh sistem suspensi koloid adalah pewarna fotografi, cat, penyalut dan pelincir. Apabila cecair tersebut dikenakan tekanan ricihan yang cukup tinggi, ia boleh menyebabkan kenaikan kelikatan secara mendadak. Perubahan kelikatan adalah disebabkan berlakunya perubahan struktur sususan molekul-molekul di dalam suspensi yang mana selalunya akan berubah daripada cecair yang tidak tersusun kepada hablur cecair yang lebih tersusun secara berperingkat. Rajah segitiga fasa boleh diklasifikasikan sebagai rajah yang memperlihatkan perbezaan di antara fasa Cecair Kristal (LC) yang terbentuk hasil daripada campuran tiga bahan berbeza. Pencirian sifat optik dan mekanikal bagi campuran bahan Air/Kanji Ubi Kayu/Triton X-100 dikaji dengan menggunakan Polarizing Optical Microscope (POM), Simultaneous to Wide Angle X-Ray Scattering, (SWAXS) dan Rheometer. POM dan SWAXS bertujuan mengenalpasti fasa dan pencirian struktur fasa. Rheometer bertujuan mengkaji sifat reologi oleh LC. Tiga suhu yang berbeza digunakan dalam kajian ini: 15°C, 25°C dan 45°C. Pelbagai bentuk dan corak diuji dengan menggunakan POM. Rajah segitiga fasa akan menunjukkan perbezaan antara fasa LC bergantung kepada peningkatan kepekatan dan suhu campuran. Dua jenis LC yang terbentuk dinamakan Lyotropik (LLC) dan Termotropik (TLC). Fasa lamellar dan micelle dihasilkan pada LLC manakala bagi nematic adalah TLC. Pencirian optik dilakukan dengan berpandukan kepada perubahan fasa LC bergantung kepada perubahan suhu dan kepekatan amphiphile. Perubahan fasa bagi TLC bergantung kepada suhu manakala bagi LLC bergantung kepada suhu dan kepekatan. Kajian SWAXS melalui pencarian nilai bagi jarak lattice, d oleh fasa yang terhasil: Menunjukkan nilai jarak lattice dan pencirian reologi LC ialah 96.61 Angstrom oleh sampel 40:30:30 Air/Kanji Ubi Kayu/Triton X-100 pada suhu 25°C. Nilai d dapat dikaitkan dikaitkan dengan Hukum Bragg di mana d bertambah dengan suhu. Selain itu, graf kelikatan-kadar ricih-kadar tekanan turut dibincangkan di dalam pencirian reologi.

CONTENTS

			Page
TITLE PAGE			i
ACKNOWLEDGEN	MENT		ii
ABSTRACT			iii
ABSTRAK			iv
CONTENTS			V
LIST OF TABLES			V111
LIST OF FIGURES			1X
ABBREVIATION			X1
APPENDIX LIST			X11
CHAPTER 1	INTE	RODUCTION	
	1.1	Project Background	1
	1.2	Problem Statement	3
	1.3	Project Objectives	5
	1.4	Research Significant	5
	1.5	Scope of Research	6
CHAPTER 2	LITE	CRATURE REVIEW	
	2.1	Lyotropic Liquid Crystal	8
		2.1.1 Structures of Liquid Crystal	9
		2.1.2 Liquid Crystal in	
		Food Manufacturing	9
		2.1.3 Liquid Crystal in	
		Pharmaceuticals	10
		2.1.4 Liquid Crystal in Cosmetic	10
	2.2	Starch (Tapioca Starch)	11
		2.2.1 Starch as a Thickener in Food	
		Industry	11
		2.2.2 Starch as a Biopolymer in Foods	12
	2.3	Surfactant (Triton X-100)	12
		2.3.1 Surfactant in Cosmetic Products	12
CHAPTER 3	мет	HODOLOGY	
	3.1	Project Overview	14
	3.2	Project Flow Chart	15
	3.3	Sample Preparation of Water/Tapioca Starch/	-
		Triton X-100	16

