PREDICTION OF BURST PRESSURE ON STEEL PIPES USING GURSON-TVERGAARD-NEEDLEMAN (GTN) MODEL

CHONG KIM SUNG

Report submitted in partial fulfillment of the requirements for the award of the degree of Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG

JUNE 2013

UNIVERSITY MALAYSIA PAHANG FACULTY OF MECHNICAL ENGINEERING

I certify that the project entitled "Prediction of Burst Pressure On Steel Pipe Using Gurson-Tvergaard-Needleman (GTN) Model" is written by Chong Kim Sung. I have examined the final copy of this project and in my opinion; it is fully adequate in terms of language standard, and report formatting requirement for the award of the degree of Bachelor of Engineering. I herewith recommend that it be accepted in partial fulfillment of the requirements for the degree of Bachelor of Mechanical Engineering.

(Ms Nur Azhani Abd Razak) Examiner

Signature

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this project report and in my opinion this project is satisfactory in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering.

Signature:Name of Supervisor:DR.AHMAD SYAHRIZAN BIN SULAIMANPosition:LECTURERDate:

STUDENT DECLARATION

I hereby declare that the work in this report is my own except for quotations and summaries which have been duly acknowledged. The report has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature: Name: CHONG KIM SUNG ID Number: MA09105 Date: 26 June 2013 Specially dedicated to

My beloved family and those who guided and inspired me Throughout my journey of learning

ACKNOWLEDGEMENTS

First and foremost I would like to express my sincere appreciation to my supervisor, Dr. Ahmand Syahrizan bin Sulaiman for his continuous guidance, ideas and support to help in completing this project. It is a great gratitude to have his knowledge to be shared with me and this indeed has helps me to be able to see the bigger picture and understand wider scope of this project. Besides, I am grateful for the constant weekly discussion time he spent on me to continue guide me on my project problems. Also, I want to thank him for correcting and comment the mistakes in my project and this can help in my future report writing skills.

My sincere appreciation also goes to Mr Nasrul bin Alang, who is so willing to help and guide me even though I am not his PSM student. He has open my mind on how to relate and compare the different method used in research on the pipe burst pressure and stress and strain development. With his help, I can understand well the methods I am using for my project. Also, thanks for the time spent on figuring the problems encounters during my Patran analysis and comments on simulations even after office hours.

Moreover, I would like to express my gratitude to Puan Norhaida, for her ideas in helping me during my initial learning process using Patran software. Also, for her continuous concern and support on my project.

Lastly, I would like to thank my loving parents for their continuous support and concern throughout my study at University Malaysia Pahang.

ABSTRACT

A micromechanical model of ductile fracture is applied for API X65 steel to predict ductile failure of a full-scale API X65 pipes with simulated corrosion and defects under internal pressure. The micromechanical model is the Gurson model, incorporating void nucleation, growth and coalescence where the burst pressure is predicted based on the critical void volume fraction. The present study involves experimental comparison and numerical studies of the burst pressure of pipe under ductile fracture. The main objective of the present study is to determine the burst pressure of steel pipe using GursonTevaagard model. For the experimental, the results are from the previous research journal. For the finite element analysis, the pipe model is modeled as a 3 dimensional, quarter-model in MSC.PATRAN with MSC.MARC as nonlinear implicit solver. Results with proposed ductile fracture model indicates that predicted failure pressure attain maximum load for all cases, and are in good agreement with experimental data. It also showed that the burst pressure is decreasing for increasing defect depth and length. For the characters of void volume fraction, f, it can be seen that once the void reach void growth, it soon come to void coalescence, where the burst pressures are predicted at critical void and then fracture. The results from gouge defect varies in length is analyze based on the equivalent plastic strain, ε_p and the stress

triaxially, $T = \frac{\sigma_m}{\sigma_e}$ where void growth dependent on this two key quantities. Void

volume fraction are examined based on the equivalent plastic strain and stress triaxiality on the normalize distance along the defect length and depth. It is found that distribution of equivalent plastic strain agreed well with the void volume fraction and the critical point occur at the defect tip along the defect depth and length.

ABSTRAK

Satu model micromechanical patah mulur dipohon API X65 keluli untuk meramalkan kegagalan mulur daripada skala penuh API X65 paip dengan kakisan simulasi dan kecacatan di bawah tekanan dalaman. Model micromechanical adalah model Gurson, menggabungkan sah penukleusan, pertumbuhan dan tautan di mana tekanan pecah diramalkan berdasarkan kekosongan kritikal jumlah kecil. Kajian ini melibatkan eksperimen dan kajian berangka tekanan pecah paip bawah perbandingan patahmulur.Objektif utama kajian ini adalah untuk menentukan tekanan pecahpaip keluli menggunakan Gurson model Tevaagard. Bagi eksperimen, keputusan adalah dari jurnal penyelidikan sebelumnya. Untuk analisis unsur terhingga, model paip dimodelkan sebagai satu dimensi, suku model 3 dalam MSC.PATRAN dengan MSC.MARC sebagai penyelesai tersirat linear. Keputusan dengan cadangan model patahmulur menunjukkan bahawa tekanan kegagalan meramalkan mencapai beban maksimum bagi semua kes, dan berada dalam perjanjian yang baik dengan data eksperimen.Ia juga menunjukkan bahawa tekanan pecah semakin berkurangan untuk meningkatkan kedalaman kecacatan dan panjang. Untuk watak-watak tidak sah jumlah pecahan, f, ia boleh dilihat bahawa apabila tidak sah mencapai pertumbuhan tidak sah, ia tidak lama lagi dating untuk membatalkan tautan, di mana tekanan pecah diramalkan di sah kritikal dan kemudian patah.Hasil daripada menipu kecacatan berbeza panjang adalah menganalisis berdasarkan tekanan bersamaan plastik, ε_p dan tekanan triaxially,

 $T = \frac{\sigma_m}{\sigma_e}$ di mana pertumbuhan tidak sah ini bergantung kepada dua kuantiti utama.

Tidak sah jumlah kecil diperiksa berdasarkan tekanan bersamaan plastic dan triaxiality tekanan pada jarak normal sepanjang kecacatan dan mendalam. Ia didapati bahawa taburan terikan plastic bersamaan juga bersetuju dengan jumlah kecil tidaksah dan titik kritikal berlaku pada hujung kecacatan sepanjang kedalaman kecacatan dan panjang.

TABLE OF CONTENTS

EXAMINERS' APPROVAL DOCUMENT	ii
SUPERVISOR'S DECLARATION	iii
STUDENT'S DECLARATION	iv
DEDICATION	v
ACKNOWLWDGEMENTS	vi
ABSTRACT	vii
ABSTRAK	viii
TABLE OF CONTENTS	ix
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF SYMBOLS	xvii
LIST OF ABBREVIATIONS	xix

CHAPTER 1 INTRODUCTION

1.1	Background of Study	1
1.2	Problem statement	3
1.3	Objectives	3
1.4	Scopes	3
1.5	Significance of project	4

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	5
2.2	Burst Pressure	8
	2.2.1 Von Mises yield criteria	8
	2.2.2 Steel pipe	10

2.3	Major Corrosions in Pipelines carrying Gas and Crude Oil	10
	2.3.1 Factors that contribute to external corrosion in pipelines	12
	2.3.2 Factor that contribute to internal corrosion in pipelines	13

Page

	2.3.3 Corrosion Mechanism on pipeline	14
	2.3.3.1 Electrochemical corrosion	14
	2.3.3.2 Chemical corrosion	15
	2.3.3.3 Mechanical corrosion	16
2.4	Types of Cracks	17
2.5	Strain Based Failure Criterion (Micromechanical model)	18
	2.5.1 Ductile Fracture	19
	2.5.1.1Void Nucleation	21
	2.5.1.2 Void Growth	21
2.6	Classification of Micromechanical model	24
	2.6.1 Coupled Micromechanical modelling	24
	2.6.2 Evolution of GTN model	27
	2.6.3 Uncoupled Micromechanical modelling	29
	2.6.3.1 Void Growth Model (VGM)	29
	2.6.3.2 Stress Modified Critical Strain Model (SMCS)	30
	2.6.4 Criteria in developing ductile fracture prediction	31
	2.6.5 Determination of Gurson parameters	33
	2.6.5.1 Determination of f_0 and f_F computational cells	34
	2.6.5.2 Determination of Gurson model parameters	35
2.7	Comparison between the Three Proposed Models	38
2.8	Experimental Investigation	40
	2.8.1 Tensile Test	41
	2.8.1.1 Stress-strain Diagram	41
	2.8.2 Burst Test	42
	2.8.2.1 Full scale Burst tests of Corrosion Defects	43
2.9	Stress Based Failure Criterion (Closed formed Method)	44
	2.9.1 ASME B31G	45
	2.9.2 Modified B31G Criterion	47
	2.9.3 DNV RP-F-101 Criterion	48
	2.9.4 PCORRC Criterion	49
2.10	Comparison among experimental method and micromechanical method	51

CHAPTER 3 METHODOLOGY

3.1	Introduction	53
3.2	Determination of experimental data and material	55
	3.2.1 Determination of material properties	55
	3.2.2 Determination of experimental data	57
3.3	Finite element analysis	59
	3.3.1 FE modeling	60
	3.3.2 Load case, Boundary conditions and loads	61
3.4	Validation using Closed form calculations and SMCS	62
	3.4.1 Closed form calculations	62
	3.4.2 SMCS	63

CHAPTER 4 RESULTS AND ANALYSIS

4.1	Finite element analysis results	65
4.2	Results comparison and analysis	66
	4.2.1 Application to failure predictions of corroded API X65 pipes	69
	4.2.1.1 Comparisons	69
	4.2.2 Application to failure predictions of API X65 pipes with gouges	69
	4.2.2.1 Comparisons	69
4.3	Discussions	80
	4.3.1 Summary of comparisons	80
	4.3.2 Limitations of Present Study	81

CHAPTER 5 CONCLUSION

REFER	RENCES	84
5.2	Recommendations	83
5.1	Conclusion	82

APPENDICES

A1	True Stress-Strain data at room temperature for API X65 Steel	88
A2	Data collected and calculated for Gouge Defect, 50%, l=100mm	89
	Gantt Chart (Semester 1)	101
	Gantt Chart (Semester 2)	102

LIST OF TABLES

Table No.	Title	Page
2.1	Mechanical properties of various grades of pipelines steel	10
2.2	GTN model parameter values for API X65 steel	35
2.3	GTN model parameter values from the literature	36
2.4	Differences and similarities between GTN, VGM and SMCS model	39
3.1	Mechanical tensile properties at room temperature of the API X65 steel,	56
	used in the present work	
3.2	Dimensions for the pipe design.	57
3.3	Defect design dimension and experiment data for rectangular defect.	58
3.4	Dimensions and experiment data for gouge defect.	59
3.5	GTN parameters for API X65 steel.	60
3.6	Number of elements for mesh seeds for FE model.	60
3.7	Boundary conditions applied on the pipe model.	62
4.1	Value of reached for different depths, d.	66
4.2	Burst pressure predicted for FEA and design codes for different depths	66
4.3	Comparison between burst pressure for experimental FE and	67
4.4	Burst pressure comparison for gouge defect of 50%.	70
4.5	Burst pressure comparison for gouge defect of 75%.	70

LIST OF FIGURES

Figure No	Title	Page
2.1	Method of experimental, strain based model and strain based model	7
	used in predicting burst pressure of steel pipe in present study	
2.2	Reducing in thickness of pipe thickness due to wall thinning	12
2.3	Pipeline corrosion in different soils	13
2.4	Pitting Corrosion	15
2.5	Classification of crack in pipeline	17
2.6	Axial planar flaw and non-planar flaws (axially and circumferentially	18
	long) in a pipe	
2.7	Longitudinal cracks circumferential cracking	18
2.8	Ductile fracture process	20
2.9	Sequence of damage mechanisms	22
2.10	Ductile fracture mechanism on void following authors	23
2.11	The authors and extending that involved in modifying Gurson model.	28
2.12	Modeling of ductile crack growth using computational cells	34
2.13	Specimen after tensile test and the graph of force with elongation of the	40
	specimen	
2.15	Full engineering stress strain curve	42
2.17	Methods for corrosion assessment including codified and other	44
	methods	
2.18	Longitudinal extent of the corrosion area	46
2.19	Assumed parabolic corroded area for relatively short corrosion defect	50
2.20	Assumed rectangular corroded area for longer corrosion defect	46
2.21	Assumed Ac =0.85dL method for corrosion defect	47
2.22	Comparison among experimental method, strain based and stress based	51
	micromechanical method	
3.1	Overall Flowchart Research	54
3.2	Procedure in Patran Analysis	55

3.3	Tensile specimen	56
3.4	True stress-strain data for AP1 5L X65 steel at room temperature	56
3.5	Pipe with simulated corrosion defect	57
3.6	Pipe with gouge defect design	57
3.7	2 Dimensional of the pipe	59
3.8	FE model for a quarter of pipe model using MSC.PATRAN	60
3.9	Boundary conditions applied on the pipe model	62
4.1	Void volume fraction contour profile for the pipe	64
4.2	A typical finite element mesh for pipe with gouges and the contour	65
	markers showing void volume fraction profile at the final time step 1s.	
	The critical void happens at the tip of the defect	
4.3	Comparison between the void volume fractions for different defect	65
	depth on the pressure increment	
4.4	Comparison on the burst pressure for different defect depth for FEA,	68
	experimental and Equation 4.1	
4.5	Relationship between burst pressure and defect depth for different	69
	design codes and FEA.	
4.6	Comparison of burst pressure for the case of defect length 50%.	71
4.7	Comparison for Equation 4.2 and Equation 4.3 for gouge defect of	74
	different length.	
4.8	Distributions of stress triaxiality and equivalent strain for pipes with	74
	gouge along the defect length: (a) MNA pipe test and (b) MNB pipe	
	test and (c) MNC pipe test and (d) MND pipe test and (e) MNE pipe	
	test	
4.9	Distribution of void volume fraction over the normalized distance on	75
	the defect depth following the variation of defect length,	
	MNA(100mm), MNB(200mm), MNC(300mm), MND(400mm), and	
	MNE(600mm) with case 50% depth	
4.10	Distribution of strain equivalent over the normalized distance on the	76
	defect depth following the variation of defect length, MNA(100mm),	
	MNB(200mm), MNC(300mm), MND(400mm), and MNE(600mm)	
	with case 50% depth.	
4.11	Distributions of stress triaxiality and equivalent strain for pipes with	77

gouges along the defect depth from the inner surface to the notch tip of the defect

- 4.12 Distribution of Void volume fraction over the defect depth with varied 78 with the defect length, MNC (300mm), MND (400mm) and MND (600mm) for the case 50% depth
- 4.13 Distribution of strain equivalent over the defect depth with varied with 79 the defect length, MNC (300mm), MND (400mm) and MND (600mm) for the case 50% depth

LIST OF SYMBOLS

P_{y}	Internal pressure on the onset of yield
P_{u}	Ultimate pressure
$\sigma_{_{Vonmises}}$	Von Mises yield criteria
$\sigma_{_1}$	Ratio of the applied tensile force F to the metal area A
\mathcal{E}_{i}	Strain at onset of instability
n	Strain coefficient
D	Pipe outer diameter
t	Pipe wall thickness
k	Strength coefficient
c	Defect width
L	Pipe length
l	Defect length
d	Defect depth
$P_{\rm exp}$	Experimental pressure
$V_{\scriptscriptstyle Void}$	Volume of voids
V _{Matrix}	Volume of matrix
f	Void volume fraction
σ_{y}	Yield stress
ϕ	Non-dilatational strain energy
$\sigma_{_0}$	Von Mises effective stress

q_1	Tvergaard coefficients describing the plastic properties of the material
f^{*}	Actual void volume fraction
$\sigma_{\scriptscriptstyle m}$	Hydrostatic pressure (mean stress)
$\sigma_{_{eq}}$	Von Mises effective stress
f_c	Critical void volume fraction
f_F	Void volume fraction corresponding to the loss of material strength
\mathcal{E}_{ii}^{*P}	Plastic part of the strain rate tensor
$\left(R / R_0 \right)_c$	Critical void growth ratio
$darepsilon_{_{eq}}{}^{^{P}}$	Equivalent plastic strain increment
α	Material constant
\mathcal{E}_{f}	Fracture strain
Т	Stress triaxiality
${\cal E}_{eq}$	Strain equivalent

LIST OF ABBREVIATIONS

FE	Finite Element
SMCS	Stress modified fracture criteria
ASME	American Society for Mechanical Engineer
Eq.	Equation
UTS	Ultimate Tensile Strength
GTN	GursonTevargaard model
VGM	Void Growth model
API	American Petroleum Institute

Chapter 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

Pipelines are one of the major means of transporting hydrocarbons (oil and natural gas) from one point to the other point, which may be routed within onshore or offshore locations. There is a great risk that defects will occur during the service life of these pipelines. Corrosion, either internal or external is one of the common defects observed in many instants. With the passage of time the corrosion that occurs either at a localized point or onto a large area cause the metal loss and hence the strength or in other words load bearing capacity of the pipeline is reduced. Corrosion induced micromechanical ductile fracture in pipe body due to the growth of void and coalescence in the materials which will lead to plastic deformation that cause bursting of pipe. The prediction of burst pressure is based on the ultimate pressure, $P_u > P_y$ yield pressure (Antaki, G.A., 2003). Also, identification of different types of corrosion can help in applying the suitable analysis method and solution. Hence, predictive measurement on defect assessment for high pressure piping is important aimed at quantifying the impacts of the defects and for safety precautions procedure.

