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ABSTRACT 

 

 This thesis deals with the simulation of the phase separation of two phase 

flow. The lattice Boltzmann methods is one of the alternative technique to solve 

multiphase problem such as phase separation of two-phase flow. A derivation of the 

Lattice Boltzmann scheme from the classical Boltzmann equation is discussed in 

detail. According to the problems, a single component multiphase (SCMP) LBM is 

used or involved in the equation in order to solve more phase of fluids. Before that, 

investigation on non ideal fluid is discussed using Van der Waals fluids where the 

critical constant of pressure, volume and temperature is solved. By doing this, it will 

tell the characteristic of the liquid and gas phase. From the Maxwell equal area 

construction, the value of macroscopic variables, density of fluids is determined 

which will be code in the algorithm. The source code of the phase separation 

generate by considering certain criteria. The result of simulation generate from the 

code prove the precise of the LBM. The 101x101 lattice was used and it is proven 

that the phase separation formed within the time increased. It is separated into two 

parts of colour that described the different properties of fluid phase. This project 

proven the LBM is the best way to simulate phase separation.  
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ABSTRAK 

 

 Tesis ini adalah bertujuan untuk mengkaji pengasingan fasa bagi aliran dua 

fasa menggunakan kaedah LBM. LBM ini mempunyai banyak kelebihan berbanding 

kaedah tradisional. Dalam proses kajian ini, banyak perkara perlu diambil kira bagi 

mendapat keputusan yang tepat dan jitu. Objektif utama adalah pemprograman data 

didalam perisian FORTRAN. Dalam proses pemprograman ini, banyak persamaan 

telah digunakan bagi mewujudkan satu persamaan baru berdasarkan persamaan 

‘lattice Boltzmann’. Daripada persamaan ini, nilai awal bagi kedudukan, warna, saiz 

dan masa berlakunya proses ini telah dikira. Kesemua nilai-nilai awal ini telah 

dimasukkan kedalam program komputer bagi menghasilkan keputusan kajian ini. 

Setelah diteliti dan diamati, keputusan kajian ini membuktikan bahawa pengasingan 

fasa akan berlaku secara perlahan pada kadar peningkatan tempoh tertentu. Cecair-

cecair ini akan terasing secara sendiri berdasarkan ketupatan cecair masing-masing 

dan ini boleh dilihat daripada pengasingan warna daripada keputusan kajian. 

Daripada kajian ini, pembuktian tentang keberkesanan menggunakan LBM 

berbanding kaedah tradisional telah diketahui berdasarkan keputusan yang tepat dan 

jitu. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Introduction 

 

Fluid dynamics is one of the science branches and it is very important in our 

daily lives because it touches every aspect. It will show us about the flow of the fluid 

and the property of the fluids in the universe. Otherwise, it is also an important 

knowledge for the engineering study. Power generation, automotive, aerospace and 

air conditioning are the example of the technology that related to the fluid dynamics.  

 

The dynamics behavior of fluid flow can now be investigated by researchers 

using computers with certain software. The advances of computer programming have 

also helped them to do experiment repeatedly without having to install real 

apparatus. This has saved time and energy consumption. 

 

Computational method has years been used to investigate the fluid flow 

behavior. One of the most popular methods used is the Computational Fluid 

Dynamics (CFD). CFD is a branch of fluid mechanics that uses numerical methods 

and algorithms to solve and analyze problems that involve fluid flows. Lattice 

Boltzmann Methods (LBM), the parts of the CFD is best used to simulate the fluid 

behavior.  

 

 

 

 

 

 



2 

 

1.2 Computational Fluid Dynamics (CFD) 

 

Computational fluid dynamics (CFD) is a computational technology that 

enables you to study the dynamics of things that flow. Using CFD, you can build a 

computational model that represents a system or device that you want to study. Then 

you apply the fluid flow physics and chemistry to this virtual prototype, and the 

software will output a prediction of the fluid dynamics and related physical 

phenomena.  

 

Therefore, CFD is a sophisticated computationally-based design and analysis 

technique. CFD software gives you the power to simulate flows of gases and liquids, 

heat and mass transfer, moving bodies, multiphase physics, chemical reaction, fluid-

structure interaction and acoustics through computer modeling. Using CFD software, 

you can build a 'virtual prototype' of the system or device that you wish to analyze 

and then apply real-world physics and chemistry to the model, and the software will 

provide you with images and data, which predict the performance of that design.  

 

The fundamental basis of almost all CFD problems is the Navier-Stokes 

equations, which define any single-phase fluid flow. These equations can be 

simplified by removing terms describing viscosity to yield the Euler equations. 

Further simplification, by removing terms describing vorticity yields the full 

potential equations. Finally, these equations can be linearized to yield the linearized 

potential equations. There are three compelling reasons to use CFD software: insight, 

foresight, and efficiency. 
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Table 1.1: Compelling reason to used CFD 

 

Source: Yuan, P. et al., 2006 

 

 

 

 

 

 

 

 

 

Insight  

 

CFD analysis is able to virtually crawl inside the design and 

see how it performs. There are many phenomenons that can 

witness through CFD, which wouldn't be visible through any 

other means, gives a deeper insight into the designs [15]. 

 

 

Foresight 

 

Because CFD is a tool for predicting what will happen under 

a given set of circumstances, it can quickly answer many' 

questions. This CFD will give the outcomes or results of the 

numerical set of boundary conditions. All of this can be done 

before physical prototyping and testing [15]. 

 

Efficiency 

 

The foresight that is gain from CFD helps engineer to design 

better and faster, save money, meet environmental regulations 

and ensure industry compliance. CFD analysis leads to shorter 

design cycles and the products get to market faster. In 

addition, equipment improvements are built and installed with 

minimal downtime. CFD is a tool for compressing the design 

and development cycle allowing for rapid prototyping [15]. 