		3.1.1 Tapioca Starch	17
		3.3.2 Surfactant (Triton X-100)	18
	3.4	Polarizing Optical Microscope	19
	3.5	Liquid Crystal Phases	19
		3.5.1 Lamellar Liquid Crystal	20
		3.5.2 Cubic Liquid Crystal	21
		3.5.3 Hexagonal Liquid Crystal	21
	3.6	Triangle Ternary Phase Diagram	21
		3.6.1 How Ternary Phase Diagram Works	22
		3.6.2 How to Read a Ternary Diagram	23
		3.6.3 Determination Composition Value of Point	25
	3.7	Simultaneous to Wide Angle X-Ray	
		Scattering (SWAXS)	26
	3.8	Investigate Mechanical Properties Using Rheometer	27
CHAPTER 4	RES	ULT AND DISCUSSION	
	4.1	Phase Investigated via Polarizing	
		Optical Microscope (POM)	29
	4.2	Ternary Phase Diagram of Water/	
		Tapioca Starch/Triton X-100 Liquid Crystal	
		system at room temperature	30
	4.3	Ternary Phase Diagram of Water/Tapioca Starch/	
		Triton X-100 Liquid Crystal system	
		at 15°C and 45°C	34
	4.4	Characterization of Liquid Crystal	
		using SWAXS	40
		4.4.1 20:40:40 Water/Tapioca Starch/Triton	
		X-100 at 15°C, 25°C and 45°C	41
		4.4.2 40:30:30 Water/Tapioca Starch/Triton	
		X-100 at 15°C, 25°C and 45°C	43
		4.4.3 50:20:30 Water/Tapioca Starch/Triton	
		X-100 at 15°C, 25°C and 45°C	47
	4.5	Rheological Properties of the Liquid Crystalline	
		Phase	50
	4.6	Rheological Properties of the Liquid	
		Crystalline Phase Based to Viscosity-	
		Concentration (Surfactant & Amphiphile)	
		-Temperature	51
		4.6.1 Relationship of Viscosity and Surfactant	
		Concentration (Triton X-100)	54
		4.6.2 Relationship of Viscosity and Amphiphiles	
		Concentration (Triton X-100 &	
		Tapioca Starch)	54
		4.6.3 Relationship of Viscosity and Temperature	55
		I	

	4.7	Rheological Properties of the Liquid Crystalline Phase Based to the Graph Produced	57
CHAPTER 5	CON	CLUSION AND SUGGESTION	
	5.1	Conclusion	59
	5.2	Suggestion	60

REFERENCES APPENDIX

61

LIST OF TABLES

Table	e No.	Page
3.1:	Composition (by weight) of the samples used in	_
	rheological measurement (Siddig, et al., 2004)	16
4.1:	Phases of Liquid Crystal detected in this study	30
4.2:	Lattice spacing value for the liquid crystal phases	
	at 15°C, 25°C and 45°C	48
4.3:	Relationship of temperature and viscosity	
	(value of viscosity according to the different temperatures)	55

LIST OF FIGURES

Figur	e No.	Page
3.1	The flow of project	14
3.2	(A) Images of Tapioca Starch under SEM	
	(B) EDS spectrum of Tapioca Starch	15
3.3	Schematic Diagram of an amphiphilic molecule	18
3.4	POM images the ternary system in lamellar phase.	
	(Cuihua, L et al., 2009)	19
3.5	Ternary Phase Diagram Triangle	21
3.6	Ternary Diagram Labeled For Component A	22
3.7	Ternary Diagram Labelled For Component A & B	22
3.8	Ternary Diagram labeled for components A, B & C	23
3.9	Ternary Diagram with points	24
3.10	Schematic graph for lamellar phase produced by instrument	
	SWAXS and the formula of lattice spacing, d for lamellar	26
3.11	(A) Overview of the SWAXS system (B) Side view of	
	the SWAXS system	26
4.1	Some example of samples prepared in this research	29
4.2	Phase diagram for the system of Water/Tapioca Starch/	
	Triton X-100 at room temperature (25°C). (L) is lamellar,	
	(M) is micelle solution and (L+H) is lamellar+hexagonal	30
4.3	Representative POM images of the ternary system in lamellar	
	phases. Maltases cross in (A) 50:0:50 Water/Tapioca Starch/	
	Triton at 25°C (B) 50:10:40 Water/Tapioca Starch/Triton	
	at 25°C (C) 80:0:20 Water/Tapioca Starch/Triton at 25°C	
	(D) 90:0:10 Water/Tapioca Starch/Triton at 25°C	32
4.4	Representing POM images of the ternary system in lamellar	
	phase. (A) Maltase crosses in 50:20:30 Water/Tapioca Starch/	
	Triton before using light in POM (B) Maltase crosses	
	in 50:20:30 Water/Tapioca Starch/Triton after using light in POM	33
4.5	Phase diagram for the system of Water/Tapioca Starch/	
	Triton X-100 at 15°C. (L) is lamellar, (M) is micelle solution,	
	(N) is nematic, $(N+L)$ is nematic+lamellar and $(M+L)$	
	is micelle+lamellar	34
4.6	Phase diagram for the system of Water/Tapioca Starch/	
	Triton X-100 at 45°C. (L) is lamellar, (N) is nematic and (M)	
	is micelle solution	35