An initiative has been taken by the European gas transmission system operators on the frequencies and probabilities study that cause incidents in pipelines. (8th Report of EGIG, Dec 2011). It is divided into two groups, first, the primary failure frequency which is by the external interference, corrosion material defect, ground movement and others. The other is secondary failure frequencies which consider the influence of design parameters (pressure, diameter, wall thickness, etc.) The external interference the activity having caused the incident such as digging, piling, and equipment involved in incident. Next, corrosion includes the location either internal or external, and the corrosion type. Then the material failure, which is the type of defect, next is ground movement like erosion, flood and others. The installation of the annual length of pipelines was equal to 129,719 km in 2007 and increase to 135,211 km in 2010. Also, the incidents were reported of total 1,249 cases over the period 1970-2010 with primary failure frequency per 1000km-yr is 0.372. Whereas for an interval of 5 years between 2006-2010, the number of incidents occurs are 106 cases and the primary failure frequency per 1000km-yr is 0.162. In fact, external interference is highest incidents causes with contribution 0f 48.4% followed by material failure and corrosion with 16.7% and 16.1% respectively. From the statistics, except for the external interference incident causes, from the view of internal, that is the material failure and corrosion, it have given a big impact on the incident occur in pipelines. Hence, a careful study and analysis need to be carried out to ensure the integrity of pipeline service in this oil and gas field.

In fact, numerous experiments on the material failure and corrosion which is the impact of defects and analytical researches has been done especially on the burst pressure predictions of pipelines but this entire are still not enough to ensure its integrity. This is due to the lack of experimental and analytical researches ability in performing tests reflecting complex geometries and loading condition. As it is known that pipeline which lying on the seabed and is subjected to the physical environmental aspects must be taken care of in order to ensure its integrity. The loading conditions are referring to the physical environmental aspect which includes the oceans depth and distances, hydrostatic pressure, temperature, seawater and sea-air interface chemistry, and crude oil composition. Hence, in order to study the incidents consequence of the material failure and corrosion, the application of micromechanical model using finite element method is important to study more detail of the internal failure mechanism and sensitivity analysis can help improve the study.

1.2 PROBLEM STATEMENT

Experimental and analytical study on the material failure of steel pipe is not enough to ensure its integrity due to the lack of experimental and analytical researches ability in performing tests reflecting complex geometries and variable loading condition. Hence, Gurson model which is the micromechanical model transfer better detection of the defect analysis in studying the ductile fracture of pipeline by predicting its burst pressure. This Gurson model will be based on finite element method to study the material fracture in terms of void where the variable factors that cause pipeline fracture can be analyzed.

1.3 OBJECTIVES

The aim of this research is about the study and application of micromechanical model, GTN model in predicting pipe burst pressure. Hence, the objectives of this study are:

- i. To predict the burst pressure of steel pipe using Gurson-Tvergaard-Needleman (GTN) model.
- ii. To determine the effect of depth and length of the defect towards the failure pressure of the pipe.

1.4 SCOPE OF PROJECT

- i. The material used in this project is steel with API X65.
- ii. The outer diameter of the pipe is fixed to 762 mm, thickness 17.5 mm and length 2300 mm and it is analyses with different defect depth and length.
- iii. The defect depth of 25%, 50% and 75% and defect length of 100 mm, 200mm, 300 mm, 400 mm, and 600 mm are used in the present study.
- iv. A quarter of a full pipe was modeled due to symmetry conditions.
- v. A finite element analysis using three-dimensional elastic-plastic damage analyses were performed to simulate the pipe burst tests using Marc Patran.

vi. The failure assessment has been compared with limit load analysis (ASME B31G, modified ASME B31G, and PCORRC)

1.5 SIGNIFICANCE OF PROJECT

In the present study, different types of defects which variant in defect depth and length is carried out to test more cases and this contributed more data which expand the scope of analysis. Besides, the prediction of burst pressure will be based on the character of void volume fraction using failure criterion approach in FEA. Unlike the previous research (Chang, S.O., 2011) where, even the Gurson model is simulated for ductile damage and failure, but the prediction of burst pressure of pipe is based on the empirical-based burst pressure equation for axial cracked pipe and also using stress modified fracture strain model. The usage of void volume fraction makes the prediction simpler as it is based on the critical void volume fraction whether it exceed or not.

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

There will be two main parts discussed in this chapter. The first part is on the material and corrosion of steel pipe. The second part will be on the method of predicting failure in pipeline of this project. For the first part, it include the von Mises yield criteria of burst pressure, where $P_u \ge P_y$. It is followed by some steel pipe standard categories. Burst pressure occurs as result of wall thinning due to corrosion. In fact, there are few categories of pipe crack, for instance, longitudinal crack, circumference crack, and spiral crack.

In the second part of the prediction of failure of structures, there are the global approaches and the local approach. (Clotilde, B., et.al. 2004). The global approach was first proposed more than 50 years ago, in the framework of linear fracture mechanics, and then extended to plasticity and viscoplasticity through nonlinear fracture mechanics about 30 years ago. Although this global approach are extremely useful, frequently used and still improving, they have been proved to suffer from several limitations; where industrial need new methodologies tools to be analyzed realistically and mastered practically. This need for new methods, combined with the development of physically-based models of mechanical behavior and micromechanical treatments, has proposed by McClintock (McMlintock, 1963) in the early 80's to the so-called "local approach to fracture". Unlike the "global" treatment, which makes the fracture resistance of a component mainly depend on a single global parameter, whatever the damage and deformation mechanisms of the specific material under study, the "local" approach emphasizes these material specificities: it combines a detailed experimental analysis of the considered materials and of their specific damage mechanisms, a realistic modeling

of these mechanisms and the implementation of these models into a numerical simulation of the response of the structural components under investigation.

Under the local approach of fracture, depending on the model employed for simulating damage, it divided into damage based on volume which is micromechanical model and damage based on surface which is phenomenological model. Micromechanical model is divided into strain based (include uncoupled and coupled) and stress based (the design codes). The uncoupled modeling are SMCS and VGM whereas the coupled modeling is GTN. The stresses based are ASME B31G, Modified ASME B31Gand PCORRC. The micromechanical model is incorporating void nucleation, growth and coalescence, for instance, the Gurson–Tvergaard–Needleman model (Tvergaard, V., 1981, 1982). The damage based on surface is using a phenomenological model for ductile fracture, which is the cohesive zone model (Chen CR, 2003). All these methods will be summarizing in the Figure 2.1.

(GTN model) and stress based method (design codes) as to validate each other's.

For the present study, the methods used are those highlighted which are the nonfinite element method (experimental method), finite element (FE) analysis (GTN model), and closed form method (the design codes). These three methods are important in predicting burst pressure of steel pipe as they all acts together to give verification and comparison between each other. Finite element method is important as it can greatly enhance the overall result by checking against deformation, stress or vibration specifications. Most importantly, FE analysis results identify critical areas which carry most of the load, as well as areas where material may be saved. The burst pressure from FE was then compared with values calculated using design codes for pipelines containing defects.

2.2 BURST PRESSURE

Burst pressure of steel pipe occur when corrosion induce wall thinning on the pipe and hence result in metal loss which is the failure. In fact, burst pressure occurs when $P_u \ge P_y$, where P_u is the ultimate pressure and P_y is the internal pressure at onset of yield.

2.2.1 von Mises Yield Criteria

Based on the von Mises criterion, the yielding of the pipe wall will take place when the distortion energy reaches a certain limit value $\sigma_{vonMises}$. (Antaki, G.A., 2003). This can be shown as in Eq. (2.1).

$$(\sigma_h - \sigma_1)^2 + (\sigma_1 - \sigma_r)^2 + (\sigma_r - \sigma_h)^2 = \sigma_{vonmises}$$
(2.1)

The value $\sigma_{Vonmises}$ is obtained from the tensile test. In the case, $\sigma_h = \sigma_r = 0$ and $\sigma_1 = F/A$ is the ratio of the applied tensile force F to the metal area A. In fact, yielding will take place when $\sigma_1 = S_y$, where the von Mises criterion can be written as in Eq. (2.2):

$$(0 - S_y)^2 + (S_y - 0)^2 + (0 - 0)^2 = \sigma_{Vonmises} = 2S_y^2$$
(2.2)

By substitution, the internal pressure at which the pipe wall yields is as shown in Eq. (2.3). (Antaki, G.A., 2003).

$$Py = \frac{Sy}{\sqrt{\frac{3}{4}\left(\frac{D}{2t}\right)^2 + \frac{3}{2}\left(\frac{D}{2t}\right) + 1}}$$
(2.3)

P_{y} =internal pressure at onset of yield, psi

For large diameter to thickness ratio (D/t>>1) we obtain the internal pressure at the onset of yield as in Eq. (2.4).

$$Py = \frac{4tSy}{D\sqrt{3}} \tag{2.4}$$

As the internal pressure continues to increase beyond the yield pressure, P_y the pipe wall will bulge outward and reach a point of instability. Actually, in reality the material is not perfectly uniform and this bulging does not take place exactly uniformly around the circumference but preferentially on the side of the pipe wall. The hoop strain at which instability occurs is as shown in Eq. (2.5).

$$\varepsilon_i = n/2 \tag{2.5}$$

 ε_i = strain at onset of instability

n= strain coefficient

After the instability, which is the outward bulge in pipe wall, the pipe ruptures. The pressure at ruptures is the ultimate pressure P_u given as in Eq.(2.6):

$$P_u = (2kt/D)e^{-n} \{n/[2(3/4)^{(1+n)/n}]\}^n$$
(2.6)

Where σ_u = ultimate pressure at burst, psi

t= pipe wall thickness, in

k= strength coefficient, psi

D=pipe outer diameter, in

2.2.2 Steel Pipe

Steel pipe is the most common pipe that has been use in global industries. This is because the material properties of the steel pipe itself. Steel is among the best material in aspect of durability and long live lasting compare to the other material. This kind of pipe normally used in many industries to transfer fluid such as oil, gas, water, chemical, smoke and others. In steel pipe itself, there are certain level or grades for differentiate the steel pipe durability. There are various grades of steel, but the common used by industries is X65, X80 and X100 steels. The higher grades mean the higher durability of the steel. Table 2.1 shows the mechanical properties for the pipelines steel.

Table 2.1: Mechanica	l properties of	various grades of	f pipelines steel	(Cheng, LY.2012)
----------------------	-----------------	-------------------	-------------------	------------------

Mechanical properties(steel)	X65	X80	X100	X42
Young's modulus (MPa)	207000	207000	207000	207000
Poisson's ratio	0.3	0.3	0.3	0.3
Yield Strength (MPa)	456	646	802	290
Tensile Strength (MPa)	570	760	891	420

2.3 MAJOR CORROSIONS IN PIPELINES CARRYING GAS AND CRUDE OIL

Corrosion is one of the leading that cause failure in onshore and offshore transmission pipelines. As these oil and gas pipelines play a critical role in delivering energy resources needed to power communities around the world, its causes of corrosion leading to failure are need to be identified. There are two areas of corrosion occur in pipelines: corrosion from medium carried inside the pipes (internal corrosion); also corrosion attack upon the outside of the pipes (external corrosion). Corrosion, either internal or external is an electrochemical, time dependent mechanism process that causes metal loss. It is referring to the loss extending over a significant area of the pipe resulting in wall thickness decrease. Wall thinning on pipe occur when the load (pressure) of the pipe increases. This local wall thinning could continue, leading to necking of the wall and failure due to void nucleation, growth and coalescence in a manner comparable to that of a tensile test specimen.

Corrosion mechanism causes an irregularity of local surface which is due to presence of micro-stress raisers which lead to crack through a process of void nucleation and growth. The behavior after the initiation of a crack would depend on the toughness of the material. In a high toughness material, initiation would be delayed to a higher load and further stable ductile tearing would be slower, or a growing crack could blunt; wall thinning would continue and the failure load would tend to that of plastic collapse. However, in a lower toughness material, once initiated, the crack would extend by stable ductile tearing, reducing the remaining wall thickness and hence reducing the degree of wall thinning that occurs before failure. The load at failure would be less than that predicted by the plastic collapse limit state because of the stable ductile tearing. Figure 2.2 below shows the reducing in thickness of pipe thickness due to wall thinning.

Figure 2.2: Reducing in thickness of pipe thickness due to wall thinning.

Source: Piping and pipeline engineering (Antaki, G.A., 2003).

2.3.1 Factors that contribute to external corrosion in pipelines

i. Soil conditions

Buried pipelines are exposed to the soil structure and conditions where the factors like the soil type, drainage, temperature, CO_2 concentration and electrical conductivity may contribute to the creation of a corrosive environment. This is underground corrosion and an electrolytic process occur where the moisture content of the soil act as an electrolyte, and the ions required to conduct the current are supplied by water-soluble salts (chlorides, sulfates, etc.)

ii. Temperature

The temperature of the soil as well as the temperature of the pipe may create favorable conditions for attack on pipeline materials. Liquid and gas lines have slightly different operating temperature characteristics but both are still susceptible.

iii. Pipe pressure

Pipeline placed on the seabed is subjected to high pressure. Corrosion, in particular cracking, is related to the pressures exerted on the pipe. As the pressures within the pipe are increased, the growth rates for cracks also increase. The circumferential stress (hoop stress) generated by the pipeline operating pressure is usually the highest stress component that exists.

iv. Corrosion resulting from passing through soils of different material content

The potential along the pipe line depends to some extent on the soluble salt content of the soil. It is found the sections of a pipe passing through soil of high salt content are anodic to sections about which the salt content of the soil is lower as shown in Figure 2.3.

Figure 2.3: Pipeline corrosion in different soils

v. Marine Organisms

Marine organisms effect upon pipeline structure when the increase of drag due to the obstruction of the free flow of water past the surface of the structure. This is the 'fouling' of the pipe surface. Fouling increases the size of the member and more importantly increase the surface roughness. Mussels, barnacles and algae increase the diameter of the steel pipe besides, barnacles and algae urchins secrete an acid which pits and erodes steel.

vi. Marine bacteria

Anaerobic sulphur-based are often trapped in the ancient sediments of the oil reservoir. Upon release to the saltwater, they convert to sulphates and upon subsequent contact with air they produce sulphides (H_2S). These bacteria and sulphides produced, will attack weak and permeable concrete and cause pitting corrosion in steel.

2.3.2 Factor that contribute to internal corrosion in pipelines

Factors that contribute to internal corrosion in pipelines are influenced by temperature, CO_2 and H_2S content, water chemistry, flow velocity, oil or water wetting and composition and surface condition of the steel.

(i) Water chemistry

Crude oil, being a non-conducting electrolyte, does not support corrosion. However, if the crude oil contains water, then corrosion may take place in those locations where water drops out of crude oil and comes in contact with the metallic surface. The bulk crude oil may indirectly affect the corrosion but when the pipelines travel over distances, which is considered unlikely at one location can become significant when summed over a pipeline infrastructure. Hence, the water (an electrolyte) also the sediments are the components of the corrosion cell. Without it, corrosion will not occur at appreciable rates within the transmission pipeline.

2.3.3 Corrosion Mechanism on pipeline

Corrosion encountered in pipeline industry involves several mechanisms. These have been grouped into electrochemical corrosion, chemical corrosion, and mechanical corrosion.

2.3.3.1 Electrochemical corrosion

i. Crevice corrosion

This type of corrosion often starts at drill pipe joints or the tubing collar of the pipe. The gap in the joint becomes devoid of oxygen and anodic. In salty water the corrosion is promoted by the migration of negatively charged chloride ions to the crevice. These not only counteract the buildup of positive charges around the crevice, but also act as a catalyst accelerating the dissolution of metal. This on-going process leads to deep pits.

ii. Pitting Corrosion

Pitting corrosion is the localized corrosion of a metal surface confined to a point or small area that takes the form of cavities due to the sulfides produce

from anaerobic sulfur-based bacteria for the case of offshore pipeline. Pitting corrosion is usually due to two affecting factors, which are the environmental (chemistry) and the material (metallurgy). The environment may set up a differential aeration cell (a water droplet on the surface of a steel, for example) and pitting can initiate at the anodic site (centre of the water droplet). Also, pitting factor is the ratio of the depth of the deepest pit resulting from corrosion divided by the average penetration as calculated from weight loss.

Figure 2.4: Pitting corrosion

Source: WebCorr Corrosion Consulting Services.1995-2013. Different types of Corrosion-Pitting Corrosion (online).

2.3.3.2 Chemical corrosion

(i) Hydrogen Sulfide

Hydrogen Sulfide (H_2S) when dissolved in water, is a weak acid and is a source of hydrogen ions and it is corrosive. The corrosion products are iron sulphides and hydrogen. Iron sulphides form a scale that at low temperature can act as a barrier to slow corrosion. However, in seawater, the presence of chloride and oxygen has made the casing and galvanic corrosion starts.Especially the presence of chloride ions, the barnacle type corrosion occurs, which can be sustained under thick but porous iron sulphide deposits. The chloride forms a layer of iron chloride, which is acidic.

(ii) Carbon Dioxide

Like H_2S , carbon dioxide is a weakly acidic gas and becomes corrosive when dissolved in water. However, carbon dioxide just hydrate to carbonic acid (H_2CO_3), a relatively slow process before it becomes acidic.

(iii) Microbiologically-Influenced Corrosion (MIC)

MIC, also known as microbial corrosion or biological corrosion, is the deterioration of metals as a result of the metabolic activity of microorganisms which occurs in waters and soils with pH 4~9 and temperature 10 degree Celcius-50 degree Celcius. These bacteria can be broadly classified as aerobic (requires oxygen to become active) or anaerobic (oxygen is toxic to the bacteria). Sulphate reducing bacteria (SRB) is anaerobic and is responsible for most instances of accelerated corrosion damages to offshore steel structures. These anaerobic bacteria metabolize sulphate ions and produce hydrogen sulphide. Colonies of SRBs can form deposits that lead to crevice corrosion with produced H_2S accelerating corrosion.

2.3.3.3 Mechanical corrosion

(i) Sulfide Stress Corrosion

Production of hydrogen results from sulphide stress cracking (SSC). SSC occurs when a susceptible metal is under tensile stress and exposed to water containing hydrogen sulphide. Corrosion cells generate FeS and atomic hydrogen. The amount of hydrogen into the metal is usually into impurities at the grain boundaries. Penetration of hydrogen into the body of metal reduces ductility and accumulation of hydrogen generates pressure. For high strength steel the combination of lack of ductility and internal stress superimposed on the tensile stress causes the metal to break and crack.