4 

 

1.3  Lattice Boltzmann Methods (LBM) 

 

LBM is a relatively new simulation technique for complex fluid systems and has 

attracted interest from researchers in computational physics. Unlike the traditional 

CFD methods, which solve the conservation equations of macroscopic properties (i.e., 

mass, momentum, and energy) numerically, LBM models the fluid consisting of 

fictive particles, and such particles perform consecutive propagation and collision 

processes over a discrete lattice mesh. Figure 1.1 shows the explanation of the basic 

concept of the LBM. Due to its particulate nature and local dynamics, LBM has 

several advantages over other conventional CFD methods, especially in dealing with 

complex boundaries, incorporating of microscopic interactions, and parallelization of 

the algorithm. A different interpretation of the lattice Boltzmann equation is that of a 

discrete-velocity Boltzmann equation. The numerical methods of solution of the 

system of partial differential equations then gives rise to a discrete map, which can 

be interpreted as the propagation and collision of fictitious particles [1] [2].  

 

Simulating multiphase flows has always been a challenge to conventional CFD 

because of the moving and deformable interfaces. More fundamentally, the interfaces 

between different phases (liquid and vapor) or components (e.g., oil and water) 

originate from the specific interactions among fluid molecules. Therefore it is 

difficult to implement such microscopic interactions into the macroscopic Navier–

Stokes equation. However, in LBM, the particulate kinetics provides a relatively easy 

and consistent way to incorporate the underlying microscopic interactions by 

modifying the collision operator. Several LBM multiphase models have been 

developed [3]. Phase separations are generated automatically from the particle 

dynamics and no special treatment is needed to manipulate the interfaces as in 

traditional CFD methods. Successful applications of multiphase LBM models can be 

found in various complex fluid systems, including interface instability, 

bubble/droplet dynamics, wetting on solid surfaces, interfacial slip, and droplet 

electro hydrodynamic deformations. 
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Figure 1.1: General concept of LBM 

Source: Nik Mohd Izual, 2009 

 

1.4 Problem Statement 

 

The problem statement regarding this project is stated below: 

 Most complex fluid dynamics problems cannot be solved analytically but 

can be analyze by using code of LBM. 

 

1.5 Objective 

 

The objective of this project is to simulate phase separation phenomenon 

using Lattice Boltzmann Methods (LBM). 

 

1.6 Scopes 

 

1. Literature review of lattice Boltzmann method (LBM). 

2. Use free energy (FE) parameters proposed by Nik Mohd Izual [28]. 

3. Simulate the phase separation of LBM. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 Introduction 

 

Lattice Gas Cellular Automata (LGCA) and Lattice Boltzmann Method 

(LBM) are relatively new and promising methods for the solution of nonlinear partial 

differential equations and simulation of fluid flows. In the last few years, a 

remarkable development has been taken place in (LBM) [1-6]. Lattice Boltzmann 

models have ability to simulate single and multi-phase flows of single and 

multicomponent fluids. Historically the LBM evolves from LGCA which belongs to 

the class of cellular automata that are used for simulation of the fluid flow 

phenomena. It represents an idealization of the physical system in which space and 

time both are discrete. In 1986, Frisch, Hasslacher, and Pomeau and Wolfram 

proposed the first two-dimensional lattice gas automaton model for the specific 

purpose of computational fluid dynamics [7].  

 

In 1988, a proposal to use the lattice Boltzmann equation to simulate fluid 

flow problems was made for the first time [6]. The kinetic nature of LBM has several 

distinct features different from other computational fluid dynamics (CFD) 

approaches that are used to solve the Navier Stokes equations. The convection 

operator in LBM is linear in phase space, similar to that of the Boltzmann kinetic 

equation, but different than the Euler or the Navier Stokes equations and pressure is 

obtained through an equation of state, instead of solving a Poisson equation as in the 

incompressible Navier Stokes equations. LBM uses minimum set of discrete 

velocities so that the conserved quantities remain preserved throughout the 

simulation. 
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Researchers have used LGCA and LBM for a variety of fluid flow problems 

and geometries. A rich variety of behaviors including unsteady flows, phase 

separation, evaporation, condensation, cavitations, porous media flows, blood flow 

simulation, solute and heat transport, buoyancy, multiphase flows, compressible 

flows and interactions with surfaces can readily be simulated [8-25]. Various fluid 

flow problems have been simulated using LGCA and results have been compared 

with experimental investigations [8]. LGCA has been used to investigate flow 

through geometrically irregular media [11].  

 

An LGCA model with non-ideal equation of state has been presented to 

simulate the transition from solid to gas phase [12]. LBM has been used to 

numerically analyze the turbulent shear flows [13]. Results obtained for three-

dimensional low Reynolds number flows, using LBM, demonstrate the viability of 

the method for such flows in complex geometries [14]. LBM is equally applicable 

for simulation of multiphase flows. LB Models have been formulated for two-

dimensional multiphase flows in porous media [15]. Many researchers have formed 

thermal models to investigate heat conduction process and convective flows by using 

LBM [20, 23]. LBM has even been used to simulate shock wave phenomena [25]. 

 

2.2 Classical Boltzmann Equation 

 

LBM is relatively recent technique that has been shown to be as accurate as 

traditional CFD methods having the ability to integrate arbitrarily complex 

geometries at a reduced computational cost. Lattice Boltzmann models vastly 

simplify Boltzmann’s original conceptual view by reducing the number of possible 

particle spatial positions and microscopic momenta from a continuum to just a 

handful and similarly discretizing time into discrete steps. Figure 2.1 shows that 

particle positions are confined to the node of a lattice. Variations in momenta that 

could have been due to a continuum of velocity directions and magnitudes and 

varying particle mass are reduced to eight directions leading to a D2Q9 model. 
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Figure 2.1: Discrete lattice velocity model 

Source: Grunau, D., et al., 1993 

 

Lattice Boltzmann equation can be obtained directly from the lattice gas 

automata by taking ensemble average with the assumption of random phase, leading 

to the following equation [26]; 

 

 

 

Where  is the Lattice Boltzmann collision operator and  is the 

single particle distribution functions with discrete velocity c. 