4.7	Schematic showing the aggregation of amphiphiles into	
	micelles and then into lyotropic liquid crystal phases	
	like lamellar as a function of amphiphile concentration	
4.0	and temperature	36
4.8	(A) Schematic image for the structure of micelle that its	
	hydrophobic tails are contacted with water (B) Schematic	
	image for the lamellar structure that has a double layer	•
	of molecules arranged with hydrophobic tails are contact with water	38
4.9	Representative POM images of the ternary system in	
	nematic discotic phases. (A) 50:0:50 Water/Tapioca Starch/	
	Triton X-100 at 25°C (B) 50:0:50 Water/Tapioca Starch/	•
	Triton X-100 at 45°C	39
4.10	(A) SWAXS scattering pattern of 20:40:40 Water/Tapioca	
	Starch/Triton X-100 at 15°C (B) SWAXS scattering pattern	
	of 20:40:40 Water/Tapioca Starch/Triton X-100 at 25°C	
	(C) SWAXS scattering pattern of 20:40:40 Water/Tapioca	
4 1 1	Starch/Triton X-100 at 45°C	41
4.11	3D View automatically calculates the value of lattice spacing, d	42
4.12	SWAXS scattering pattern of lamellar and the value of lattice	
	spacing of lamellar phase for sample 40:30:30 Water/ I apioca Starch	40
4 1 2	/Iriton X-100 at 15 $^{\circ}$ C	43
4.13	SWAXS scattering pattern of lamellar and the value of lattice	
	spacing of lamellar phase for sample $40:30:30$ Water/Tapioca	4.4
1 1 1	Starch/Iriton X-100 at 25° C	44
4.14	SWAXS scattering pattern of lamellar and the value of lattice	
	spacing of lamellar phase for sample 40:30:30 water/ Laploca	15
4 15	Starch/Iriton X-100 at 45 C	45
4.15	S w AXS scattering patterns of lameliar phase for sample $50:20:30$ Weter/Teniese Sterch/Triter V 100 (A) at 25° C (D) at 45° C	16
116	Water/Taploca Starch/Triton X-100 (A) at 25 C (B) at 45 C	46
4.10	5D view only provide the fattice spacing information to the lemeller hexegonal and subject C masses	17
1 17	Creath for shoer rate (w) versus sheer stress (-)	4/
4.1/	Graph Visconity yergys Sheen Date for some 12020.40	50
4.10	of Water/Taniaga Stevel/Triten X 100 at room temperature	51
1 10	Graph Viscogity versus Shear Pate for sample 40:40:20	51
4.19	of Water/Taniaca Starch/Triton X 100 at room temperature	51
1 20	Graph Viscosity versus Shear Pate for sample 30:40:30	51
4.20	of Water/Taniaca Starch/Triton X_{-100} at room temperature	52
1 21	Graph Viscosity versus Shear Pate for sample	52
4.21	40.30.30 of Water/Tanioca Starch/Triton X_100	
	at room temperature	52
4 22	At low concentration, the polymer chains are not	52
T•	in contact with each other. At high concentration	
	the polymer chains are contact with other (Macosko 1994)	54
4 23	Graph for viscosity (Pa s ⁻¹) versus temperature ($^{\circ}C$)	55
	Staph for the oblig (1 a b) terbus temperature (C)	55

ABBREVIATION

Liquid Crystal
Lyotropic Liquid Crystal
Thermotropic Liquid Crystal
Metallotropic Liquid Crystal
Polarizing Optical Microscope
Simultaneous to Wide Angle X-Ray Scattering
Shear Thickening Fluid
Scanning Electron Microscope
Energy Dispersive X-Ray Spectroscopy
Universiti Malaysia Pahang
Universiti Kebangsaan Malaysia

APPENDIX LIST

Appendix		
Figure 1:	Polarizing Optical Microsope (POM)	63
Figure 2:	Simultaneous to Wide Angle X-Ray Scattering (SWAXS)	63

CHAPTER 1

INTRODUCTION

1.1 **Project Background**

The liquid crystalline state has been discovered about 100 years ago when Reinitzer and Lehmann (1888) investigated some esters of cholesterol. The field of liquid crystal (LC) developed increasingly in the following decades and about 1970 many researcher in this field believed that the basic knowledge about the LC state would be clear and future research would only serve to detect some details and to fill some gaps. Due to many new discoveries the field of LC has been more enlarged in the last 20 years than in its preceding 80 years of research.

LC can be divided into thermotropic, lyotropic and metallotropic phases. Thermotropic Liquid Crystal (TLC) exhibits a phase transition into the LC phases such as nematic or smectic LC phase when temperature is changed while Lyotropic Liquid Crystal (LLC) exhibits phase transition as a function of both temperature and