2.4 TYPES OF CRACKS

In case of evaluating internal burst pressure of a wall thinned straight pipe, the crack can be divided into three types of defect crack, the axial crack, longitudinal crack and circumference crack as shown in figure 2.5. In fact, the axial crack can be grouped in to planar flaw and non-planar flaw as shown in figure 2.6 below.

Figure 2.5: Classification of crack in pipeline

Figure 2.6: Axial planar flaw and non-planar flaws) in a pipe.

Source: Toshiyuki, M. (2010)
Longitudinal cracks are formed as a result of excessive soil and traffic loads or inadequate pipe bedding. In fact, visible longitudinal cracks observed at top and invert inside the pipe should be more severe than those on the outside because tensile stress occur at top and invert portion of the inside of the pipes. On the contrary, longitudinal cracks formed outside the pipe at the sides of concrete pipe should be more severe than those on the inside.

Figure 2.7: Longitudinal cracks circumferential cracking

Source: Hansen, B., Lee, D. and Demartini, C. The cracking of stormwater pipe and the significance of construction loads.

Also, longitudinal cracks wandered between 11 to 1 o'clock and 5 to 7 o'clock. These indicated an overload from a vertical load on a fully supported pipe. It can be assumed that corresponding cracks would be present on the outside of the pipe around the 3 and 9 o'clock positions.

For the circumferential cracks, it appeared at the midpoint of the pipe or at around the third points. The midpoint cracks indicate a bending overload with the pipe acting as a beam. The third point cracks suggest the pipe is acting as a cantilever.

2.5 STRAIN BASED FAILURE CRITERION (MICROMECHNICAL MODEL)

Strain based failure criterion can be grouped into micro-mechanical models. In fact, over the decade, micromechanical has been used to predict ductile fracture initiation of alloys by modeling void nucleation, growth and coalescence. Voids nucleate around secondary phase inclusions in the steel matrix, and grow under plastic strains in the presence of multiaxial stress fields to coalesce and form the macroscopic fracture surface. Analytical derivations by Rice and Tracey (1969) suggest that void growth is dependent on the evolution of two key quantities—the equivalent plastic strain ε_p , and the stress triaxiality. The stress triaxiality, $T = \sigma_m / \sigma_e$, is a ratio of the mean or hydrostatic stress σ_m , and the effective or von Mises stress σ_e . Although classical metal plasticity assumes yielding to be unaffected by mean stress at a macro level in a void-free continuum, the mean stress (and similarly triaxiality) is largely responsible for localized yielding around voids to cause void growth.

A lot of models has been developed which enable the application of ductile fracture analysis in a way that is to the largest extent in accordance with actual phenomena in a material. This is especially true for the corrosion in steel pipes as it is about the study of local stresses strains at the spots of structure highly exposed to external loading which induce to high stress concentration caused by change of geometrical form exists, is prerequisite for application of this micromechanical models. Also, micromechanical models often involve using of parameters and it is reliable on numerical tools in solving these problems. In fact the application of the finite element method (FEM) has become almost an unavoidable part of micromechanical analysis.

Micromechanical models for ductile fracture, incorporating void nucleation, growth and coalescence are Gurson-Tvergaard-Needleman (GTN) model (Tvergaard, V., 1981, 1982), void growth model (Rice, J.R and Tracey, D. Ai., 1969). However for Stress modified critical strain model (SMCS) (Kanvinde, A.M. and Deierlein, G.G., 2005) it is the phenomenological model for ductile fracture. As mentioned, GTN model will be used in this project, but the other two models will be discussed also, which are VGM model, based on research by Rice and Tracey (Rice, J.R and Tracey, D. Ai., 1969) and SMCS model, based on research by Hancock and Mackenzie (Hancock, J.W., et.al., 1977)

2.5.1 Ductile Fracture

Ductile fracture is one of the most common fracture mechanisms in metals, where ductile materials fail as a result of nucleation, growth and coalescence of micro voids. Figure 2.6 displays the whole ductile fracture process. The single steps are explained in the following subsections. Ductile crack initiation is affected by many processes including initial void distributions, anisotropy in the inclusion spacing and shape, void nucleation, evolution of void shapes, void-to-void interactions and the nucleation and growth of secondary voids near coalescence.

Figure 2.8: Ductile fracture process

Source: (Kanvinde, A.M. and Delerlein, G.G.2007)

2.5.1.1 Void Nucleation

Voids nucleate at inclusions or second phase particles when enough stress is applied. Then the interfacial connection between particle and matrix is broken. The nucleation of the void is often the critical step and fracture happens soon after that. However, for materials, where the voids nucleate easily, the fracture behaviour is controlled by void growth and void coalescence.

2.5.1.2 Void Growth

Void growth is caused by increasing plastic strain and hydrostatic stress after void nucleation. For instance, for the growth of penny-shaped voids, it started with plastic deformation, it opened and become a more rounded voids (Lassance, D. et.al. 2006). The flat voids is due to the partial decohesion of particle. At some point, strong interactions take place between neighboring voids leading to the localization of the plastic flow within the ligament, which involve the onset of the void coalescence process.

For a relative low initial void volume fraction f, the void growth goes off independently. But after f becomes larger than a certain critical value fc neighboring voids will interact. Plastic strain is concentrated along several voids and local necking starts. This and continuing void growth finally lead to connection of the voids what is equal to separation of material.

2.5.1.3 Void Coalescence

Void coalescence is the final stage in the failure mode of ductile materials. It consists in the localization of plastic deformation at the microscale inside the intervoid ligament between neighboring voids, with material off the localization plane usually undergoing elastic unloading (Lassance, D. et.al. 2006). Localization can occur at any orientation relative to the principal straining axis, depending on the orientation of the ligament between the two coalescing voids: tensile (i.e. normal separations) or shear localizations are possible.

The tensile void coalescence mechanism means a transition to a uniaxial straining mode of the representative volume element and it happen such that in micro scale. There are some terms that have to be specified, the 'void coalescence' is for the void enlargement evolution after the transition to the uniaxial straining mode and the 'void growth' is for void enlargement before localization. Also, "shear" coalescence is for low stress triaxiality, low strain biaxiality and low strain-hardening. "Void sheet" is for when a second, smaller population of voids intervenes, the coalescence mechanism.

The void coalescence mechanism is a localization mechanism at the scale of the void size that must thus be distinguished from the localization in a band at the microscopic scale with a width typically of the order of one or more void spacing (e.g. Tvergaard, 1981). The confusion can arise because of the fact that when such a microscopic localized band develops, coalescence usually follows soon after leading to fracture with a small additional increase in remote displacements. Inside the band, the cavities grow very rapidly due to the large microscopic strain rates. Void coalescence, in the sense defined here, follows the onset of the macroscopic plastic localization when one occurs. For practical purposes, microscopic localization can be regarded as the onset of fracture, even though the distinct micro mechanism of coalescence will develop somewhat later within the band.

Figure 2.9: Sequence of damage mechanisms starting with particle fracture, followed by a stable void growth stage from an initially very flat void geometry, void coalescence, and crack propagation; the sequence is related to the overall stress strain curve associated to a representative volume of material.

Source: Lassance, D. et.al. (2006)

Figure 2.10: Ductile fracture mechanism on void following authors.

2.6 CLASSIFICATION OF MICROMECHNICAL MODEL

All the micromechanical models mentioned may be classified in two large groups: uncoupled micromechanical models and coupled micromechanical models (Rakina, M. et.al, 2004) According to the uncoupled micromechanical damage models; the damage parameter is calculated in the post-processing phase of the finite element (FE) analysis. Here the VGM and SMCS model will be applied here. The Rice–Tracey void growth model will be evaluating damage parameter–void growth ratio R/R_0 .

Whereas, for the coupled micromechanical models, one or more parameters are calculated to predict ductile fracture initiation and GTN model will be applied here. Thus, the FE analysis must include procedure for calculation of these parameters and optionally, fracture initiation criterion. The most frequently used damage parameter is the void volume fraction. Applied micromechanical model was incorporated into the Patran for calculation using FEM.

2.6.1 Coupled Micromechanical Modeling

For the coupled micromechanical modeling, the damage parameter has been "inserted into" numerical procedure and is estimated in the FE post processing evaluation. As mention earlier, the void growth depends on two key quantities: the equivalent strain, ε_p and stress triaxality, T, where these two quantities influence cannot be avoided. The reason behind it is that coupled approach to the material damage and ductile fracture initiation considers alloy as a porous medium. that It allows us to predict the response of a material to certain micromechanical phenomena leading to failure, for instance void nucleation, coalescence and growth.

For GTN model, it was Gurson who found a mathematical function that partly describes part of the ductile material behaviour. He proposed a yield condition as a function of the void volume fraction f for a metal containing a dilute concentration of voids. In this condition the void volume fraction f is the ratio between the volume of voids V_{void} and the volume of the whole matrix V_{matrix} : Eq. (2.10)

$$f = \frac{V_{void}}{V_{matrix}}$$
(2.10)

In fact, the void volume fraction, f is introduced for plastic potential, as because the GTN model is based on the hypothesis that void nucleation and growth in metal may be macroscopically described by extending the Von Mises plasticity theory to cover the effect of porosity occurring in the material. Gurson's yield condition bases on the spherically symmetric deformation of a rigid-perfectly plastic body around a single spherical void and can be written in the following form, where q denotes the von-Mises effective stress, σ_y represents the yield stress and p is the hydrostatic stress in Eq. (2.11)

$$\phi = \left(\frac{q}{\sigma_y}\right) + 2f \cosh\left\{-\frac{3}{2}\frac{p}{\sigma_y}\right\} - \left(1 + f^2\right) = 0$$
(2.11)

Later on, Tvergaard (1981, 1982) modified the model by introducing two parameters, q_1 and q_2 , which are used to analyse the plastic behaviour of materials. Tvergaard found that the values that best fit the micromechanical cell model results correspond with $q_1 = 1.5$ and $q_2 = 1.0$, $q_3 = {q_1}^2 = 2.25$. In the original Gurson model, $q_1 = q_2 = q_3 = 1$. For the two adjusting parameters introduced by Koplik and Needleman (1988) proposed the values of $q_1 = 1.25$ and $q_2 = 1.0$. These values provide improved agreement between GT model and the finite-element results of a voided cell.

For simplicity it is as in Eq. (2.12):

$$\phi = \left(\frac{\sigma_{eq}}{\sigma_0}\right)^2 + 2q_1 f^* \cosh\left(-q_2 \frac{3\sigma_m}{2\sigma_0}\right) - \left(1 + q_3 f^{*2}\right) = 0$$
(2.12)

Where:

- φ- non-dilatational strain energy,
- $\sigma_{\scriptscriptstyle eq}$ -von Mises effective stress
- $\sigma_{\scriptscriptstyle 0}$ material strength resulting from the tensile strength curve (yield stress)
- σ_m -hydrostatic pressure (mean stress),

 f^* -actual void volume fraction,

 q_1 -Tvergaard coefficients describing the plastic properties of the material

However, this modified Gurson model just describes void growth; thus a simulation of void coalescence was still missing. In 1984, Needleman and Tvergaard defined Equation 2.3 in order to simulate void coalescence, where f in Equation 2.2 must be replaced by f^* . Furthermore in the following equation, f_c represents the critical void volume fraction and f_F is the void volume fraction of final failure as in Eq. (2.13):

$$f^{*} = \begin{cases} f \\ f_{c} + \frac{\bar{f}_{F} - f_{c}}{f_{F} - f_{c}} (f - f_{c}) \\ \bar{f}_{F} \end{cases} \begin{cases} f \leq f_{c} \\ f_{c} < f < f_{F} \\ f \geq f_{F} \end{cases}$$
(2.13)

Where: f_c - critical void volume fraction

 $f_{\rm F}$ -void volume fraction corresponding to the loss of material strength

$$\bar{f_F} = rac{q_1 + \sqrt{q_1^2 - q_3}}{q_3}$$

This function implies that after void coalescence has started ($f > f_c$), the void volume fraction is amplified. Before void coalescence ($f \le f_c$) the void growth and the decrease of load carrying capacity follows the modified Gurson model according to Equation 2.13. Two phenomena contribute to increase the void volume fraction in FEM calculation with incorporated GTN yield criterion: One is the growth of the existing voids and the other is the nucleation of new voids during the external loading as in Eq. (2.4):

$$\stackrel{*}{f} = f_{nucleation} + f_{growth} \quad \text{Where, } f_{nucleation} = A \stackrel{*}{\varepsilon}_{eq}{}^{p}, f_{growth} = (1 - f) \stackrel{*}{\varepsilon}_{ii}{}^{P}$$
 (2.14)

 ε_{ii}^{P} is the plastic part of the strain rate tensor. Nucleation of the secondary voids caused by strain increase has most frequently been tried to describe using two approaches.

2.6.2 Evolution of Gurson-Tvergaard-Needleman model

It is a known fact that the macroscopic parameter for ductile fracture, such as ductility and crack resistance curve cannot be directly transferred from one geometry to another. Thus, it can only be done by separating transferable parameters for ductile fracture from the parameters which describe geometry effect. As in most engineering alloys, ductile fracture often comes after the nucleation, growth and coalescence of micro voids. Hence, it is more reasonable to make contact ductile fracture to parameters that involve in micro-ductile fracture mechanisms rather than to macroscopic fracture parameters. The Gurson model is one of the widely used micromechanical models for ductile fracture. However, Gurson can only simulate the microvoid nucleation and growth and no ability to predict the void coalescence. This is due to Gurson only use homogenous deformation mode which is not sufficient. Hence, Tvergaard come out with the parameters, q_1 and q_2 to better capture the effects of the strain hardening and void shape evolution and finally extended by Needleman and Tvergaard (Needleman, A., Tvergaard, V., 1987).

Later this model is completed by two types of analytical void coalescence criteria, one for internal necking, Thomason (Thomason PF., 1990) and one for void sheet, McClintock (McClintock, F.A., 1968). Thomason proposed plastic limit load (Zhang, Z.L., 2000) where it says that localized deformation state of void coalescence is very different to the homogenous deformation state during void nucleation and growth. So the solution is, localized deformation and homogenous deformation should be considered together in ductile fracture modelling. So, a complete Gurson by Thomason can be obtained by neglecting the void shape effect and assume voids are always spherical. The extending of Gurson model by different authors and explanation is shown in Figure 2.11:

Figure 2.11: The authors and extending that involved in modifying

Gurson model.

2.6.3 Uncoupled micromechanical modelling

There will be two models discussed here, VGM and SMCS models. The VGM involves an explicit integration of the stress and strain histories, whereas the SMCS is a simpler approach that is based only on the instantaneous values of the stress-strain quantities at fracture initiation. In fact, growth of nucleated voids is strongly dependent on stress and strain state. Also, there are experiments and analyses show an exponential increase with the stress triaxiality, defined as the ratio of the mean stress σ_m and equivalent stress σ_{eq} . These describe the basis of uncoupled approach to the material damage in micromechanical analysis.

2.6.3.1 Void Growth model (VGM)

In that case Von Mises criterion is most frequently used as a yield criterion. Rice and Tracey considered growth of isolated void in remote uniform Von Mises plastic field. Using the Rice–Tracey model (Rice, J.R. and Tracey, D.Ai., 1969) and taking into account material hardening proposed by Beremin (Beremin, FM., 1981), critical void growth ratio $(R/R_0)_c$ can be written as in Eq. (2.5):

$$In\left(\frac{R}{R_0}\right)_c = \int_{\varepsilon=0}^{\varepsilon_c} 0.283 \exp\left(\frac{3\sigma_m}{2\sigma_{eq}}\right) d\varepsilon_{eq}^{P}$$
(2.15)

Where R stands for the actual mean void radius, R_0 is its initial value, σ_M / σ_{eq} represents stress state triaxiality, and $d\varepsilon_{eq}^{P}$ is the equivalent plastic strain increment.

Besides, Expanding on the derivations of Rice and Tracey (1969), fracture is predicted to occur in the material when a quantity termed the void growth index (VGI) is equal to a critical value; $VGI_{critical}$. This corresponds to the voids growing large enough to exceed a critical void size to trigger necking instabilities between voids resulting in coalescence and macro crack formation. Mathematically, void growth is evaluated by the following expression that forms that basis of the VGM in Eq. (2.16):

$$VGI = \int_{0}^{\varepsilon_{p}^{critical}} \exp\left(-1.5\frac{\sigma_{m}}{\sigma_{e}}\right) d\varepsilon_{p} > VGI_{critical}$$
(2.16)

Where σ_m and σ_e =mean and the effective stress; $d\varepsilon_p$ =incremental equivalent plastic strain; and $VGI_{critical}$ =material parameter that quantifies the critical void ratio. The critical void growth index $VGI_{criticsl}$ increases with material toughness and indicates a more ductile material. As described later, $VGI_{critical}$ is determined by calibration to notch bar material tests. Further details on the VGM are described by Rice and Tracey (1969) and Kanvinde and Deierlein (2005). The value of 1.5 used in the equation above is based on theoretical derivations by Rice and Tracey (1969).

2.6.3.2 Stress Modified Critical Strain Model (SMCS)

Whereas the VGM model explicitly integrates the triaxiality and plastic strain history, in many realistic situations, the triaxiality remains relatively constant during the loading history. As recognized by Hancock and Mackenzie (1977), this enables direct calculation of critical plastic strain as a function of triaxiality, where higher triaxiality leads to a lower critical plastic strain and vice versa. This assumption underlies the SMCS criterion, where the critical plastic strain is determined by the following Eq.(2.17):

$$\varepsilon_p^{critical} = \alpha \exp\left(-1.5\frac{\sigma_m}{\sigma_e}\right)$$
(2.17)

Where the toughness index α =material constant that is determined through material testing, similar to $V_{critical}$ in the VGM. The SMCS model is simpler to apply than VGM because it does not require integration of the plastic strain and triaxiality. Rather, it only requires an instantaneous check of plastic strain demand against $\varepsilon_p^{critical}$ which is a function of the corresponding triaxiality. SMCS is a simpler approach that is based only on the instantaneous values of the stress-strain quantities at fracture initiation. However, when triaxiality varies significantly during loading, the SMCS criterion may be less accurate than the VGM.