 

There are two conditions that are related to the distribution function, without 

collisions and with collisions [27][28]. The distribution function of  

describes the number of particles in the situation where it is at the position of x, move 

with velocity c at time t. 
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At the short duration of time   , each particle changing the velocity from c to 

 to move from x to   , where a is an acceleration due to the external 

forces. The number of molecules for both  and 

 are same in the condition of distribution without collision. 

Therefore; 

 

 

 

In the condition where collision occurs, there will be a net different number of 

molecules between these two functions that can be express by; 

 

 

 

After dividing this equation with cdt, dt tends to zero (dt~0), give the Boltzmann 

equation of f 

 

 

 

2.3 Boltzmann Collision Operator 

 

 

Figure 2.2: Streaming and collision of LBM 

Source: Zhang, R., et al., 1999 
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An expression of the collision operator is required for any solution of Boltzmann 

equation.  

 

 

 

By the way, collision operator can change the distribution function  in 

two ways; 

 

1. After the collision, the velocities of the particle will be different from the 

initial velocity and this circumstances causing the decrease in  

 

2. The particles that have the velocities of others will have the velocity after 

collision, increasing  

 

2.4 Bhatnagar-Gross-Krook Collision Model 

 

From the previous derivation of Boltzmann equation, assuming that a gas consist 

of hard-sphere and undergoing the binary collision [15]. There is the derivation of 

Boltzmann equation without external force shows that the change in distribution 

functions per unit time due to collision; 

 

 

 

where; 
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Through the second Order Taylor’s series expansion, the distribution function f 

can be attached to the equilibrium function   . 

 

 

 

 

 

After replacing the  with the characteristic time between collision  , it will 

become BGK collision model. 

 

2.5 The Lattice Boltzmann Equation 

 

There is the expression of the Boltzmann equation with BGK collision model; 

 

 

 

The Maxwell-Boltzmann equilibrium distribution function can be defined as; 

 

 

 

The BGK lattice Boltzmann equation can be derived by further discretization 

using an Euler time step in conjunction with an upwind spatial discretization and 

setting the grid spacing divided by the time step equal to the velocity [26]; 
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Resulting in; 

 

 

 

There is a basic explanation in which the collision term is evaluated locally and 

there is only one streaming step operation per lattice velocity. The lattice spacing is 

the distance travel by the particles during a time step and this is the explanation for 

the stream and collide particles [28]. 

 

The macroscopic variables such as the density, ρ and flow velocity, u can be 

evaluated as the moment to the distribution function as follow 

 

 

 

 

 

2.6 Isothermal Lattice Boltzmann Models 

 

The LBM model is constructed on lattice space that contains fluid particles and 

each particle is force to travel from one node on the grid to another by giving them 

discrete velocity. Each of the particles is spread to each node according to a set of 

rules that administrate the collision process. 

 

In order to apply the lattice Boltzmann scheme into the digital computer, the 

lattice Boltzmann BGK equation needs to delicate in velocity space which escalating 

the Boltzmann-Maxwell equilibrium distribution function up to u². According to the 

Boltzmann equation which is discrete in space-time stated that the distribution 

function evolves the single relaxation-time Bhatnagar-Gross-Krook (BGK) operator. 
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In general 

 

 

 

Where  must be satisfies for .  can be defined as follows; 

 

 

 

By substituting eq. (2.18) into eq. (2.19) will produced the equation below; 

 

 

 

Insert the microscopic velocity,  

 

 

 

In order to get the result for quadrature of zero-to-fifth-order of velocity moment 

of  , the Gauss-Hermite quadrature was used. So, the result of  is; 

 

 

 

 

 

where  is a weight coefficient, N is a number of abscissas and  is the Gaussian 

abscissas. For 2D, D=2, N=2 and the output equation for  and   will be; 
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The result of the expression for the dicretised density equilibrium distribution 

function is obtained as follow 

 

 

 

where  and weights are  

 

2.7 Boundary Conditions 

 

Distribution function is one of the important characters before computing any 

meaningful result. After each streaming process, the distribution function at the 

boundary nodes is unknown and the boundary conditions are responsible for this 

problem. But, the appropriate selection is significant and it depends on the type of 

boundary conditions to be applied. In other words, LBM is the best solution because 

it has several boundary conditions for selection. 

 

2.7.1 Periodic Boundary Conditions 

 

Periodic boundary condition can be classified as the simplest boundary condition 

which is used to isolate bulk phenomena from the actual boundaries of the real 

physical system [27]. So, they are satisfactory for physical phenomena where surface 

effect play an insignificant role. The periodic boundary condition is the other type of 

boundary condition used in this paper along with bounce back boundary condition 

that can be explained by bringing the distribution function that leaves the outlet to 

the inlet which can be shown in the figure 2.2 below. Particles will arrive at node A 

and will go to node B. 
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Figure 2.3: Periodic boundary condition 

Source: Nor Azwadi, 1997 

 

2.7.2 Free Slip Boundary Condition 

 

Free slip is applied to the case of smooth boundaries with insignificant of 

resistance exerted upon the flowing gas or liquid. Free slip boundary condition 

reflecting the distribution function at the boundaries to the neighboring position in 

lattice in the case where the tangential motion of fluid flow on the wall is free and no 

momentum is to be exchanged with the wall along the tangential component [28]. 

 

 

Figure 2.4: Free slip boundary condition 

Sorce: Nor Azwadi, 1997 
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2.7.3 Bounce Back Boundary Condition 

 

Bounce back or non-slip boundary condition is the most popular and simplest 

boundary condition that important in simulating fluids in domains characterized by 

complex geometries such as those found in porous media. In LBM, it defines the 

velocity at the wall to be zero by averaging the velocity before and after the collision 

around the wall. 

 

 

Figure 2.5: Bounce back boundary condition 

Source: Nor Azwadi, 1997 

 

2.8 Relaxation Time 

 

In BGK collision model, time relaxation,  can be explained as the time taken 

to reach a steady state solution for transient fluid flow problem. the equilibrium state 

is needed to converge the numerical stability and iteration which means that 

manipulating the time relaxation to be closer than 1, lots of particles exchange to the 

equilibrium state 
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Figure 2.6: Time relaxation concept 

Source: Nik Mohd Izual, 2009 

 

From the figure 2.5 above, at , all the particles initially non 

equilibrium exchanged to non equilibrium state and resulting instability. The 

iteration cannot be converge at this condition and the value of  is the limit of 

the tome relaxation [27]. 
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CHAPTER 3 

 

 

MULTIPHASE 

 

 

3.1 Introduction 

 

The limitation of the theoretical solution availability is one of the factors that 

lots of complex multiphase flow problem still cannot be answer. The experimental 

solution for the multiphase flow is very expensive and costly. It is because 

multiphase flow experiment is required expensive apparatus just because this 

apparatus have high sensitivity and precise. 

 

There are few traditional methods that can solved the problem of multiphase 

flow and this methods can be categorized into two types, front capturing method and 

front tracking method. The first method, front capturing method is specially used to 

capture the interface afterwards and capture the movement of the fluids. This method 

is using two fluids modeled as a single continuum with discontinuous properties of 

the interface. More specifically this method is tracking the interface of these two 

fluids making the result more accurate and precise. 

 

Lately, LBM got much attention due to its greatness compared to traditional 

methods. The interaction force between the particles creating phase segregation and 

surface tension which means that traditional method is not capable to analyze this 

problem and only LBM is capable to incorporating this interparticles. 
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3.2 Van Der Waals Fluids 

 

The Van Der Waals real gas equation of state is; 

 

 

 

where P, V, T can be describe as usual pressure, volume and temperature, a  and b 

are the constant characteristics of a particular gas. R is the gas constant and n is the 

mole number. A point of the reflection on the isotherm that corresponding to the 

critical point of the gas can be seen when the isotherms of Van Der Waals gas of a p-

v is plotted. It can be describe as follows, 

 

 

 

 

 

For the convenience, n=1 is sated. The other form of Van Der Waals equation can be 

performed as below, 

 

 

 

By applying first and second derivation for Van Der Waals equation above, it will be 
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After rearranging Eq. (3.5) and Eq. (3.6) and set the RTc as the main purpose of both 

equations. 

 

 

 

 

 

By making an assumption the equations are equal for both sided, 

 

 

 

Finally, 

 

 

 

Substituting this Vc into Eq. 3.7 will produced equation below, 

 

 

 

By substituting eq. (3.10) and (3.11) into eq. (3.7), the equation generated as below; 

 

 

 

Define the following ‘reduced’ quantities 
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Thus the Van Der Waals equation becomes 

 

 

 

Figure 3.1 shows the graph of pressure versus specific volume,  for 

the various . When the temperature is higher than critical temperature ( ), the 

plot is very similar to the ideal gas isotherm. When  , the graph shows that 

there is a curve which is separate the system into two phase, liquids and gasses. 

There are two different values of specific volume that related to both phases when 

there is the same pressure value ,  stand for liquids and  stands for gasses. 

The value of  can be determined by using Maxwell equal area construction, 

by recalling that equilibrium condition with equilibrium chemical potentials for both 

phases. 

 

 

Figure 3.1: Isotherm plot of p-v 

Source: Nik Mohd Izual, 2009 

 

There are three temperatures that are considered for this graph, T=0.9, 1.0, 

1.2. The volume of liquid and gas at T=0.55 are  ( ) and 

 . 
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3.3 The Lattice Boltzmann Model 

 

In the section 3.3.1, there will be an explaination of the basic scheme of the 

free energy lattice Boltzmann model by showing the used the lattice Boltzmann 

equation, detailaing the collision term and equilibriun distribution, preenting the 

Navier-strokes level equation and finally introducing the collision and streaming 

steps needed for numerical computation [7]. In the section 3.3.2 informing about the 

free energy for the liquid-gas system, by a model of two bulk phases at different 

densities and interfaces of finite width between phases.  

 

3.3.1 Free energy Lattice Boltzmann 

 

The lattice Boltzmann methods is used to simulate the time evaluation of the 

density function  which is representing the particles at the position of x at the 

time t and moving with velocity   . There are the function of fluid density n and 

velocity u that are related to distribution function [9].  

 

 

 

 

 

where  is the vector velocity  for the α component. Α can be recognize as the 

lattice direction x and y. After making an assumption that single relaxation time was 

estimated, the distribution function was evolved according to the lattice Boltzmann 

equation. 
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where  stands for the equilibrium distribution function while  is the non-

dimensional relaxation time. From the equation (3.17), the right hand side 

reprisenting the Bhatnagar-Gross-Krook collision operator. This is the overview over 

early model form and dictates that  relaxes towards the local equilibrium 

distribution  with a single characteristic time,   [19]. The equilibrium 

distribution determines the physics natural in the simulation. 

 

 

 

The value of the coefficient  were determined from the 

process of placing constrains on the moment of  . The first two moments of   

were constrained in order that the collision term in equation before conserve mass 

and momentum. 

 

 

 

 

 

The hydrodynamics of a one-component, non-ideal fluid is described 

correctly from the next moment of is chosen such that the continuum macroscopic 

equations approximated by the evolution scheme (3.17) which resulting in 

 

 

 

The pressure tensor can be shown by  and kinetic shear viscosity can be 

derive by . The first formulation of the model omitted the third 

term in (3.21) and was not Galilean invariant. The coefficients  

 are needed in order to fully constrain a fourth condition 

which is 
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The values of the coefficients can be determined using a well established procedure. 