2.6.4 Criteria in developing ductile fracture prediction

Numbers criteria have been developed for ductile fracture prediction in metal plastic deformation. This is by creating diverse stress and strain states and fracture modes. In fact, the experimental and simulation shows the following. (i) A decrease of stress triaxiality leads to a reduction in the accuracy of DF prediction by the two DFC categories of DFCs, due to the interplay between the principal stress dominant fracture and the shear–stress dominant factor. (ii) For deformations with a higher - value, both categories of DFCs predict the fracture location reasonably well. For those with a lower or even negative g-value, the GTN provides relatively better predictions.

The applicability of the ductile fractures depends on the use of suitable damage evolution rules (void nucleation/growth/coalescence and shear band) and consideration of several influential factors, including pressure stress, stress triaxiality, the Lode parameter, and the equivalent plastic strain or shear stress. These parameters determine the deformation mode (shear dominant or maximum principal stress dominant deformation). For GTN, micromechanics-based criteria, the behavior of a voidcontaining solid is described by the pressure-sensitive plastic flow, and the damage value (the void volume fraction) is employed in the constitutive equation as imperfection and interacts with the other state variables.

In the uncoupled DFC category, damage accumulation is formulated empirically or semi-empirically. In terms of certain macroscopic variables such as the equivalent plastic strain, tensile stress and hydrostatic stress, that are most relevant to fracture initiation and propagation.Because ductility increases with an increase in hydrostatic stress. But most of the uncoupled criteria consider the effects of such stress. Despite its limitation in representing the deterioration of damaged materials, the uncoupled approach has been widely adopted due to its simple formulation and ease of calibration. In Gurson-like micromechanics-based criteria, the behavior of a void-containing solid is described by the pressure-sensitive plastic flow, and the damage value (the void volume fraction) is employed in the constitutive equation as imperfection and interacts with the other state variables. From the physical mechanism viewpoint, DF is seen as a macroscopic phenomenon that involves the initiation and growth of microvoids (cavities) and microcracks that are induced and stimulated by a large degree of PD.

2.6.5 Determination of Gurson parameters

Gurson model with the improvement by Tvergaard in 1981 is used to predict the damage of ductile fracture with total 8 parameters can be classified into two principal families:

- i. The constitutive parameters: q_1 and q_2 .
- ii. The material parameters, which are classified into two parts. Firstly, "the initial material and nucleation parameters", which are determined as the initial void volume fraction f₀ and void nucleation parameters f_n, ε_n and S_n. Secondly, "the critical and final failure parameters", the critical void volume fraction f_c and f_F.

In fact, a combination of numerical results and experimental data is necessary in order to determine some of the parameters. In order to describe the material ductile fracture, Tvergaard has suggested fixing the $q_1=1.5$ and $q_2=1.0$.

For the material parameters: $f_0, f_N, f_c, f_F, \varepsilon_N, S_N$ The values of the nucleation parameters f_N, ε_N, S_N are fixed. Whereas, Initial void volume fraction, f_0 and volume fraction of void nucleating particles f_F are evaluated by microscopically examination of the undamaged material which using the computational cell methodology, and the critical void volume fraction f_c is obtained by fitting the numerical calculations with experimental results. According to (Zhang et al., 2000), f_c is not a constant but decreases when the stress triaxiality ratio T increases. However, other authors note that f_c can be taken as a constant only for small f_0 values. However, (Steglich et al., 1998) confirm that the f_c value depends on stress triaxiality T: f_c decreases with the increase of T. According to (Koplik and Needleman., 1988) the f_c value, which signifies the onset of coalescence, seems tovary slowly with stress triaxiality ratio but depends strongly on the initial void volume fraction f_0 and is generally smaller than 0.15. Only for small f_0 , as a first approximation, can the value of fc be taken as a constant. Tvergaard and Needleman suggested that the value of fc can be taken as 0.15. For the failure void, (Zhang et al., 2000)have proposed an empirical expression for f_F and f_0 , which is written as a linear equation: $f_F = 0.15+2 \text{ x} f_0$. This signifies that f_F can be fixed to first approximation at 0.15 for low f_0 values. As shown in Table 2.2, this parameter can take values between 0.15and0.44.

2.6.5.1 Determination of f_0 and f_F using computational cells

The computational cell methodology proposed by Xia and Shih provides a model for ductile crack growth that includes a realistic void growth mechanism, and a microstructural length-scale physically coupled to the size of the fracture process zone. As shown in Fig. 2.12(a). The diagram depicts a crack growing under Mode I conditions an idealize material which contains populations of large and small inclusions. The larger inclusions (e.g. MnS) provide sites for the formation of microstructural voids which grow, then coalesce with the current crack tip to create new crack surfaces. In the ductile growth process, the smaller inclusions (e.g. carbides) provide initiation sites for sharp micro cracks which may accelerate the final stages of coalescence. (Arne S. Gullerud. et at, 2000)

Most metals which fail by void growth and coalescence display a macroscopically planar process zone for fracture having a thickness of 1-2x the spacing of larger inclusions. This observation led X&S to idealize ductile fracture by limiting void growth and coalescence to a material thickness D ahead of the crack, where D is associated with the mean spacing of the layer, void initiating inclusions. Figure (b) illustrates this computational model. Each cell of dimensions (D x D) in this layer contains a 'smeared' cavity of initial volume fraction. This simplification implies that voids nucleate from inclusions of relative size f_0 immediately upon loading. Then in order to model the progressive damage macroscopic softening in cells, the computational cell methodology utilizes the Gurson- Tvergaard (GT) for dilatant plasticity. The GT constitutive model does not predict a realistic loss of macroscopic stress in a cell at large void fraction. When f in the cell incident on the current crack

front reaches a specified critical value, f_F the computational procedures remove the cell thereby advancing the crack front in discrete increments of the cell size. Fig. 2.12(c) shows a typical, finite element representation of the computational cell model in a plane normal to the advancing crack front. The model has a single element per cell, where symmetry about the crack plane requires elements of size D/2.

Figure 2.12: Modelling of ductile crack growth using computational cells. (a) Schmetic representation of a ductile crack extending through a material containing populations of large and small inclusions. (b) Computational cell model of ductile crack extension. (c) Finite element representation of computational cell model.

Source: (Arne S. Gullerud. et at, 2000)

Alternatively, metallurgical surveys of inclusion volume fractions and sizes may be used with various packing arrangements (e.g. nearest neighbor distance) to estimate D and/or f_0 . Once determined in this manner, D and f_0 become ``material" parameters and remain fixed in analyses of all other specimen geometries for the same material. The calibration process typically requires a number of analyses with different f_0 values, thus the use of full 3D models for the entire calibration process becomes computationally expensive. To reduce the computational cost, preliminary plane strain analyses provide a good initial estimate for f_0 : The final f_0 value calibrated using 3D analyses generally has a lower value than obtained with plane strain analyses.

2.6.5.2 Determination of Gurson model parameters for present study

For the API X65 steel, the authors have already calibrated parameters for GTN model. Chang, K.O., 2007. Three parameters which are $\varepsilon_N = 0.3$, $S_N = 0.1$ and $f_N = 0.0008$ were fixed to typical values. The parameter f_0 was determined from Frankiln's formula (based on the assumption of a spherical inclusion) Chang, K.O., 2007, which leads to $f_0 = 0.000125$ for the API X65 steel. Resulting values of f_c and f_f were determined by calibrating smooth and notched tensile bar test results with simulated results using GTN model. The summary of the GTN parameters are shown in Table 2.2

GTN Parameters for API X65 steel	Symbols	value
First void volume multiplier	q_1	1.5
Second void volume multiplier	q_2	1.0
Initial void volume fracture	f_0	0.000125
Volume fraction of void nucleating particles	$f_{\scriptscriptstyle N}$	0.0008
Mean strain for nucleation	${\cal E}_N$	0.3
Standard deviation	S_{N}	0.1
Critical void volume fraction	f_{c}	0.015
Failure void volume	f_{f}	0.25

 Table 2.2: GTN parameters for API X65 steel

Group	Ref.	q_1	f_0	f_c	f_F	K	f_N	\mathcal{E}_N	S_N	Material	$\sigma_y(MPa)$	Specimen
Steel	Bauvineau L. et al, (1996)	1.5	0.002	0.004	-	2.3	-	-	-	C-Mn steel (at $300^{\circ}C$)	-	SENT25 CT22.5
	Decamp K. et al, 1997	1.5	0.0023	0.004	-	3	-	-	-	C-Mn steel (at $300^{\circ}C$)	190	AE2,4 and 10
	(N.Benseddiq, A. Imad., 2008)	1.25	0.00033	0.026	0.15	6.24	0.006	0.3	0.1	CMn steel	360	-
	Bauvineau L. et al, (1996)	1.5	0.001	0.01	0.15	-	0.01	0.3	0.1	Steel stE 690	690	-
	Chang- KyunOha., et al	1.5	0.00015	0.00074	0.18	-	-			API X70	-	-
	Chang- KyunOha .et al.(2007)	1.5	0.000125	0.015	0.25	-	0.0008	0.3	0.1	APIX65	464.5	-
	Chang- KyunOha., et al	1.5	0.008	0.0	0.2					API X60	-	-
	(N.Benseddiq, A. Imad., 2008)	1.47	0.00016	0.0005	-	2.8	-	-	-	A508 C13 A	471	AE2
	(N.Benseddiq, A. Imad., 2008)	1.47	0.0001	0.0003	-	4.3	-	-	-	A508 C13 B	470	AE2
	(N.Benseddiq, A. Imad., 2008)	1.5	0.0015	0.035	0.15	5.49	0.00085	0.3	0.1	E690	779	AE2 SENB (B=25)
		1.5	0.0025	0.021	-	3.4	0.02	0.3	0.1	E460 steel	-	-
	(N.Benseddiq,	1.25	0.005	-	0.2	-	0.001	0.04	0.01	A533B	-	-

 Table 2.3: GTN model parameter values from the literature

	A. Imad., 2008)											
	(N.Benseddiq, A. Imad., 2008)	1.5	0	0.06	0.212	4	0.002	0.3	0.1	steel	440	
	(N.Benseddiq, A. Imad., 2008)	1.5	0	0.04	0.197	4	0.002	0.3	0.1		620	SEN B
	(N.Benseddiq, A. Imad., 2008)	1.5	0	0.03	0.189	4	0.002	0.3	0.1		320	
	P.F.Liu. et al	1.5	1E-8	0.15	0.25	-	0.04	0.3	0.1	34CrMo4	755	-
Aluminium	Cheng Jin et.al	1.5	-	0.043	0.045	-	0.03	0.3	0.01	AL-6061 (T6)	-	-
	Cheng Jin et.al	1.5	0.0001	0.016	0.05	-	0.006	0.007	0.023	5A06 AI alloy (BM)	-	-
	Majid Anvari.et al (2007)	1.5	0.002	0.6	-	2	-	-	-	AA6060- T6		
	Cheng Jin et.al	1.5	0.0003	0.015	0.05	-	0.012	0.009	0.025	5A06 AI alloy (WM)	-	-
	Cheng Jin et.al	1.5	0.0005	0.011	0.05	-	0.03	0.0021	0.01	5A06 AI alloy (HAZ)	-	-
	He R. et al (1998)	1.5	0	0.02	0.34	2	0.04	0.5	2	AI-AI3Ti	54.7	
Composite	He R. et al (1998)	1.5	0.08	0.15	0.28	4	0	0	0	Composite	-	-
Cast Iron	(N.Benseddiq, A. Imad., 2008)	1.5	0.077	0.12	0.2	6.8	-	-	-	GGG40	230	CT25 AE4
	(N.Benseddiq, A. Imad., 2008)	1.1	0.114	0.3	0.44	4.35	-	-	-	GGG40	-	-
Coppper	(N.Benseddiq, A. Imad.,2008)	1.47	0.002	0.028	-	-	-	-	-	Cu	312	AEI 2 4 8

It is to note that the GTN parameters that input in FE analysis for this research is from Chang-KyunOha .et al.2007. Where parameter set 1 is preferred.

The conventional elastic-plastic mechanics cannot predict the crack initiation because of two reasons: The incompressibility of volume and the independence of plastic deformation on the hydrostatic pressure are invalid during the softening stage of materials. Hence, the understanding on the ductile fracture is important.

2.7 COMPARISON BETWEEN THREE PROPOSED MODELS

Kanvinde and Deierlein (2005) compares both VGM and SMCS models in predicting the ductile failure of structural steels. The results from Kanvinde and Deierlein conclude that both models can be applied accurately to the entire spectrum of structural steels in predicting ductile failure. However, the VGM requires tedious mathematical technique where the stress triaxiality and plastic strain history need to explicitly integrated. Mackenzie and Hancock (1977) first developed the SMCS and reported that the model is a direct approach since the critical plastic strain as a function of stress triaxiality can be directly calculated. Due to its simplicity and accuracy, SMCS model is preferred to predict the ductile failure of the materials.

For GTN model, tests conducted for structural steel and other alloys confirm that the Gurson-Tvergaard-Needleman (GTN) model offers a higher concordance of the theoretical results (numerical analysis) with the experimental data than the classical models and criterions. In fact, Gurson model is the best candidates chosen in micromechanical model analysis due to the facts as below:

- i. Because it involves the modeling of void nucleation, growth and coalescence for the analysis and prediction of ductile fracture initiation of alloys.
- ii. Applicable to the actual phenomena of material as a large number of models have been developed.
- iii. Transferability of model parameters to different geometries.

Model		GTN	VGM	SMCS
Similarities		All these criteria's stresses to predict mechanisms of coalescence.	s integrate plastic s crack initiation a void initiation	strains and triaxial ssociated with the n, growth and
Differences	Types of micromechanical modelling	Coupled	Uncoupled	Uncoupled
	Damage parameter	It is "built into" numerical procedure	It is already exist in the numerical procedure	It is already exist in the numerical procedure
	Integration of plastic strain and triaxiality		The triaxialityand plastic strain history have to explicitly integrate.	SMCS is simpler to apply than VGM because it does not require integration of the plastic strain and triaxiality
	Consistency of triaxiality		The triaxiality remains relatively constant during the loading history. this enables direct calculation of critical plastic strain as a function of triaxiality, where higher triaxiality leads to a lower critical plastic strain and vice versa.	When triaxiality varies significantly during loading, the SMCS criterion may be less accurate than the VGM.
	Parameters in FE analysis	Procedureforcalculationofparametersmustincludeinanalysisterm	The parameters is c processing phase of	alculated in post- f the FE analysis
	Damage parameters used	Critical void volume fraction, f_c	Critical void growth ratio, $\left(\frac{R}{R_0}\right)_c$	Fracture strain, \mathcal{E}_f

 Table 2.4 The differences and similarities between GTN, VGM and SMCS.

2.8 EXPERIMENTAL INVESTIGATION

2.8.1 Tensile Test

Tensile testing is one of the most common ways of measuring material strength. It involves the linear stretching of a material until failure or some critical value is achieved. Tensile testing can be performed on most types of materials and gives information about yield strength, ultimate tensile strength, modulus of elasticity (stiffness), elongation, and other important properties.

Basically, in the tensile test, a mono-axial stress is generated in a steel sample. This stress is induced via external loading of the sample in a longitudinal direction via a tensile force. There is then an even distribution of direct stress in the test cross-section of the sample. In order to determine the strength of the material, loading of the sample is slowly and continuously increased until its fails.

Figure 2.13: Specimen after tensile test and the graph of force with elongation of the specimen.

Source: Stress strain curves (Roylance, D.2001)

The maximum test force occurring is a measurement of the strength of the material. The so- called tensile strength, σ calculated from the maximum test force, F and the initial cross-section, A of the sample:

Example of experiments on the material stress strain relation are, including tensile stress-strain tests, notched round specimens, ASTM fracture tests, Charpy V-notch CVN impact tests, ASTM grain-size analyses, and spectrochemical analysis of chemical composition.

2.8.1.1 Stress-strain Diagram

The stress strain diagram characterizes the behavior of the material tested. It is most often plotted using engineering stress and strain measures, because the reference length and cross-sectional area are easily measured. Stress-strain curves generated from tensile test results help engineers gain insight into the constitutive relationship between stress and strain for a particular material. It provides quantitative information such as the elastic region, yielding, strain hardening, necking and failure. All these are shown in figure 2.11 below:

Figure 2.15: Full engineering stress strain curve. Source: Stress strain curves (Roylance, D.2001)

Test pipe were prepared and both ends were capped by circumferential welding. The pipes were pressurized by water and burst pressures were experimentally determined at the point when the ligament failed.

2.8.2.1 Full Scale Burst Tests of real and Artificial Corrosion Defects

Both full scales burst tests of real and artificial corrosion defects are normally orientated longitudinal and subject to internal pressure. Artificial defect are normally machined pits, grooves and patches, blunt, flat-bottomed defects with a uniform profile. Whereas for real corrosion defects, it has an irregular profile. The profile of a corroded area must be considered if an accurate prediction of the burst pressure is desired.

The AGA/PRCI Database of Corroded Pipe Tests (Vieth, PH. And Kiefner, JF.1994, 1995) is the most comprehensive source of publicly available burst tests of real and simulated corrosion in line pipe material. In fact, it has identified more than 300 tests on real and artificial corrosion defects, and has come out with the following information:

- i. The longitudinal extent of a corroded area is the most important length parameter for the burst strength under internal pressure loading. The circumferential extent has a small influence on the burst strength, but the effect is sufficiently small to not need considering. However, the circumferential extent must be considered if external axial and/or bending loads are present.
- ii. External loads reduce the burst pressure compared to the case of an end-capped pressure vessel (axial stress equal to half the hoop stress). The effect of tensile external loads is generally small, whilst compressive loads can cause a significant reduction in the burst pressure.
- iii. No difference between the behaviour of internal and external corrosion has been noted in full scale tests or finite element analyses (but noting that pipelines are thin-walled geometries).