For constraints (3.19)-(3.22) one possible choice of coefficients is: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the above analysis, the evolution scheme (3.17) approximates the continuity 

equations 
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The Navier-Stokes level equation is as follows: 

 

 

 

 

 

 

 

 

The first line shows the compressible Navier-Stokes equation while the 

subsequent lines are error terms. The evolution equation (3.17) for the computational 

purpose is sepaarated into two distinct steps, which can be considered as a streaming 

and collision. For the purpose of facilitating the equation, a new field at each lattice 

site was introduced in order to define the collision step as follows: 

 

 

 

The streaming step: 

 

 

 

Each site of the lattice Boltzmann equation represents the collision and 

streaming step that can be considered as a framework for a one component free 

energy lattice Boltzmann. For coexisting phases, the properties of the fluids are 

determined by the pressure tensor [28]. Figure 3.2 until figure 3.4 show that the 

initial condition, streaming (translate) and collision process of the particles. 
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Figure 3.2: Initial condition of the particles 

Source: Zhang, R., et al., 1999 

 

 

Figure 3.3: Translation or streaming of particles 

Source: Zhang, R., et al., 1999 

 

 

Figure 3.4: collision of particles 

Source: Zhang, R., et al., 1999 
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3.3.2 Thermodynamics of the fluids 

 

The thermodynamics of the fluid enters the lattice Boltzmann simulation 

through the pressure tensor . A Landau free energy functional is used to describe 

the equilibrium properties of a system with no surfaces such as periodic boundaries. 

 

 

 

The above equation is subjected to the constraint 

 

 

 

Where,   = the free energy density of bulk phase 

    = constant related to the surface tension 

    = total mass of fluid 

 

The free energy contribution from density gradients in an inhomogeneous 

system can be shown as the second term in the equation (3.36). The below 

equilibrium condition is getting from minimizing the equation (3.36) by using a 

constant Langrange multiplier, . 

 

 

 

Then, this equilibrium condition equation (3.38) was multiple by  and integrate 

once with respect to x. As a result, the first integral shown below 
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The below equations are from equation (3.38) and (3.39) after defining 

. 

 

 

 

And 

 

 

 

Presume that there is a density constant in the bulk phases, 

. The next process is specifying the excess of free energy function 

 to obtained two phase coexistence. For two bulk phases with 

positive density, the function of  was chosen and its shows clearly by; 

 

 

 

where  and  are reduced density and temperature ratio. The other 

parameter  are stand for critical temperature, pressure and density 

respectively while  is a constant. The free energy related to the selected W is 

 

 

 

There are two bulk phases with densities for , 
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In addition to uniform phases , equation (3.40) allows a solution 

with an  interface between two phases. In order to see how this works, specialize to 

one-dimension equation and rewrite equation (3.40) as 

 

 

 

This gives a solution of 

 

 

 

The width of the interface region can be measure as , 

 

 

 

The surface tension of the interface as shown below 

 

 

 

Changing the variable of integration to n, using equation (3.42) 

 

 

So, the final result for W is 
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Therefore  are used to determine the equilibrium properties of the 

model and the pressure tensor,  is used by the free energy to enter the lattice 

Boltzmann. The conservation of momentum can be taken from eq. (3.52) which 

follows the Noether’s theorem. This is possible since the free energy function and 

total mass constraint are independent of position. 

 

 

 

The pressure tensor,   is given by 

 

 

 

where . For  this gives 

 

 

 

with 

 

 

 

where  is the equation of the state of the fluid 
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CHAPTER 4 

 

 

METHODOLOGY 

 

 

4.1 Introduction 

 

This chapter can be subdivided into two sections; the flow chart and 

simulation algorithm. These parts will explain the details of the overall process or 

tasks. In the diagram of flow chart, there are lots of important steps that need to 

consider ensuring that this project can be done on time. The initial process until the 

end of the project is stated in the flow chart diagram. The step from literature 

previous study of LBM, collecting the data will tells the detailed about LBM and 

phase separation process. While the simulation algorithm details about process need 

to be done for getting the result of phase separations.  

 

4.2 The Flow Chart 

 

 Figure 4.1 shows that there are seven main steps or procedure from start until 

end of the project. The first procedure is literature review about previous people 

study of LBM and phase separation. This is the guide for overall project regarding to 

the scopes. Next, the identification of the parameters that used in the equation related 

to the phase separation is most important process need to be done. After identified 

this parameters, the initial values were set up because all of these parameters and 

initial values will be used in the code of phase separation. Then, the code of phase 

separation was generated based on the scopes which mean that all the data and 

information used in generating coding. After that, the code of phase separation was 

run using FORTRAN software. The results of this simulation were compared to the 

theoretical result and previous result and the expected result was discussed based on 
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YES 

the certain criteria. Then, the overall summary had been concluded and some ideas 

for the further study had been recommended. 
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Figure 4.1: The flow chart of the project 
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4.3 Simulation Algorithm 

 

Simulation algorithm plays the main rule for this project of the phase 

separation phenomenon which includes the calculation of the multiphase flow. 

Lattice Boltzmann equation is used for calculating the important parameters that will 

use in further calculation. After that, the initial values are set up for finding the 

solution of the streaming and collision process. Figure 4.2 will describe the overall 

algorithm of LBM for multiphase flow. 
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CHAPTER 5 

 

 

RESULT AND DISCUSSION 

 

 

5.1 Introduction 

 

 The main objective of this project is to simulate the phase separation 

phenomenon for two-phase fluid flow using LBM. This chapter will describe the 

results for the better understanding on the lattice Boltzmann methods in the situation 

of isothermal. The size of lattice used in this simulation is about 101x101 lattices. 

Section 5.2 will described the overall result from the simulation. 

 

5.2 Result and Discussion 

 

5.2.1  Two-phase flow LBM model 

 

The phase separation which is based on thermodynamic instability of the Van 

Der Waals fluid was simulated in order to test the validity of existing FE model. The 

D2Q9 model with the size of 101x101 lattice is used in this simulation test with the 

temperature, T=0.55. Table 5.1 shows the other parameters that been used in the test. 