- iv. Short defects (typically less than 3t in length) of any depth record high burst pressures, typically above the pressure required to yield the uncorroded pipe.
- v. In modern, tough, line pipe steel the flow stress for smooth corrosion defects is the ultimate tensile strength of the material.

2.9 STRESS BASED FAILURE CRITERIA (CLOSED FORM METHOD)

The corrosion assessment codes is used to estimate the burst pressure of corroded pipeline. The selection of these assessment codes is concerned either with the longitudinal extent of the corroded area or circumferentially orientated. There are several methods for design codes method and also the other methods. For the purpose of this project, where it concerned about the longitudinal orientated and internal pressure, commercial codes, such as ASME B31G, Modified B31G, DNV RP-F-101 and PCORRC will be discussed in the preceding sections. Besides, all of these codes mentioned use assessment of non-interacting defects, except the DNV-RP- F101. Figure 2.17 below shows the methods for corrosion assessment.

Figure 2.17: Methods for corrosion assessment including codified and other methods.

2.9.1 ASME B31G

The ASME B31G methodology is used for the determination of the remaining strength of externally corroded pipe subjected to internal pressure loading. It is used to modelize defects by their depth d and by their length L in the longitudinal direction. The defect width w is not considered explicitly in the calculation.

The capacity of pressurized intact pipeline can be calculated by Barlow equation. The assumption is based on allowable maximum hoop stress as in Eq. (2.19).

$$P_{b,\text{intact}} = \frac{2t}{D-t}\sigma_u \tag{2.19}$$

The ASME B31G criterion is developed based on full scale tests of pressured to failure corroded pipes. It allows determination of the remaining strength of the corroded pipes and estimating of the maximum allowable operating pressure (MAOP). However, the B31G criterion contains some simplifications. Another shortage, is the possibility of only proving the pipe integrity under internal pressure, other stresses are not taken into account. There is also restriction in assessable defects, namely the corroded area depth cannot be greater than 80% of the wall thickness and not less.

This method is based on the measurement of the longitudinal extent of the corroded area as shown in Figure 2.18. It considers the depth and longitudinal extent of corrosion, but ignores its circumferential extent.

Figure 2.18: Longitudinal extent of the corrosion area

The corroded area is approximated depending on the defect length as parabolic or rectangular shape. Short longitudinal extent of corrosion areas are approximated by the parabolic shape and long longitudinal extent of corrosion areas are approximated by the rectangular shape, as shown in Figure 2.19 and Figure 2.20, respectively.

$$L \begin{cases} \leq \sqrt{20Dt} \Rightarrow A_c = \frac{2}{3} dL \\ > \sqrt{20Dt} \Rightarrow A_c = dL \end{cases}$$
(2.20)

Figure 2.19: Assumed parabolic corroded area for relatively short corrosion defect

The predicted failure pressure can be estimated by Equation 2.21 and Equation 2.22 for short and long defect, respectively. However, the maximum allowable operating pressure (MAOP) can be limited to a multiple of the estimated failure pressure by the design factor, as in Eq.(2.21), Eq.(2.22) and Eq.(2.23).

$$P_{f} = SMYS \frac{2t}{D} \left(\frac{1 - \frac{2}{3} \frac{d}{t}}{1 - \frac{1}{M} \frac{2}{3} \frac{d}{t}} \right)$$
(2.21)

$$P_f = SMYS \frac{2t}{D} \left(1 - \frac{d}{t} \right)$$
(2.22)

$$M = \sqrt{1 + 0.8 \frac{L^2}{Dt}}$$
(2.23)

Figure 2.20: Assumed rectangular corroded area for longer corrosion defect

2.9.2 Modified B31G Criterion (0.85dL Area Method)

The B31G method was found to be too conservative and has been modified, the new method is called Modified B31G or 0.85-area Method. One of the most significant changes to the original B31G method is the defect geometry approximation. Corrosion area is defined by 0.85dL as illustrated in Figure 2.21.

Figure 2.21: Assumed Ac =0.85dL method for corrosion defect

This method removes some conservation by changing the flow stress limit to SMYS+ 69MPa (10ksi), This is very close to the conventional fracture mechanism definition of the flow stress: the average of the yield and ultimate strength. This modification results in the change of the failure equation, which is also dependent on the limit on defect length. The equation to calculate the failure pressure is modified as in Eq.(2.24).

$$P_{f} = \left(SMYS + 69.1MPa\right) \frac{2t}{D} \left(\frac{1 - 0.85\frac{d}{t}}{1 - 0.85\frac{1}{M}\frac{d}{t}}\right)$$
(2.24)

For, $L \le \sqrt{50Dt}$ the Folias factor is given by:

$$M = \sqrt{1 + 0.6257 \frac{L^2}{Dt} - 0.003375 \left(\frac{L^2}{Dt}\right)^2}$$
(2.25)

But if $L > \sqrt{50Dt}$,

$$M = 3.3 + 0.032 \frac{L^2}{Dt}$$
(2.26)

2.9.3 DNV RP-F-101 Criterion

The DNV provides guidance on single and interacting defects under pressure only and combined loading. The RP-F101 provides two methods of analysis: a partial safety factor method and an allowable stress design method. The allowable corroded pipe pressure of a single metal loss defect subjected to internal pressure loading is given by the following acceptance Eq. (2.27).

$$P_{f} = \gamma_{m} SMTS \frac{2t}{D-t} \left(\frac{1 - \gamma_{d} \left(\frac{d}{t} \right)^{*}}{1 - \gamma_{d} \left(\frac{1}{Q} \left(\frac{d}{t} \right)^{*} \right)} \right)$$
(2.27)

Where the relative corrosion depth and the factor Q are given as in Eq.(2.28) and Eq.(2.29):

$$\left(\frac{d}{t}\right)^* = \left(\frac{d}{t}\right)_{mean} + \varepsilon_d St D\left(\frac{d}{t}\right)$$
(2.28)

$$Q = \sqrt{1 + 0.31 \left(\frac{L}{\sqrt{Dt}}\right)^2}$$
(2.29)

In the allowable stress design approach, the failure pressure of the pipe is calculated and multiplied by safety factors. These factors may be based on design factor and can consider uncertainties such as presented The above. uncertainties caused by the presence of a corrosion defect, can be described by the additional 0.9 factor. This is a commonly used approach because of its simplicity as shown in Eq.(2.30).

$$P_{f} = 0.9FSMYS \frac{2t}{D-t} \left(\frac{1 - \frac{d}{t}}{1 - \frac{1}{Q} \frac{d}{t}} \right)$$
(2.30)

2.9.4 PCORRC Criterion

The PCORRC, defined as in Eq.(2.31):

$$P_{b} = \sigma_{O} \frac{2t}{D} \left(1 - \frac{d}{t} \left(1 - e^{-c \frac{L}{\sqrt{\frac{D}{2}(t-d)}}} \right) \right)$$
(2.31)

On comparison with experimental test result, estimation of PCORRC equation proved to be conservative and the closest when using 95% of UTS of tensile test, σ_u . The C value varies from 0.142 to 0.224 with the change of pit depth. However for conservative prediction of damaged pipe, we can choose maximum value of 0.224 as curve fit constant and the above equation is rewritten as in Eq.(2.32).

$$P_{b} = 0.95\sigma_{a,test} \frac{2t}{D} \left(1 - \frac{d}{t} \left(1 - e^{-0.224 \frac{L}{\sqrt{\frac{D}{2}(t-d)}}} \right) \right)$$
(2.32)

2.10 COMPARISION AMONGEXPERIMENTAL METHOD, STRAIN AND STRESS BASEDMICROMECHNICAL MODEL.

These three methods are important to make comparisons so as to determine the accuracy and relationship between each other. The experimental results will not be assured until the validation from the design codes and the results analysis from the finite element analysis. Figure 2.22 below show the comparison between the three methods.

Figure 2.22: Comparison among experimental method, strain based and stress based micromechanical method

Methods	Strain based failure criteria (H	FE method)	Stress based failure	Experimental (Pipe		
	Coupled modeling	Uncoupled modeling	criteria (Design codes)	burst test)		
Advantages	1. Transferability of model parameters to different actual	1. Less parameter.	1. The fastest way to determine load capacity of a structure.	1. It is the most accurate method as it is based on the		
	geometries/ structures.	2. Ductile fracture parameters are contact to		actual testing experiment.		
	2. Ductile fracture parameters are contact to the micro-ductile	macroscopic fracture.				
	fracture mechanism which involves void nucleation, growth	3. Easy to determine the variable loading conditions				
	and coalescence which are more details.	with sensitivity analysis in order to cope with possible failure occur.				
	3. Easy to determine the variable					
	loading conditions with sensitivity analysis in order to cope with possible failure occur.	4. Induce innovative and efficient geometry design and development of accurate design methods				
	4. One of the popular methods used in micromechanical model in literatures.	accurate design memous.				

	5. It is reliable on numerical tool which is the FEM where the models are easily refined or improve accuracy by varying element size and type.			
Limitations	1. Relate to lots of parameters and determinations of these parameters are not easy, and often not robust.	1. Robust parameter determination is a common problem in FE simulations.	 The failure assessments may be overly conservative and limited since they are dependent on material properties, pipelines geometry and defect geometry. Any changes in either of these properties will require the development of a large test set in order to update the empirical solutions. Analytical solutions to engineering problems are possible if the geometry, loading and boundary conditions are simple. 	 Difficult to perform tests reflecting complex geometries and variation in dependent loading conditions. Expensive and time- consuming

CHAPTER 3

METHODOLOGY

3.1 INTRODUCTION

Methodology is a set of methods and steps to how on how to conduct research. Methodology is important as it is a guideline in obtaining the result based on the objective and it is usually represented in flow chartwhich helps the viewer to visualize what is going on the project and keep the research experiment on the right track. The terminology of work planning for this research was shown in the flow chart Figure 3.1.

Figure 3.1: Overall Flowchart Research
The complete procedure to analyse the corrosion defect geometry in steel pipeline is shown in Figure 3.2 below. It consists of modelling design until analysis of the result.

Figure 3.2: Procedure in Patran Analysis

3.2 DETERMINATION OF EXPERIMENTAL DATA AND MATERIAL

3.2.1 Determination of Material properties

To determine mechanical properties, tensile and Charpy tests were performed using specimens extracted from a pipe of outer diameter Do = 762 mm and wall thickness t = 17.5 mm (in the longitudinal direction), made of the American Petroleum Institute (API) 5L X65 steel. It is in smooth and notches test specimens. A schematic diagram for tensile specimen used in this present work is illustrated in Fig.1. The tensile properties of the present API X65 steel as summarized in Tables 3.1.

Table 3.1: Mechanical tensile properties at room temperature of the API X65 steel,

 used in the present work

Young's	Modulus	Poisson's ratio, v	Yield strength σ_y	Tensile strength
E (GPa)			(MPa)	σ_{u} (MPa)
210.7		0.3	464.5	563.8

Source: Chang-Kyun Oh et.al. (2007)

Figure 3.3: Tensile specimen

Figure 3.4: True stress-strain data for AP1 5L X65 steel at room temperature.

Source: Chang-Kyun Oh et.al. (2007)

Engineering stress strain data was then converted to true stress strain data as plotted in Fig.3.4 These true stress-strain data will be input into the materials properties in Marc. The data can be obtained from the scanned graphs into data by using Engauge software. This will give an accurate data for the analysis. Table 3.2 below show the dimensions for the pipe design.

Specifications	Dimensions (mm)		
Outer diameter, OD	762		
Defect depth, d	4.375, 8.75, 13.125		
Defect width, c	50		
Defect length, l	200		
Pipe thickness, t	17.5		
Ratio of d/t	0.25		
Pipe length	2300		
A quarter of pipe length, $L/2$	1150		
Defect length, I/2	100		
Defect width, c/2	25		

Table 3.2: Dimensions for the pipe design.

3.2.2 Determination of Experimental data

The experimental results are based on the journal Chang-Kyun Oh et.al. (2007). There are two part of failure analysis. First is the pipe defect with rectangular shape and the second is with gouge. Test pipes were prepared from API 5L X65 pipelines. A pipeline of total length 12m was cut into pieces with 2.3m length each. The geometrical configuration of the pipe tested for both parts shown in figure 3.5 and Figure respectively. The pipes were pressurized by water and burst pressures were experimentally determined at the point where ligament failed. The defect area show a significant amount of thickness reduction as it is due to the local necking prior to final failure. The experimental data for rectangular defect are shown in Table 3.3 and with gouges in Table 3.4. The criterion is in terms of true strain as a function of the stress triaxiality and equivalent strain, and has been determined from results of smooth and notched round bar tests.

Figure 3.5: Pipe with simulated corrosion defect.

Source: Chang-Kyun Oh et.al. (2007)

Table 3.3: Defect design dimension and experiment data for rectangular defect.

Pipe no	OD mm	L mm	t mm	length l (mm)	width c (mm)	depth d (mm)	d/t	P _{exp} (Mpa)
A1	762	2300	17.5	200	50	4.375	0.25	24.11
A2				200	50	8.75	0.5	21.76
A3				200	50	13.125	0.75	17.15

Figure 3.6: Pipe with gouge defect design.

Source: Chang-Kyun Oh et.al. (2007)

Pipe no	d/t	length l (mm)	P exp (MPa)
MNA	0.5	100	24.68
MNB	0.5	200	22.48
MNC	0.5	300	17.7
MND	0.5	400	18.14
MNE	0.5	600	16.57

 Table 3.4: Dimensions and experiment data for gouge defect.

Figure 3.7: 2 Dimensional of the pipe

3.3 Finite Element Analysis 3.3.1 FE Modelling

In the present study, the FE analysis is conducted using MSC.PATRAN 2008r1 as the pre- and post-processor while utilizing MSC.MARC 2008r1 as the solver. Three dimensional elastic-plastic damage analyses were performed to stimulate the pipe burst tests. A quarter of a full pipe was modeled due to simplify and reduce computation time. During designing of the model, defect with 4 edges is preferred compared to 3 edges and sharp edges should be avoided. The FE mesh is shown in Figure 3.8.

Figure 3.8: FE model of meshing for a quarter of pipe model using MSC.PATRAN. Number 0 denoted the tip of defect and number 4 is the end of defect for normalized distance analysis.

Then boundary conditions are applied to the each edges surface of the pipe model to define symmetrical deformations for the sides of the model. For the meshing, the mesh is created based on mesh seeds at the edge of each of the sides of the model. The numbers of mesh seeds used are given in Table 3.6.

Direction	Method	Number of elements
Defect thickness	uniform	10

uniform

Defect length

Table 3.6: Number of elements for mesh seeds for FE model.

30

Circumferential	One way bias	50, 10
Pipe length	One way bias	50, 10

3.3.2 Load Case, Boundary Conditions and Loads

In the present FE model, the load case is set to be time-dependant. The boundary conditions are defined at every side of the pipe surface along x-axis and y-axis to define symmetrical deformation of the nodes as if it is a full model pipe. Then the pressure is applied to the inner surface of the pipe. The displacement boundary conditions applied are shown in Figure 3.9 and summarized in Table 3.7

Figure 3.9: Boundary conditions applied on the pipe model.

Applied surface	Boundary Condition	Description	
All surface along X-axis	X-symmetry: constrain translational motion in X- direction and rotational	To define symmetrical deformation of pipe in Y- direction on X-axis	
	motions about Y-axis and Z-axis.		
All surface along Z-axis	Z-symmetry: constrain	To define symmetrical	
at defect side	translational motion in Z- direction and rotational motions about X-axis and Y-axis.	deformation of pipe in X- direction on Z-axis.	
All surface along Z-axis	Fixed at all translation and	To fix the deformation at	
at end of pipe	rotation motions	all directions.	

Table 3.7: Boundary conditions applied on the pipe model.

3.4 VALIDATION USING CLOSED CALCULATIONS AND SMCS

3.4.1 Closed form calculations

There are numerous design codes available in practice for prediction of failure pressure of defective pipe due to corrosion. Examples of the codes are American Society of Mechanical Engineer (ASME) B31G, modified ASME B31G and PCORRC. According to ASME B31G, the failure of corroded pipeline is controlled by the defect size as well as the flow stress of the material. The input parameter including outer diameter of the pipe, D, wall thickness, t, yield strength of the material, σ_y or ultimate tensile strength, σ_u , the length of the defect, L and defect depth, d.

All three codes use the stress based failure criterion to predict the burst pressure. This leads to conservative results because stress based failure criterion rely on flow stress only. Another method is using strain based failure criteria which can be grouped into micro-mechanical models. In fact, micro-mechanical model for ductile fracture, incorporating void nucleation, growth and coalescence are the Gurson–Tvergaard–Needleman (GTN) model, void growth model (VGM), continuum damage model (CDM) model and SMCS model . However, a few issues need to be resolved in using these models. For example, GTN models consist of relatively high number of parameters compare to SMCS and VGM models. These GTN parameters are difficult to identify and calibrate which requires a large number of FE and experimental work.

3.4.2 Stress Modified Critical Strain

SMCS is adopted in the validation as this model is a direct approach since the critical plastic strain as a function of stress triaxiality and equivalent strain can be directly calculated. There are two parameters used from SMCS in validating the present work, which are the stress triaxiality, T and equivalent strain, ε_{eq} . SMCS is evaluated by Eq.() and Eq (), where the stress triaxiality, T is defined by ratio of hydrostatic stress, σ_m and equivalent stress, σ_{eq} given by as in Eq.(3.1), Eq.(3.2) and Eq.(3.3):

$$T = \frac{\sigma_m}{\sigma_e} = \frac{\sigma_1 + \sigma_2 + \sigma_3}{3\sigma_e}$$
(3.1)

$$\sigma_{e} = \frac{1}{\sqrt{2}} \left[(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{3} - \sigma_{1})^{2} + (\sigma_{2} - \sigma_{3})^{2} \right]^{\frac{1}{2}}$$
(3.2)

$$\varepsilon_{eq} = \frac{\sqrt{2}}{3} [(\varepsilon_1 - \varepsilon_2)^2 + (\varepsilon_3 - \varepsilon_1)^2 + (\varepsilon_2 - \varepsilon_3)^2]^{\frac{1}{2}}$$
(3.3)

Where the $\sigma_1, \sigma_2, \sigma_3$ and $\varepsilon_1, \varepsilon_2, \varepsilon_3$ are the principle stresses and principle strain respectively.

CHAPTER 4

RESULTS AND ANALYSIS

4.1 FINITE ELEMENT ANALYSIS RESULTS

The applicability of the ductile fracture depends on the use of suitable damage evolution rules. In this present study, the burst pressure is predicted with according to the critical void volume fraction f_c where f_c =0.015 for the API X65 steel. From the finite element analysis results, the burst pressure is calculated with the increment of time step and predicted from the void volume fraction where $f > f_c$. Figure 4.1 and 4.2 show an example of pipe defect profile in FE analysis results with void volume fraction profile represented by contour makers. The node with the critical void volume fraction is being analyzed. The void volume fraction profiles for three different defect depths are plotted in Figure 4.3.

Figure 4.1: Void volume fraction contour profile for the pipe.

Figure 4.2: A typical finite element mesh for pipe with gouges and the contour markers showing void volume fraction profile at the final time step 1s. The critical void happens at the tip of the defect.

Figure 4.3: Comparison between the void volume fractions for different defect depth on the pressure increment.

Figure 4.3 showed the increment of void volume fraction for three different depths. The burst pressure is predicted at $f > f_c$ which is 0.016 > 0.015 for A1, for

defect depth 0.5%, the burst pressure is predicted at 27.6MPa, (0.02 > 0.015), whereas for depth 0.75%, it is at 26.4MPa (0.029 > 0.015). For all cases, the coalescence process started to occur at the pressure between 26 to 29MPa before it continue to reach fracture. Also, the value of void volume fraction increase with decreasing depth. This also showed in Table 4.1.

Pipe	Defect depth, d (%)	Value of $f(f > f_c)$ with $f_c = 0.015$
A1	0.25	0.016
A2	0.5	0.02
A3	0.75	0.029

Table 4.1: Value of f reached for different depths, d.

4.2 RESULTS COMPARISION AND ANALYSIS

4.2.1 Application to failure predictions of corroded API X65 pipes

The predicted burst pressure from FEA is compared with the experimental results from the journal for API X65. Also, the available codes for pipeline defect assessment are used to compare and validate the results as shown in Table 4.2.

Table 4.2: Burst pressure predicted for FEA and design codes for different depths.

Pipe no	depth d (mm)	d/t	$P_{\rm exp}$	P_{fem}	Predicted failure pressure (Mpa)		pressure
			(Mpa)	(Mpa)	ASME	Modified	PCORRC
					B31G	ASME	
						B31G	
A1	4.375	0.25	24.11	28.8	19.55	22.08	21.72
A2	8.75	0.5	21.76	27.6	17.36	18.84	17.96
A3	13.125	0.75	17.15	26.4	14.64	14.28	12.31

4.2.1.1 Comparisons

The burst pressure results from FE was initially compared to the SMCS, however, an issue occur where even the void volume fraction has reached the f_c , the strains equivalent did not reach the critical values. Thus, the present approach suggests that failure of the present API X65 pipes with simulated corrosion is governed by global plastic instability, possibly due to sufficiently high ductility of the material.

Although the present approach suggests that failure is governed by global plastic instability, thus these experimental data are not appropriate to validate with SMCS, but the maximum loads predicted by FE analysis could compare with experimental results. Overall the predicted values are in good agreement with the experimental one. For corroded pipes with sufficient ductility, one solution to estimate the burst pressure of pipes with local wall thinning is so-called PCORRC equation. Chang, K.O., (2007). This is shown in Eq.(4.1).

$$P_{f} = \frac{2t}{D_{0}} \sigma_{U} \left[1 - \frac{d}{t} \left(1 - \exp(-0.157 \frac{l}{\sqrt{R_{0}(t-d)}}) \right) \right]$$
(4.1)

This equation is based on limit load analysis for pipes with constant depth thinning under internal pressure. Table 4.3 lists ratios of maximum pressure (P_{PCORRC}), predicted form equation 4.1, to experimental one.

Pipe no	length l (mm)	width c (mm)	depth d (mm)	d/t	<i>P</i> _{exp} (MPa)	P _{fem} (MPa)	P _{PCORRC} (MPa)	
A1	200	50	4.375	0.25	24.11	28.8	25.88	
A2	200	50	8.75	0.5	21.76	27.6	25.86	
A3	200	50	13.125	0.75	17.15	26.4	25.85	

Table 4.3: Comparison between burst pressure for experimental FE and P_{PCORPC}

Figure 4.4: Comparison on the burst pressure for different defect depth for FEA, experimental and Equation 4.1.

This will be the comparison between FE results and available Codes for Pipeline Defect Assessments. For the purpose of comparison, the rectangular defect will be assumed to be as part of the corrosion defect. Figure 4.4 compares the results for burst pressure between P_{PCORRC} , FE and experimental Chang, K.O., (2007). In contrast, FE results shows higher values as compare to experimental and design codes. In Figure 4.5, the most conservative code in predicting the burst pressure is the ASME B31G followed by Modified ASME and PCORRC. It is noted that for the design codes, all cases are with Modified ASME the highest, followed by ASME B31G and PCORRC the lowest except for the case of 75%. This might be due to limitation of design code only applicable for ratio of gouge depth to pipe thickness less or equal to 70%. It is to note that all three design codes predict failure based on stress criterion where the flow stress govern the predicted results whereas the burst pressure obtained from FE results is based on strain criterion.

Figure 4.5: Relationship between burst pressure and defect depth for different design codes and FEA.

4.2.2 Application to failure predictions of API X65 pipes with gouges

The second type of defect considered is a gouge with the same geometry but different in defect length. There are two different depth cases considered, which are 50% and 75%.

4.2.2.1 Comparisons

The burst pressure from FE is compared with the experimental results; also the pressure is normalized with respect to the theoretical pressure of a plain pipe.

$$P_O = \frac{t}{R_m} \sigma_f = \frac{t}{R_m} \left(\frac{\sigma_y + \sigma_u}{2} \right)$$

Where σ_f , σ_y and σ_u denote the flow strength, yield strength and ultimate tensile strength, respectively.

Noting that an engineering assessment equation for gouge defects is not currently available, gouge defects could be assessed using an expression of failure pressure of axial surface cracked pipes under internal pressure, assuming that the gouge is idealized as an axial crack. One popular expression in Chang, K.O, (2007) is given by, as shown in Eq.(4.2) and Eq.(4.3).

$$P_{f} = P_{o}\left(\frac{1-\frac{a}{t}}{1-(\frac{a}{t})(\frac{1}{M})}\right); \quad M = \sqrt{1+1.61\frac{l^{2}}{4R_{m}t}}$$
(4.2)

$$P_{f} = P_{o}\left(\frac{1 - \frac{d}{t}}{1 - (\frac{d}{t})(\frac{1}{M_{g}})}\right); M_{g} = \sqrt{1 + 0.64\frac{d}{t}\frac{l^{2}}{4R_{m}t}}$$
(4.3)

Where a and I denote the crack depth and length, respectively. As the gouge is idealized as an axial crack, Eq. 4.2 can be used to estimate failure pressure, simply by replacing the crack depth a with the gouge depth d. Table shows the results of burst pressure of FE analysis, with the experimental and compared with Equation 4.2 and 4.3.

Pipe no	d/t	length l (mm)	$P_{\rm exp}$ (MPa)	P _{fem} (MPa)	Predicted failu (Mpa)	re pressure
			(1 111 u)	(1911 u)	Eq4.2	Eq4.3
MNA	0.5	100	24.68	28.62	19.51	22.38
MNB	0.5	200	22.48	22.5	16.19	20.05
MNC	0.5	300	17.7	21.3	14.7	18.07
MND	0.5	400	18.14	21.75	13.94	16.7

 Table 4.4 Burst pressure comparison for gouge defect of 50%.

Table 4.5 Burst pressure comparison for gouge defect of 75%.

21

13.19

15.08

16.57

MNE

0.5

600

Pipe no	d/t	length l (mm)	P _{fem} (MPa)	Predicted failure	e pressure (Mpa)
			(1122 w)	Eq4.2	Eq4.3
MNA	0.75	100	24.6	14.48	19.07
MNB	0.75	200	23.125	9.94	13.79
MNC	0.75	300	16.5	8.38	11
MND	0.75	400	18.75	7.66	9.53
MNE	0.75	600	16.25	7.00	8.13

As shown in the Table 4.4 and 4.5, the FE results show good agreement with the experimental results and also all with higher pressure. For the case MNC, it somewhat show lower burst both for the experiment and the FE results.

Figure 4.6: Comparison of burst pressure for the case of defect length 50%.

Figure 4.7: Comparison for Equation 4.2 and Equation 4.3 for gouge defect of different length.

In Figure 4.6, results of FE for MNA and MNB agree well with the experimental and the rest cases show much higher predicted pressure compare to experimental. Also, Equation 4.3 show more accurate results base on the experimental results and the

Equation 4.2 gives lower failure pressure as expected. Also, Figure 4.7 show Equation 4.2 and Equation 4.3 both give decreasing predicated pressure along with the increase of gouge length. For both defect cases, Equation 4.2 gives lower predicted pressure.

The following figures will compare the gouge defect of 50% results based on stress triaxiality and strain equivalent as this two are the key quantities that determine the void growth characteristics. (Agarwal et al., 2003)The stress triaxiality, T and strain equivalent, ε_{eq} is calculated using SMCS. Where the stress triaxiality, T is define by the ratio of hydrostatic stress, σ_m and equivalent stress, σ_{eq} given by as in Eq. (4.5), Eq.(4.6) and Eq.(4.7):

$$T = \frac{\sigma_m}{\sigma_{eq}} = \frac{\sigma_1 + \sigma_2 + \sigma_3}{3\sigma_{eq}}$$
(4.5)

$$\sigma_{eq} = \frac{1}{\sqrt{2}} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_3 - \sigma_1)^2 + (\sigma_2 - \sigma_3)^2 \right]^{\frac{1}{2}}$$
(4.6)

On the other hand, the equivalent strain ε_{eq} is given by:

$$\varepsilon_{eq} = \frac{\sqrt{2}}{3} \left[(\varepsilon_1 - \varepsilon_2)^2 + (\varepsilon_3 - \varepsilon_1)^2 + (\varepsilon_2 - \varepsilon_3)^2 \right]^{\frac{1}{2}}$$

$$(4.7)$$

Where the $\sigma_1, \sigma_2, \sigma_3$ and $\varepsilon_1, \varepsilon_2, \varepsilon_3$ are the principle stresses and principle strain respectively.

(a)

(c)

(e)

Figure 4.8: Distributions of stress triaxiality and equivalent strain for pipes with gouge along the defect length: (a) MNA pipe test and (b) MNB pipe test and (c) MNC pipe test and (d) MND pipe test and (e) MNE pipe test.

In Figure 4.8 shows tyipical radial variations of stress triaxiality and equivalent strain. The 0 denote the tip of the defect, while the number 4 denote the most inner part of the defect. Cases of MNA, MNB and MNE show that strain equivalent occur maximum at the tip with number denote 0 and minimum at the most inner defect end with number 4. Also, with stress triaxility, T maximum at the end, 4, and minimum at the tip, 0. But this is not the same with case MNC where ε_{eq} maximum and T minimum in the middle of defect. MND, both strain equivalent and stress triaxiality decrease constantly towards the inner end of defect.

It is hard to determine the critical point along the defect length and depth is dependent either the strain equivalent or the stress triaxiality parameters. Hence, through the void volume fraction analysis as shown in the Figure 4.9 below, it can be seen that the void volume fraction agree well with the variations of strain equivalent.

Figure 4.9: Distribution of void volume fraction over the normalized distance on the defect depth following the variation of defect length, MNA(100 mm), MNB(200 mm), MNC(300 mm), MND(400 mm), and MNE(600 mm) with case 50% depth.

For comparisons between the critical point for Figure 4.9 and 4.10, case MNA (100 mm) and MNE(600 mm) show the critical point at the tip of defect (denoted number 0). For case MNB (200 mm) and MND (400 mm), critical point occur at place in between the tip and the middle of the defect, (with denote number 1). Only case MNC shows somehow critical at the middle of defect.

For Figure 4.10 on the strain equivalent, MNA (100 mm) and MNE (600 mm) also showing critical at the tip of defect (denote number 0) while case MNB (200 mm) and MND (400 mm) occur between the tip and middle of the defect with number denoted 1, except for the case MNC (300 mm) where it occur at the inner side of the defect.

However, overall, it can be seen that the void volume fraction distribution agree well with the strain equivalent distributions and from this the critical point of defect can be determined which it occurs at the tip of defect.

(b)

(a)

(c)

Figure 4.11: Distributions of stress triaxiality and equivalent strain for pipes with gouges along the defect depth from the inner surface to the notch tip of the defect.

For figure 4.11, only three cases considered. The radial distance is normalized with respect to the minimum ligament size, and the values of 0 and 1 denote the inner surface and the notch tip of the pipe, respectively. These show that the equivalent strain takes the maximum value at the notch tip, but the maximum value of stress triaxiality occurs somewhere in between the notch tip and the center except for case MND, T occur highest at the tip.

However, based on the void volume fraction, it can be seen that it follow well with the strain equivalent as shown in Figure 4.12 and 4.13 below.

Figure 4.12: Distribution of Void volume fraction over the defect depth with varied with the defect length, MNC (300mm), MND (400mm) and MND (600mm) for the case 50% depth.

Figure 4.13: Distribution of strain equivalent over the defect depth with varied with the defect length, MNC (300mm), MND (400mm) and MND (600mm) for the case 50% depth.

4.3 DISCUSSIONS

4.3.1 Summary of Comparison

Analysis from Section 4.1 showed that for defect varies in depth, the prediction of burst pressure using damage model by Gurson model is in good agreement with the experiment results. An increase in defect depth requires lower burst pressure to reach failure. Besides, the void volume fraction value is higher for larger defect depth in order to reach critical status. Also, in prediction using design codes, PCORRC shows the most conservative towards the FE results.

In Section 4.2, gouge defect varies in length is being analyzed. The burst pressure predicted is decreasing with the increase in defect length. As engineering assessment for gouge defects is not currently available, gouge defects could be assessed using an expression of failure pressure of axial surface cracked pipes under internal pressure. In fact, Equation 4.3 is more suitable to asses particular for API X65 steel.

In order to predict more accurately the critical point location, the stress triaxiality and strain equivalent criteria are used for every case of defect length, which are the MNA, MNB, MNC, MND and MNE. Based on the comparisons, it is found that both criteria do not agree well to each other. As along the tip to the inner defect end, strain equivalent shows the maximum at the tip and minimum at the defect end, whereas the stress triaxiality is maximum at the inner end and minimum at the tip. This is hard to predict the critical point. However, through the void volume fraction distribution along the defect length and depth, it is found that it agree well with the strain equivalent as both the maximum value occur at the tip of defect, which shown that the critical point occur at the tip of defect.

4.3.2 Limitations of Present Study

The limitations observed in the present study are listed as below:

- i. A quarter of pipe is analyzed in FE as to reduce the computation time and for simplicity.
- ii. Careful design on the pipe geometry and the mesh size are critical to avoid error in analysis.
- iii. Issue occurs where the void volume fraction may not reach the critical value even though the pressure applied is high. This is due to the determination of Gurson parameter for API X65 steel on the previous research was done on a specimen, but the present study is on a real pipe model.
- iv. Due to the complexity of model, the time step may not complete even the analysis has finish.
- v. Proper selection on Gurson model parameters is crucial for a particular material and the numerous parameters Gurson model involved leads to complexity in analysis.

CHAPTER 5

CONCLUSION

5.1 CONCLUSION

In the present study, Gurson model based on the critical void volume fraction is used to predict the burst pressure for pipe with defect. For increasing defect depth, the critical void volume fraction reached also increased and the burst pressure predicted decreasing. The characteristic of void is, it need more time for void growth for the beginning, once void coalescence occur during the end of middle half of the process, void critical will soon reached before it reach failure. In fact, as in most engineering alloys, ductile fracture often comes after the nucleation, growth and coalescence of micro voids. Hence, GursonTevaagard model which involve micro-ductile fracture mechanisms rather than to macroscopic fracture parameters makes it a more reasonable and suitable model in studying ductile fracture of material which causes burst pressure of steel pipe due to failure. The FE results based on Gurson model always predict higher value of burst pressure compared to ASME B31G, Modified ASME B31G and PCORRC design codes. Also, the PCORRC is the most conservative methods among other design codes.

Besides, the predicted burst pressure for defect varies with length show decreasing trend when the length increasing. As the Gurson model is based on the void volume fraction parameters, the void volume fraction distribution agreed well with the strain equivalent and the prediction of critical point along the defect based on strain equivalent found that critical point occurs at the defect tip.