 

Table 5.1: Parameters used for simulate phase separation 

      

1.0 1.0 1.0 1.00 0.0075 0.55 

 

 

 

 

 



35 

 

 

 

 

 



36 

 

 

 

 

 



37 

 

 

 

Figure 5.1: Time evaluation of density distribution 

 

Figure 5.1 shows the evaluation of density distribution for the phase 

separation of 101x101 lattices. Figure 5.1(a) shows that the combination of the fluids 

with different properties can coexist in one phase condition. The small grain color 

start to form and this situation can be seen on figure 5.1(b). These small grains color 

start to combine with each other forming a big grain. This grain was separate with 

two different colors with different fluid property. After few time steps, the separation 

was fully happen creating two phase color, red and blue as shown in figure 5.1(n). 

The blue color is describing the fluid that has low density which means that this blue 

region is gasses. The red region is for the high density fluid, which means it is liquids. 

 

 

 

 

 

 

 

 

 

 



38 

 

 

 

 

CHAPTER 6 

 

 

CONCLUSION AND RECOMMENDATION 

 

 

6.1 Introduction 

 

 Starting from the process of the literature review, calculating the parameter of 

fluids, and running the simulation, this project is proving that the theory of the 

Lattice Boltzmann Methods is correct and it is applicable to the previous study. 

 

6.2 Conclusion 

 

There are six main chapter that are consists in this thesis. First, we can 

conclude that the first chapter is an introduction of LBM and CFD. This introduction 

is the main guide for the project flow. This chapter also consist the objective of the 

project, project scope and the problem statement. All of these are the most important 

thing need to know before starting the project. The second part of the thesis is 

chapter two. In this chapter, we make some literature review on the theory of Lattice 

Boltzmann Methods and any equation or formula that is related to LBM. Next, 

chapter three focuses on the single component of multiphase fluid flow. Lots of 

multiphase properties and formulas are stated under this chapter. In chapter four, 

methodology that is focus on the process flow chart from the beginning of the project 

until the end of the project. It also including the simulation algorithm used in this 

study of phase separation algorithm. After that, chapter five is the result and 

conclusion for this study. The result of the phase separation of two phase fluid flow 

was discussed by presenting the diagram of the process of phase separation. The last 

chapter, chapter six that is about the conclusion of the case study and the 

recommendation for further study base on the LBM. 
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The result of the project proved that the LBM is very useful and effective for 

simulating the phase separation of the fluid phase. The separation shows the detailed 

about the fluids with different properties coexist in one condition and this phrase was 

proved by the result generated which shows the red and blue fluids slowly separated 

into two different sections. As a conclusion, there are lots of advantages of using 

LBM for phase separation process compare to the old methods of CFD. The result 

generated by using LBM is precise and accurate. 

 

6.3 Recommendation 

 

 The study of phase separations gives tons of advantages for science and 

technology. All of this advantages and information will use either by an engineer or 

scientist for creating goods to all human. Bio-science is one of the science branches 

that related to this study. The investigation and experimentation of the phase 

separation, for example, the process of separating red blood and platelet in the human 

blood vein will improve human live by creating new vaccine for lots of diseases. 

 

 The further study of LBM is needed in order to have a detail understanding 

about phase separation. There are few recommendations for the further study of 

LBM; 

 

(i)  Model moving solid particles in flow 

(ii)  Add external forces to flow 

(iii) Incorporate Immersed Boundary Method into LBM 

 Fluid Filled Particles 

 Deformable Boundary 
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Appendix A: Gantt Chart / Project Schedule for Final Year 

 

Gantt Chart FYP 1 

 

 

Gantt Chart FYP 2 
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Appendix B 

 

SOURCE CODES 

 

PARAMETER (LX = 101, LY = 101, CD = 8) 

  REAL*8 RHO(1:LX,1:LY), U(1:LX,1:LY), V(1:LX,1:LY) 

  REAL*8 F(1:LX,1:LY,0:CD), 

FEQ(1:LX,1:LY,0:CD),FNEW(1:LX,1:LY,0:CD) 

  REAL*8 CX(0:CD),CY(0:CD) 

  REAL*8 KAPPA, A, B, T, R, NL, NG, TAU, NU  

 

  KAPPA = 0.0075D0 

  A = 9.0D0/49.0D0 

  B = 2.0D0/21.0D0 

  T = 0.55D0 

  R = 1.0D0 

  NL = 4.895D0 

  NG = 2.211D0 

!  TAU = 0.3708D0 

  TAU = 1.0D0 

  NU = (TAU+0.5)/3.0D0 

 

  CX(0) =  0.0D0 

  CY(0) =  0.0D0 

 

  CX(1) =  1.0D0 

  CY(1) =  0.0D0 

 

  CX(2) =  0.0D0 

  CY(2) =  1.0D0 

    

  CX(3) = -1.0D0 

  CY(3) =  0.0D0 
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  CX(4) =  0.0D0 

  CY(4) = -1.0D0 

 

  CX(5) =  1.0D0 

  CY(5) =  1.0D0 

 

  CX(6) = -1.0D0 

  CY(6) =  1.0D0 

 

  CX(7) = -1.0D0 

  CY(7) = -1.0D0 

 

  CX(8) =  1.0D0 

  CY(8) = -1.0D0 

   

  DO J = 1,LY 

   DO I = 1,LX 

 

   RHO(I,J) = 3.0d0 + rand()  

   u(i,j) = 0.0d0 

   v(i,j) = 0.0d0    

   END DO 

  END DO 

 

!  CALL MACRO(lx,ly,cd,rho,f,u,v) 

 

  CALL EQUILIBRIUM 

(LX,LY,CD,U,V,CX,CY,RHO,KAPPA,NU,A,B,T,FEQ) 

   

  DO I = 1,LX 

  DO J = 1,LY 

  DO K = 0,CD 
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  F(I,J,K)=FEQ(I,J,K) 

  END DO 

  END DO 

  END DO 

   

  DO ITER = 1, 1000000 

  CALL COLLIDE(lx,ly,cd,f,feq,fnew,TAU) 

  CALL MOVE(lx,ly,cd,f,fnew) 

  CALL MACRO(lx,ly,cd,rho,f,u,v) 

  CALL EQUILIBRIUM 

(LX,LY,CD,U,V,CX,CY,RHO,KAPPA,NU,A,B,T,FEQ) 

  IF(MOD(ITER,10) .EQ.0)THEN  

  WRITE(*,*)ITER 

 

  CALL fileoutput(lx,ly,u,v,rho,ITER) 

  END IF 

  END DO 

!  CALL fileoutput(lx,ly,u,v,rho,ITER) 

  do i = 1,lx 

  write(100,*) rho(i, ly/2) 

  end do 

  END PROGRAM 

 

  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 subroutine fileoutput(lx,ly,u,v,rho,ITER) 

 real*8 x(10201),y(10201) 

 integer nbool(4,10000) 

 real*8 U(1:LX,1:LY),V(1:LX,1:LY),RHO(1:LX,1:LY) 

 

 nnode = lx*ly 

 ne = (lx-1)*(ly-1) 

 

 do j=1,ly 
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  do i = 1,lx 

        ID=lx*(j-1)+i 

        x(ID)=DFLOAT(I-1)+1 

        Y(ID)=DFLOAT(J-1)+1 

        IF(I.EQ.1) X(ID)=1 

        IF(I.EQ.lx) X(ID)=lx 

        IF(J.EQ.1) Y(ID)=1 

        IF(J.EQ.ly) Y(ID)=ly 

  end do 

 end do 

 

 IE=0 

    do J=1,ly-1 

  do I=1,lx-1 

       IE=IE+1 

       NBOOL(1,IE)=(J-1)*lx+i 

       NBOOL(2,IE)=NBOOL(1,IE)+1 

       NBOOL(4,IE)=NBOOL(1,IE)+lx 

       NBOOL(3,IE)=NBOOL(4,IE)+1 

  END DO 

    END DO 

 

! open(unit=iter+100,file='OUTPUT.inp',status = 'REPLACE',action = 

'write',iostat = ierror) 

  

  

  WRITE(iter+100,*) NNODE,NE,3,0,0 

      DO I=1,NNODE 

       WRITE(iter+100,900) I,X(I),Y(I),0.0D0 

      END DO 

      DO IE=1,NE 

       WRITE(iter+100,901) IE,'1  quad',(NBOOL(NA,IE), NA=1,4) 

      END DO 
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      WRITE(iter+100,*) 3,1,1,1 

      WRITE(iter+100,*) 'uvel , _' 

      WRITE(iter+100,*) 'vvel , _' 

      WRITE(iter+100,*) 'density, _' 

! WRITE(16,*) 'U velocity , _' 

 !     WRITE(16,*) 'V velocity , _' 

! WRITE(16,*) 'Temperature, _' 

       

   do j=1,ly 

  do i = 1,lx 

        ID=lx*(j-1)+i 

       WRITE(iter+100,902) ID,u(I,j),v(I,j),rho(I,j) !,temp(i),U(i),V(i) 

      END DO 

   end do 

  900 FORMAT(I6,3E17.8) 

  901 FORMAT(I6,A10,4I6) 

  902 FORMAT(I6,3E17.8) 

  903 FORMAT(I6,E17.8) 

  CLOSE(iter+100) 

  

  

 return 

 end 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1 

  subroutine 

EQUILIBRIUM(LX,LY,CD,U,V,CX,CY,RHO,KAPPA,NU,A,B,T,FEQ) 

  REAL*8 FEQ(1:LX,1:LY,0:CD) 

  REAL*8 RHO(1:LX,1:LY) 

  REAL*8 U(1:LX,1:LY),V(1:LX,1:LY),CX(0:CD),CY(0:CD)  

  REAL*8 KAPPA,NU,A,B,T 

  REAL*8 D_RHO_DX, D_RHO_DY, 

LAPLACIAN,A2,A3,A1,B2,B3,C2,C3,D1,D2,D3,A0,B0,C0,D0  
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  REAL*8 G2XX,G2YY,G2XY,G2YX,G3XX,G3YY,G3XY,G3YX 

  REAL*8 UX,UY,TMP,UU 

 

  do i = 1,lx 

  idown = i-1 

  iup = i + 1 

  if(i .eq. lx) iup = 1 

  if(i .eq. 1) idown = lx 

   

  do j = 1,ly 

  jup = j + 1 

  jdown = j-1  

  if(j .eq. ly) jup = 1 

  if(j .eq. 1) jdown = ly 

  UX = U(I,J) 

  UY = V(I,J) 

   D_RHO_DX = 0.5D0*(RHO(IUP,J) - RHO(IDOWN,J)) 

   D_RHO_DY = 0.5D0*(RHO(I,JUP) - RHO(I,JDOWN)) 

   LAPLACIAN = RHO(IUP,J) -2.0D0*RHO(I,J)+ 

RHO(IDOWN,J)+ RHO(I,JUP) -2.0D0*RHO(I,J)+ RHO(I,JDOWN) 

   G2XX = (KAPPA*D_RHO_DX*D_RHO_DX + 

2.0D0*NU*UX*D_RHO_DX)/8.0D0 

   G2YY = (KAPPA*D_RHO_DY*D_RHO_DY + 

2.0D0*NU*UY*D_RHO_DY)/8.0D0 

   G2XY = (KAPPA*D_RHO_DX*D_RHO_DY + 

NU*UX*D_RHO_DY + NU*UY*D_RHO_DX) /8.0D0  !MODIFIED TANAKA 

   G2YX = G2XY 

   G1XX = 4.0D0*G2XX 

   G1YY = 4.0D0*G2YY 

   G1XY = 4.0D0*G2XY 

   G1YX = 4.0D0*G2YX 
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   PO = (RHO(I,J)*T/(1.0D0-B*RHO(I,J))) - 

A*RHO(I,J)*RHO(I,J) 