5.2 RECOMMENDATIONS

From the present study, there are several recommendations which can contribute for the improvements of the results for similar studies in the future. The recommendations are as below:

- i. The data for stress triaxiality and equivalent strain curve in FEA can be averaged to improve accuracy in the determination of critical node and thus to determine the burst pressure prediction.
- ii. The prediction of burst pressure following the time step linearly can be made more accurately by determine the slope equation after plotting the graph and burst pressure can be determined from the equation.
- iii. Sensitivity analysis on the mesh size and the parameters values can be done to make the comparisons and validation

REFERENCES

- Antaki, G.A.2003. Piping and Pipeline Engineering: Design Construction, Maintenance, Integrity and Repair.CRC Press.
- Amit, Kanvinde. And Geogor, Delerlein.2004. Prediction of Ductile fracture in steel moment connections during earthquakes using micromechanical fracture models.13th World Conference on Earthquake Engineering. Voncouver, B.C, Canada.Paper No.294.
- Agarwal, H., Gokhale, A.M., Graham, S., Horstemeyer, M.F., 2003. Void growth in 6061-Al-alloy under triaxial stress state. *Mater.Sci. Eng.*A 341, 35–42.
- Bauvineau, L., Burlet, H., Eripret, C., Pineau, A. Modelling ductile stable crack growth in a C-Mn steel with local approaches. *First European mechanics of materials conference on local approach to fracture*, Fontainebleau, September 1996.
- Banora, N., Gentile, D., Pirondi, A., Nawaz, G., 2005. Ductile fracture evolution under triaxial state of stress: theory and experiments. Int. J. Plats. 21, 981–1007.
- Bauvineau, L., Besson, J., Pineau, A. 1997. Size and geometry effects on ductile rupture of notched bars in a C-Mn steel. Experiments and modelling.Int J Fract88:1-18.
- Beremin, F.M. 1981. Cavity formation from inclusions in ductile fracture of A508 steel. Metal Trans A.12: 723–31.
- Cheng, LY. XU, Y.F.2012.Reliability and Failure Pressure Prediction of Various Grades pf Pipelines Steel in the Presence of Corrosion Defects and Pre Strain, *International Journal of Pressure Vessels and Piping*.89
- Chen CR, Kolednik O, Scheider I, Siegmund T, Tatschl A, Fischer FD.2003. On the determination of the cohesive zone parameters for the modelling of microductile crack growth in thick specimens.Int J Fract.**120**:517–36

- Chang, K.O., Kim, Y.J., Baek, J.H., Kim, Y.P., Kim, W.S.2007. Ductile failure analysis of API X65 pipes with notch-type defects using a local fracture criterion. *International Journal of Pressure vessels and piping*.84:512-525
- Chang, S.O., Nak, H.K., Yun, J.K., Jong, H.B., Young, P.K., Woo, S.K.2011. A finite element ductile failure simulation method using stress-modified fracture strain model. Engineering Fracture Mechnics. 78:124-137
- Cheng, J., He, S., Zhou, G.T., Fu, C. Experimental and numerical investigations of void damage in aluminum alloy welds under thermal cycling condition
- Chang, K.O., Kim, Y.J., Baek, J.H., Kim, Y.P., Kim, W. 2007. A phenomenological model of ductile fracture for API X65 steel. *International Journal of Mechanics Sciences.* 49:1399-1412.
- Cosham, A., Hopkins, P., Macdonald, K.A.2007.Best practice for the assessment of defects in pipelines-Corrosion. *Engineering Failure Analysis*.**14**: 1245-1265.
- Gurson, AL.1975. Plastic flow and fracture behaviour of ductile materials incorporating void nucleation, growth and coalescence, PhD Diss, Brown University.
- Hansen, B., Lee, D. and Demartini, C. The cracking of stormwater pipe and the s ignificance of construction loads.
- Hancock, J. W., and Brown, D. K.1983.On the role of strain and stress state in ductile failure. J. Mech. Phys. Solids. 31(1) 1–24.
- He, R., Steglich, D., Heerens, J., Wang G.X., Brocks, W., Dahms, M. 1998.Influence of particle size and volume fraction on damage and fracture in Al-A13Ti composites and micromechanical modelling using the GTN model. Fatigue FractEng Mater Struct .21(10): 1189–201.
- Koplik J, Needleman A. 1988. Void growth and coalescence in porous plastic solids. Int J Solids Struct .24(8):835–53.

- Kanvinde, A.M. and Deierlein, G.G.2005. The Void Growth Model and The Stress Modified Critical Strain Model To Predict Ductile Fracture In Structural Steels.
- Kanvinde, A.M. and Delerlein, G.G.2007. Finite element simulation of ductile fracture in in reduced section pull-plates using micromechanics-based fracture models. *Journal of Structural Engineering*.
- Kiefner, J.F., Vieth, P,H., Roytman I.1995. Continued Validation of RSTRENG, Updated Draft Final Report on Contract No. PR 218-9304 to Line Pipe Research Supervisory Committee, Pipeline Research Committee of the American Gas Association, Kiefner and Associates, Inc.
- Lassance, D., Scheyvaerts, F., Pardoen, T.2006.Growth and coalescence of pennyshaped voids in metallic alloys.*Engineering Fracture Mechanics*.**73**:1009-1034.
- Liu, P.F., Zheng, J.Y. Finite element analysis of tensile behavior of ductile steel with defects Fail.Anal.andPreven10:212-217
- McClintock, FA.1968. A criterion for ductile fracture by the growth of holes. *JApplMech* **1;35**:363–71.
- Mackenzie, A.C., Hancock, J.W., and Brown, D.K. 1997. On The Influence of State of Stress on Ductile Failure Initiation In High Strength Steels, *Int J FractMech*
- Majid, Anvari., Liu, J., Christian, T.2007. Dynamic ductile fracture in aluminum round bars: experiments and simulations.**143**:317–332
- Needleman, A., Tvergaard, V., 1987. An analysis of ductile rupture modes at a crack tip. *Journal of the Mechanics and Physics of Solids*. **35**: 151±183.
- N, Benseddiq., A. Imad. 2008. A ductile fracture analysis using a local damage model. *International Journal of Pressure Vessels and Piping*.**85:** 219-227.

- Pardoen, T. and Hutchinson, J.W.,2000. An extend model for void growth and coalescence. *Journal of the Mechnics and Physics of Solids*.**48**:2467-2512.
- Rakina, M., Cvijovic, Z., Grabulov, V., Putic, S., Sedmak A., 2004.Prediction of ductile fracture initiation using micromechanical analysis. *Engineering Fracture Mechanics*.**71**:813-827.
- Roylance, D.2001.*Stress strain curve*. Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge.
- Rice, J.R. and Tracey, Ai.1969. On the ductile enlargement of voids in triaxial stress fields, *J.Mech. Phys. Solids*. **17** :201- 217.
- Steglich, D., Brocks, W. 1998. Micromechanical modelling of damage and fracture of ductile materials. *Fatigue FractEng Mater Struct* .21(10):1175–88.
- Thomason, PF. 1990. Ductile fracture of metals. Oxford: Pergamon.
- Toshiyuki, M. 2010.Fracture Behavior Prediction for Wall-thinned Pipe- Internal Burst Pressure Equation Applicable to Planar/non-planar Flaw in Wall Thinned Pipe. International Symposium on the Ageing Management & Maintainance of Nuclear Power Plants.72-82
- Vadillo, G., Fernández-Sáez, J., 2009.An analysis of Gurson model with parameters dependent on triaxiality based on unitary cells. *European Journal of Mechanics* A/Solids.28: 417-427.
- Vieth PH. Kiefner JF.1994.Database of Corroded Pipe Tests, Final Report on Contract No.PR 218-9206 to Line Pipe Research Supervisory Committee of the American Gas Association, Kiefner and Associates, Inc.
- Zhang,Z.L., Thaulow, C., Odegard, J.2000. A complete Gurson model approach for ductile fracture. *Engineering fracture mechanics*. 67: 155-168.

- Zhang, Z.L., Niemi, E. 1995. A new failure criterion for the Gurson–Tver-gaard dilatation constitutive model.Int J Fract .70:321–34.
- Zhang ZL, Thaulow C, Phidegard J. 2000. A complete Gurson model approach for ductile fracture. EngFractMech .67:155–68

APPENDICES A1

TRUE STRESS-STRAIN DATA AT ROOM TEMPERATURE FOR API X65 STEEL

True strain	True stress			
0	465.5			
0.02081	486.01			
0.030518	511.45			
0.04343	536.89			
0.05957	567.43			
0.08214	600.51			
0.10467	623.41			
0.13042	646.31			
0.15937	669.21			
0.1947	689.57			
0.2333	709.92			
0.27185	727.74			
0.31362	745.55			
0.34897	760.81			
0.39714	776.08			
0.4485	791.35			
0.50633	806.62			
0.56413	821.88			
0.62835	834.61			
0.68614	847.33			
0.75036	862.6			
0.8146	870.23			
0.88841	888.04			
0.95902	893.13			
1.0297	908.4			
1.09063	913.49			
1.12273	918.58			
1.15824	923.664			

Source: Chang-Kyun Oh et.al. (2007)

APPENDICES A2

DATA COLLECTED AND CALCULATED FOR GOUGE DEFECT, 50%, l= 100mm

NORMALIZED DISTANCE ON DEFECT LENGTH

(a) From the tip of the notch, with number denote (0)

Time step	Pressure	Void volume	σ1(MPa)	σ2 (MPa)	σ3 (MPa)	σeq (MPa)	εeq	Т
	(MPa)	fraction, f						
0	0	0.000125	0	0	0	0	0	0
0.0125	0.46153846	0.000125	81.379143	18.773224	0.66630763	73.35433489	0	0.4581355
0.025	0.92307692	0.000125	162.71759	37.538727	1.3276068	146.6746303	0	0.458120406
0.0375	1.38461538	0.000125	243.92224	56.277931	1.985641	219.8743992	0	0.458118837
0.05	1.84615384	0.000125	325.02283	74.995819	2.6376083	292.9830671	0	0.458110954
0.0625	2.30769230	0.000125	406.01993	93.692528	3.2835407	366.0011281	0	0.45810059
0.075	2.76923076	0.000125	486.91434	112.36823	3.9234779	438.9292854	0	0.458089012
0.0875	3.23076923	0.000125004	565.71393	131.73387	5.696281	508.8388749	1.45E-05	0.460619996
0.1	3.69230769	0.000125162	576.81079	179.07162	40.89534	481.9157563	0.000601532	0.551118281
0.1125	4.15384615	0.000125368	588.69739	226.04659	50.352509	475.4947689	0.00127415	0.606453562
0.125	4.61538461	0.000125614	593.73328	259.43301	51.191422	474.0592138	0.001999487	0.635896449
0.1375	5.07692307	0.000125882	596.37598	281.05316	53.172405	472.4508867	0.002749218	0.656577273
0.15	5.53846153	0.000126187	598.46527	297.31546	54.636421	471.8715925	0.003566463	0.671381202
0.1625	6	0.000126532	600.1073	308.15976	55.925167	471.6891535	0.004464273	0.68137545
0.175	6.46153846	0.000126899	601.36151	312.87976	56.538368	472.0997435	0.005402342	0.685433994
0.1875	6.92307692	0.000127294	602.22314	315.2951	56.497868	472.8166686	0.006400175	0.686676375
0.2	7.38461538	0.00012771	603.06653	316.39719	56.350021	473.6529192	0.00744537	0.686729109
0.2125	7.84615384	0.000128153	603.95123	317.34256	56.05125	474.6595747	0.008551848	0.686348064
0.225	8.30769230	0.000128612	605.55182	317.77011	56.257973	475.8791619	0.00969375	0.686154512
0.23758.769230760.000129118606.82086319.4752856.108608477.07690140.0109414530.6864055840.259.230769230.000129659608.2088321.1527155.990856478.35545750.0122656350.6866249430.26259.692307690.000130254609.72943323.049955.843166479.77377750.0137104950.6868671180.27510.15384610.000130914611.50281325.0066855.730682481.38517040.015293440.6870729390.287510.61538460.00013165613.44623326.9879855.609516483.1549670.0170389860.68718030.311.07692300.000132489615.42682329.4003955.344566485.07773510.0190048870.6872931240.312511.53846150.000133442617.80347331.431455.183079487.2651710.0212010780.6871124860.325120.000134747622.96857333.1438353.479641493.21331450.0235964450.6823227810.337512.46153840.000135837630.40802334.916652.609921500.42645660.0261797640.6780447140.237512.46153840.000135837630.40802334.916652.609921500.42645660.0261797640.678044714								
--								
0.259.230769230.000129659608.2088321.1527155.990856478.35545750.0122656350.6866249430.26259.692307690.000130254609.72943323.049955.843166479.77377750.0137104950.6868671180.27510.15384610.000130914611.50281325.0066855.730682481.38517040.015293440.6870729390.287510.61538460.00013165613.44623326.9879855.609516483.1549670.0170389860.68718030.311.07692300.000132489615.42682329.4003955.344566485.07773510.0190048870.6872931240.312511.53846150.000133442617.80347331.431455.183079487.2651710.0212010780.6871124860.325120.000134747622.96857333.1438353.479641493.21331450.0235964450.6823227810.337512.46153840.000135837630.40802334.916652.60921500.42645660.0261797640.678044714								
0.26259.692307690.000130254609.72943323.049955.843166479.77377750.0137104950.6868671180.27510.15384610.000130914611.50281325.0066855.730682481.38517040.015293440.6870729390.287510.61538460.00013165613.44623326.9879855.609516483.1549670.0170389860.68718030.311.07692300.000132489615.42682329.4003955.344566485.07773510.0190048870.6872931240.312511.53846150.000133442617.80347331.431455.183079487.2651710.0212010780.6871124860.325120.000134747622.96857333.1438353.479641493.21331450.0235964450.6823227810.337512.46153840.000135837630.40802334.916652.60921500.42645660.0261797640.6780447140.255120.00135837630.40802334.916652.60921500.42645660.0261797640.678044714								
0.27510.15384610.000130914611.50281325.0066855.730682481.38517040.015293440.6870729390.287510.61538460.00013165613.44623326.9879855.609516483.1549670.0170389860.68718030.311.07692300.000132489615.42682329.4003955.344566485.07773510.0190048870.6872931240.312511.53846150.000133442617.80347331.431455.183079487.2651710.0212010780.6871124860.325120.000134747622.96857333.1438353.479641493.21331450.0235964450.6823227810.337512.46153840.000135837630.40802334.916652.609921500.42645660.0261797640.6780447140.25512.0000137005630.40802334.916652.60921500.42645660.0261797640.678044714								
0.287510.61538460.00013165613.44623326.9879855.609516483.1549670.0170389860.68718030.311.07692300.000132489615.42682329.4003955.344566485.07773510.0190048870.6872931240.312511.53846150.000133442617.80347331.431455.183079487.2651710.0212010780.6871124860.325120.000134747622.96857333.1438353.479641493.21331450.0235964450.6823227810.337512.46153840.000135837630.40802334.916652.60921500.42645660.0261797640.6780447140.25512.023207600.000137095630.40302334.916652.60921500.42645660.0261797640.678044714								
0.311.07692300.000132489615.42682329.4003955.344566485.07773510.0190048870.6872931240.312511.53846150.000133442617.80347331.431455.183079487.2651710.0212010780.6871124860.325120.000134747622.96857333.1438353.479641493.21331450.0235964450.6823227810.337512.46153840.000135837630.40802334.916652.609921500.42645660.0261797640.678044714								
0.3125 11.5384615 0.000133442 617.80347 331.4314 55.183079 487.265171 0.021201078 0.687112486 0.325 12 0.000134747 622.96857 333.14383 53.479641 493.2133145 0.023596445 0.682322781 0.3375 12.4615384 0.000135837 630.40802 334.9166 52.609921 500.4264566 0.026179764 0.678044714								
0.325 12 0.000134747 622.96857 333.14383 53.479641 493.2133145 0.023596445 0.682322781 0.3375 12.4615384 0.000135837 630.40802 334.9166 52.609921 500.4264566 0.026179764 0.678044714 0.3575 12.4615384 0.000135837 630.40802 334.9166 52.609921 500.4264566 0.026179764 0.678044714								
0.3375 12.4615384 0.000135837 630.40802 334.9166 52.609921 500.4264566 0.026179764 0.678044714								
0.35 12.9230769 0.000137095 638.40289 338.39679 52.302605 507.6205286 0.028997349 0.67576876								
0.3625 13.3846153 0.000138494 647.10938 342.93204 51.958744 515.4529079 0.032078464 0.673841165								
0.375 13.8461538 0.000139972 654.85675 347.95273 52.647751 521.5555348 0.035445035 0.674557269								
0.3875 14.3076923 0.000141764 662.68774 353.46472 52.420929 528.5173155 0.039158292 0.673944106								
0.4 14.7692307 0.000143842 671.52502 358.47186 51.920826 536.5976748 0.043340966 0.672084976								
0.4125 15.2307692 0.000146329 681.42078 363.96188 51.154423 545.8263966 0.048187472 0.669649477								
0.425 15.6923076 0.000149334 692.07922 370.39908 50.121185 555.947077 0.053744912 0.667089567								
0.4375 16.1538461 0.000152852 703.96906 377.11752 48.84866 567.3459106 0.059928034 0.663872028								
0.45 16.6153846 0.000156837 716.01532 383.63263 48.02879 578.4899986 0.066758156 0.661306011								
0.4625 17.0769230 0.000161798 726.99268 390.37646 47.15115 588.7636629 0.074249394 0.659302628								
0.475 17.5384615 0.000167659 738.61096 395.71875 45.675842 600.104311 0.082456321 0.65544469								
0.4875 18 0.000174359 750.33752 401.82886 43.347153 612.2860517 0.091388583 0.650846953								
0.5 18.4615384 0.000182965 759.95593 404.74207 44.066879 619.9781723 0.10109711 0.649896471								
0.5125 18.9230769 0.000193454 768.5506 415.97852 36.487793 634.1217595 0.11168935 0.641841463								
0.525 19.3846153 0.000205604 789.12738 396.82114 43.38044 646.1218919 0.12320805 0.634209002								
0.5375 19.8461538 0.000222107 836.24286 476.37082 -54.683666 776.2904449 0.13570124 0.540145776								
0.55 20.3076923 0.000238528 1218.7516 243.80409 -107.67377 1190.254017 0.1468035 0.37943775								
0.5625 20.7692307 0.000248396 1780.6541 528.07062 -544.22943 2015.405714 0.15264843 0.291834588								
0.575 21.2307692 0.000267321 1638.8435 538.36694 -152.79547 1565.028814 0.16290842 0.431177358								
0.5875 21.6923076 0.000286639 2024.9425 756.60553 -262.27798 1984.695027 0.17422645 0.423116233								
0.6 22.1538461 0.000315849 2165.2656 890.31616 -6.6617107 1890.396325 0.1837831 0.537615668								
0.6125 22.6153846 0.000358854 2513.8413 1181.58 -77.629326 2244.555083 0.19856964 0.537269353								