   A2 = (1.0D0/12.0D0)*(PO-KAPPA*RHO(I,J)*LAPLACIAN-

KAPPA*(D_RHO_DX+D_RHO_DY)*(D_RHO_DX+D_RHO_DY)) 

   A1 = 4.0D0*A2 

   A0 = RHO(I,J)-4.0D0*(A1+A2)-

3.0D0*(2.0D0*NU*(UX*D_RHO_DX+UY*D_RHO_DY)+KAPPA*(D_RHO_DX

+D_RHO_DY)*(D_RHO_DX+D_RHO_DY))/2.0D0 

   B2 = RHO(I,J)/12.0D0 

   B1 = 4.0D0*B2 

   B0 = 0.0D0 

   C2 = RHO(I,J)/8.0D0 

   C1 = 4.0D0*C2 

   C0 = 0.0D0 

   D2 = -RHO(I,J)/24.0D0 

   D1 = 4.0D0*D2    ! MODIFIED 

TANAKA 

   D0 = -2.0D0*RHO(I,J)/3.0D0 

 

   feq(i,j,0) = A0 + D0*(UX*UX+UY*UY) 

   do k = 1,4 

   TMP = CX(K)*UX+CY(K)*UY 

   UU = UX*UX+UY*UY 

   FEQ(I,J,K) = A1 + B1*TMP+C1*TMP*TMP+d1*UU + 

G1XX*CX(k)*CX(k)+G1XY*CX(K)*CY(K)+G1YX*CY(k)*CX(k)++G1YY*CY(

k)*CY(k)  

   end do 

   do k = 5,8 

   TMP = CX(K)*UX+CY(K)*UY 

   UU = UX*UX+UY*UY 

   FEQ(I,J,K) = A2 + B2*TMP+C2*TMP*TMP+d2*UU + 

g2xx*CX(k)*CX(k)+G2XY*CX(k)*CY(k)+G2YX*CY(k)*CX(k)++G2YY*CY(k)*

CY(k) 
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   end do 

  END DO 

  END DO 

 

  RETURN 

  END 

 

  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 subroutine MACRO(lx,ly,cd,rho,f,u,v) 

 real*8 F(1:LX,1:LY,0:CD) 

 real*8 RHO(1:LX,1:LY),U(1:LX,1:LY),V(1:LX,1:LY) 

 

 do i = 1,lx 

  do j = 1,ly 

   u(i,j) = 0.0d0 

   v(i,j) = 0.0d0 

  end do 

 end do 

 

 do i = 1,lx 

  do j = 1,ly 

   rho(i,j) = 

f(i,j,1)+f(i,j,2)+f(i,j,3)+f(i,j,4)+f(i,j,5)+f(i,j,6)+f(i,j,7)+f(i,j,8)+f(i,j,0) 

   u(i,j) = f(i,j,1)+f(i,j,5)+f(i,j,8)-f(i,j,3)-f(i,j,7)-f(i,j,6) 

   v(i,j) = f(i,j,5)+f(i,j,6)+f(i,j,2)-f(i,j,7)-f(i,j,8)-f(i,j,4) 

 

   u(i,j) = u(i,j)/rho(i,j) 

   v(i,j) = v(i,j)/rho(i,j) 

  end do 

 end do 

     

 return 

 end 



53 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 subroutine colliDE(lx,ly,cd,f,feq,fnew,TAU) 

 real*8 F(1:LX,1:LY,0:CD),FEQ(1:LX,1:LY,0:CD),FNEW(1:LX,1:LY,0:CD) 

 real*8 TAU 

 real*8 tfrac 

 

 do i = 1,lx 

  do j = 1,ly 

  tfrac = 1.0d0/TAU 

  fnew(i,j,1) = tfrac*feq(i,j,1)+(1.0d0-tfrac)*f(i,j,1) 

  fnew(i,j,2) = tfrac*feq(i,j,2)+(1.0d0-tfrac)*f(i,j,2) 

  fnew(i,j,3) = tfrac*feq(i,j,3)+(1.0d0-tfrac)*f(i,j,3) 

  fnew(i,j,4) = tfrac*feq(i,j,4)+(1.0d0-tfrac)*f(i,j,4) 

  fnew(i,j,5) = tfrac*feq(i,j,5)+(1.0d0-tfrac)*f(i,j,5) 

  fnew(i,j,6) = tfrac*feq(i,j,6)+(1.0d0-tfrac)*f(i,j,6) 

  fnew(i,j,7) = tfrac*feq(i,j,7)+(1.0d0-tfrac)*f(i,j,7) 

  fnew(i,j,8) = tfrac*feq(i,j,8)+(1.0d0-tfrac)*f(i,j,8) 

  fnew(i,j,0) = tfrac*feq(i,j,0)+(1.0d0-tfrac)*f(i,j,0)  

  end do 

 end do 

 

 return 

 end 

  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 subroutine move(lx,ly,cd,f,fnew) 

 real*8 F(1:LX,1:LY,0:CD),FNEW(1:LX,1:LY,0:CD) 

 

 do i = 1,lx 

 idown = i-1 

 iup = i + 1 

 if(i .eq. lx) iup = 1 
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 if(i .eq. 1) idown = lx 

  

 do j = 1,ly 

 jup = j + 1 

 jdown = j-1  

 if(j .eq. ly) jup = 1 

 if(j .eq. 1) jdown = ly 

 

 f(i,j,0) = fnew(i,j,0) 

 f(i,j,1) = fnew(idown,j,1) 

 f(i,j,2) = fnew(i,jdown,2) 

 f(i,j,3) = fnew(iup,j,3) 

 f(i,j,4) = fnew(i,jup,4) 

 f(i,j,5) = fnew(idown,jdown,5) 

 f(i,j,6) = fnew(iup,jdown,6) 

 f(i,j,7) = fnew(iup,jup,7) 

 f(i,j,8) = fnew(idown,jup,8) 

 

 end do 

 end do 

 

 return 

 end 

 