0.625	23.0769230	0.00040876	2989.3875	1268.6174	280.01114	2374.752198	0.2099026	0.636980993
0.6375	23.5384615	0.000483665	3408.2605	1808.6395	181.0524	2794.852374	0.22585292	0.643796962
0.65	24	0.000580635	4080.438	1923.7891	544.05286	3087.107128	0.24017428	0.707056767
0.6625	24.4615384	0.000704864	4688.3618	2411.4663	541.53851	3596.979993	0.25746682	0.708127988
0.675	24.9230769	0.000873226	5270.7695	2878.5354	938.08795	3758.969784	0.27506793	0.805840729
0.6875	25.3846153	0.001109185	4244.8872	2110.3152	-1115.6984	4674.323544	0.29691344	0.373637237
0.7	25.8461538	0.001274443	4889.2314	1170.5496	-1088.7242	5228.184056	0.31931624	0.316939671
0.7125	26.3076923	0.001397784	4501.9121	1869.351	-1163.5391	4910.45887	0.34518254	0.35351238
0.725	26.7692307	0.00154101	4935.5811	1503.2836	-1249.6368	5367.264305	0.36982957	0.322276403
0.7375	27.2307692	0.001660894	5440.5327	1790.9551	-1339.9543	5877.741446	0.39686006	0.334115496
0.75	27.6923076	0.001772901	4432.3428	1872.8757	-1111.8557	4806.076586	0.42190537	0.360194205
0.7625	28.1538461	0.014582006	1682.3345	785.37128	250.92511	1252.806521	0.73964137	0.723344173
0.775	28.6153846	0.026138689	2162.9902	1630.2262	-277.55045	2222.554656	0.83337289	0.527271015
0.7875	29.0769230	0.080776952	1176.9725	-191.11349	-350.39621	1454.270317	0.88001871	0.145654443
0.8	29.5384615	0.091807403	2158.4888	403.54852	184.42853	1874.114214	0.91319531	0.488491368
0.8125	30	0.12161639	2008.9424	626.09814	212.23537	1629.661761	0.95083117	0.582385862

(b) Second node from the tip, denote number 1

Time step	Void volume fraction, f	σ1 (MPa)	σ2 (MPa)	σ3 (MPa)	σeq (MPa)	εeq	Т
0	0.000125	0	0	0	0	0	0
0.0125	0.000125	57.675636	19.584412	7.9747028	45.03238647	0	0.630914456
0.025	0.000125	115.33286	39.161392	15.943199	90.05323605	0	0.630876648
0.0375	0.000125	172.9099	58.706291	23.886936	135.0222134	0	0.630768129
0.05	0.000125	230.42648	78.226746	31.811518	179.9524844	0	0.630656744
0.0625	0.000125	287.88297	97.722916	39.717037	224.8443007	0	0.630544369
0.075	0.000125	345.27988	117.19497	47.603615	269.6980268	0	0.630431587
0.0875	0.000125	402.62122	136.64699	55.471947	314.5158992	0	0.630323362
0.1	0.000124991	466.89471	153.09656	56.583729	371.5735528	-3.36E-05	0.60694578

0.1125	0.000124998	525.91449	169.79999	57.016319	423.9081828	-1.40E-05	0.591897671
0.125	0.000125044	572.86719	190.17841	59.584961	462.0366916	0.000126645	0.59348141
0.1375	0.00012515	601.22601	216.68666	67.949738	476.6382543	0.000441398	0.619521129
0.15	0.000125316	613.7381	247.27759	80.125862	472.7401258	0.000913299	0.66360741
0.1625	0.000125538	621.07501	277.76419	85.231804	470.1332266	0.00150665	0.69772492
0.175	0.0001258	628.16077	305.20389	87.909477	470.8401871	0.002171183	0.723015413
0.1875	0.000126108	633.9538	329.08838	90.485039	471.817885	0.00291673	0.744303577
0.2	0.000126469	638.11353	348.8439	92.760147	472.5767412	0.003751409	0.761581829
0.2125	0.000126867	641.32153	362.98068	94.956268	473.189774	0.004639857	0.774360548
0.225	0.000127281	642.93457	371.44852	96.07724	473.5917824	0.005538879	0.781587555
0.2375	0.000127737	644.59827	377.36746	96.946747	474.3214323	0.006511251	0.786325054
0.25	0.000128228	646.2016	381.05255	97.717079	475.0840028	0.007543568	0.789313905
0.2625	0.00012876	647.70911	383.13257	98.195618	475.996953	0.008650102	0.790647427
0.275	0.000129335	649.17511	384.26282	98.404358	477.0918525	0.00983508	0.790792718
0.2875	0.000129959	650.64124	384.814	98.412598	478.3500705	0.011114096	0.790124156
0.3	0.000130656	652.14307	385.28076	98.278633	479.761763	0.012532841	0.789073905
0.3125	0.00013143	653.73035	385.7959	98.024048	481.3533599	0.01409519	0.787744439
0.325	0.000132278	655.44214	386.50671	97.851242	482.9839054	0.015804671	0.786637732
0.3375	0.000133214	657.53961	387.80298	98.209007	484.4916087	0.017661881	0.786770831
0.35	0.000134244	660.89783	389.46484	98.494232	487.1490872	0.019678384	0.786109039
0.3625	0.000135444	665.21106	391.64572	98.397171	490.9691664	0.02187481	0.784335711
0.375	0.000136746	670.98352	394.10513	98.041412	496.2703797	0.024236202	0.781247555
0.3875	0.000138121	677.70929	396.81583	97.334465	502.7004413	0.026790485	0.777043005
0.4	0.000139611	685.07721	399.64471	96.267334	509.9983514	0.029598847	0.771890897
0.4125	0.000141297	692.79724	402.43927	95.275352	517.5323929	0.032753017	0.766787341
0.425	0.000143236	700.44092	405.33569	94.408646	524.8939282	0.036271453	0.762176376
0.4375	0.000145387	708.1637	408.68188	93.505905	532.3619957	0.040095523	0.757849918
0.45	0.000147802	716.1734	411.97162	92.54097	540.1300211	0.044229411	0.753328484
0.4625	0.000150473	724.63123	415.33633	91.194092	548.6176207	0.048670735	0.74803871
0.475	0.00015339	733.28766	418.77451	89.71904	557.3888564	0.053453628	0.74261813
0.4875	0.000156711	742.3205	422.54718	88.215485	566.5128938	0.058595415	0.737307823

0.5	0.000160409	751.5777	426.08704	86.569763	575.9509451	0.064120255	0.731679503
0.5125	0.000164609	760.87317	429.46304	84.948975	585.3985765	0.070094407	0.72616347
0.525	0.000169497	768.81744	433.35538	83.22802	593.7774372	0.076586939	0.721595197
0.5375	0.000175302	780.87329	434.71417	82.955948	604.414835	0.083747745	0.716143578
0.55	0.000181585	784.5719	453.25131	80.910881	609.7275198	0.091469459	0.720941759
0.5625	0.000189449	834.34357	466.67795	108.88908	628.2754008	0.099600099	0.748032152
0.575	0.000199084	893.52161	512.19397	156.19116	638.6663116	0.10819943	0.815191862
0.5875	0.000210864	1003.4406	599.0625	118.89715	766.9664141	0.11716215	0.748142386
0.6	0.000222716	1278.131	542.77429	215.58195	942.5446203	0.12477934	0.720208959
0.6125	0.000235185	1438.6146	843.94379	183.7047	1087.2678	0.13190259	0.756104151
0.625	0.000252703	1762.5024	906.4519	401.71524	1191.484115	0.14116967	0.859060142
0.6375	0.0002775	2095.8911	1251.6277	300.90176	1555.402589	0.1500902	0.781881293
0.65	0.000310393	2572.2026	1384.2314	609.7868	1712.016844	0.16087186	0.889052935
0.6625	0.000362067	2996.8093	1897.9497	526.72089	2143.469311	0.17244612	0.84310046
0.675	0.000432347	3612.5137	2034.2396	1024.1697	2259.482148	0.18582809	0.98413745
0.6875	0.000554554	3016.3633	1738.0529	-568.67468	3146.997539	0.20105982	0.443358203
0.7	0.000639296	3281.6455	1028.699	-189.58835	3050.336007	0.21811296	0.450306255
0.7125	0.000751547	3359.3782	1849.9044	-645.03345	3502.71809	0.2377291	0.434353078
0.725	0.000868731	3668.7439	1173.6575	-254.10858	3438.916257	0.25640795	0.44474213
0.7375	0.001019719	4055.8789	2136.9475	-930.37427	4356.188316	0.27958831	0.402680183
0.75	0.001154897	3589.3362	1296.4755	-170.85191	3282.442781	0.29866397	0.478805989
0.7625	0.008330838	1565.5621	817.63788	176.02789	1204.533869	0.58487201	0.708220814
0.775	0.013179453	1705.2163	1290.509	154.80336	1390.236596	0.67739314	0.755393882
0.7875	0.036896184	1783.7881	986.03784	228.77579	1346.8194	0.71660393	0.74214398
0.8	0.04274641	2368.8823	1111.3728	291.08249	1812.640663	0.74771053	0.693525504
0.8125	0.056225304	2132.1687	1143.9086	391.26666	1512.24669	0.78227055	0.808365457

(c) Third node from the tip, denote number 2

Time step $V(a)d value = -1 (MDa) = -2 (MDa) = -2 (MDa) = -2 (MDa)$								
	Time step	Void volume	σ1 (MPa)	σ2 (MPa)	σ3 (MPa)	σeq (MPa)	εeq	Т

	fraction, f						
0	0.000125	0	0	0	0	0	0
0.0125	0.000125	56.48959	19.180954	7.7995305	44.11416078	0	0.630712625
0.025	0.000125	112.96149	38.35487	15.593218	88.21712535	0	0.630677159
0.0375	0.000125	169.35626	57.497746	23.363075	132.2702571	0	0.630570284
0.05	0.000125	225.69295	76.617096	31.114588	176.2861811	0	0.630460901
0.0625	0.000125	281.97189	95.713066	38.847839	220.2651205	0	0.630350664
0.075	0.000125	338.19357	114.78584	46.562946	264.2074187	0	0.630240133
0.0875	0.000125	394.35968	133.83611	54.260185	308.114332	0	0.6301297
0.1	0.000124993	456.04211	150.55415	56.684898	361.6735372	-2.69E-05	0.611307427
0.1125	0.000124993	516.32654	166.66856	56.807281	415.620937	-2.87E-05	0.593331018
0.125	0.00012503	564.91028	185.40944	58.236046	456.5658456	8.25E-05	0.590317018
0.1375	0.000125121	596.21948	210.40247	65.722733	474.9763867	0.000357097	0.612202141
0.15	0.00012527	611.41187	239.72905	78.021889	473.7053876	0.00078221	0.653826079
0.1625	0.000125478	619.05554	269.85129	84.051712	470.4708793	0.001346493	0.689350879
0.175	0.000125721	626.28479	297.68317	87.169777	470.6014317	0.001973718	0.71620248
0.1875	0.000126008	632.25085	321.79553	89.737625	471.4580839	0.002676255	0.737982895
0.2	0.00012635	636.74426	343.017	91.894508	472.3298124	0.00347896	0.756290583
0.2125	0.000126727	640.25543	358.43854	94.202278	472.9730569	0.004328614	0.770231505
0.225	0.000127126	642.31665	368.60721	95.669266	473.4061386	0.005203496	0.779171086
0.2375	0.000127559	643.92078	375.17352	96.581596	474.030649	0.006132715	0.784531477
0.25	0.000128027	645.53284	379.65411	97.383301	474.777621	0.007121804	0.788137577
0.2625	0.000128532	647.03882	382.35559	97.958572	475.615032	0.008175865	0.790101872
0.275	0.00012908	648.49426	383.83145	98.266533	476.6212134	0.009311902	0.790699345
0.2875	0.000129674	649.9469	384.58688	98.359421	477.7981206	0.010532177	0.790356954
0.3	0.000130336	651.42926	385.15527	98.289658	479.1389828	0.011883713	0.789523311
0.3125	0.000131074	652.96326	385.6268	98.078743	480.6457287	0.013378563	0.78829287
0.325	0.000131884	654.5907	386.23984	97.807053	482.2886913	0.01500772	0.786968202
0.3375	0.000132768	656.43958	387.21149	97.926674	483.7856742	0.016785689	0.786558873
0.35	0.000133801	659.25317	388.76086	98.274895	485.9196194	0.01871665	0.78633645
0.3625	0.000134909	662.9671	390.6438	98.397293	489.0285746	0.020828061	0.785235773

0.375	0.000136108	668.02765	392.98587	98.156654	493.617186	0.023105325	0.782772701
0.3875	0.000137392	674.276	395.5506	97.642426	499.4666344	0.025565835	0.779143821
0.4	0.000138898	681.46985	398.2955	96.611809	506.5816053	0.028269414	0.774062294
0.4125	0.000140516	689.13336	401.27463	95.462166	514.207767	0.031306606	0.768736058
0.425	0.000142365	696.82983	404.13754	94.541809	521.6601932	0.034700532	0.763913108
0.4375	0.000144432	704.62506	407.02689	93.590378	529.2257346	0.038406961	0.759123029
0.45	0.000146745	712.41394	410.50354	92.654984	536.7810097	0.042424995	0.754853123
0.4625	0.00014932	720.69147	413.62936	91.495995	544.9461433	0.046753787	0.749809157
0.475	0.00015217	729.35797	417.18417	89.832214	553.8922315	0.051422551	0.744052293
0.4875	0.000155366	738.05493	420.6181	88.367714	562.6889873	0.056454644	0.738738908
0.5	0.000158978	747.70929	424.25317	86.739792	572.4540367	0.061875511	0.732927695
0.5125	0.000162947	756.12482	428.45172	84.694969	581.5253376	0.067745134	0.727552998
0.525	0.00016741	767.28003	429.40695	84.395813	591.4001775	0.074150436	0.722062005
0.5375	0.000172873	770.81091	443.18237	79.577728	598.8899519	0.081197456	0.719982585
0.55	0.000179313	807.69934	432.6673	102.40033	611.2109559	0.088930048	0.732298703
0.5625	0.000186472	854.88098	508.89679	114.04326	642.0432556	0.096425556	0.767248944
0.575	0.000196453	935.05774	540.52979	153.68863	676.6899241	0.10504694	0.802571509
0.5875	0.000207013	1143.347	502.81223	160.02536	864.4884062	0.11314311	0.696436789
0.6	0.000217014	1267.4427	725.95795	148.18381	969.4671475	0.11985243	0.736344175
0.6125	0.000230739	1591.2366	699.4538	269.72217	1167.53885	0.12835354	0.730999963
0.625	0.000247513	1781.2479	1052.4313	238.67915	1336.565752	0.13637024	0.766232001
0.6375	0.000271133	2165.0063	1139.0647	447.65323	1496.63316	0.14605753	0.835592032
0.65	0.000305391	2523.0571	1554.5526	366.2951	1871.021765	0.15622979	0.791707306
0.6625	0.000349645	3029.6677	1669.6549	790.23743	1954.214847	0.167778	0.93636242
0.675	0.000423994	3449.5154	2292.9067	658.3551	2428.976339	0.18122639	0.878391595
0.6875	0.000526141	3053.8259	1319.3519	-75.711143	2715.540478	0.19595537	0.527515203
0.7	0.000619805	3113.8794	1424.2529	-652.21082	3267.228592	0.21411335	0.396454403
0.7125	0.000718098	3579.2078	1348.6494	-128.01952	3232.574471	0.23198852	0.49494479
0.725	0.000848257	3462.1096	1601.0959	-681.54102	3594.659099	0.25223857	0.406312473
0.7375	0.000992612	4549.5259	1536.0161	-397.23721	4317.896463	0.27414131	0.43912623
0.75	0.001132614	3308.3818	1638.626	-429.31076	3243.022441	0.29390252	0.464350476

0.7625	0.007449346	1574.5442	784.89288	164.58212	1223.983301	0.57817233	0.687378441
0.775	0.010669881	1904.7955	1217.8131	124.38151	1555.20395	0.66564947	0.6959409
0.7875	0.021751735	2353.1221	1124.4347	449.59766	1671.582463	0.7048161	0.783121094
0.8	0.025870139	2540.229	1086.1072	427.02249	1872.747992	0.74314249	0.72146363
0.8125	0.035722069	2536.8394	1454.4487	794.34839	1523.726994	0.79208088	1.046914683

(d) Fourth node from the tip, denote number 3

Time step	Void volume	σ1 (MPa)	σ2 (MPa)	σ3 (MPa)	σeq (MPa)	εeq	Т
	fraction, f						
0	0.000125	0	0	0	0	0	0
0.0125	0.000125	76.090485	17.573528	0.61942375	68.58344026	0	0.458241991
0.025	0.000125	152.14528	35.140587	1.2348408	137.1366782	0	0.458230699
0.0375	0.000125	228.08188	52.683899	1.8470376	205.5838282	0	0.458228028
0.05	0.000125	303.92691	70.208328	2.4539506	273.9508145	0	0.458219954
0.0625	0.000125	379.68088	87.714012	3.055604	342.2380776	0	0.458209773
0.075	0.000125	455.34451	105.20111	3.6520281	410.4462525	0	0.458198562
0.0875	0.000125	530.91956	122.67003	4.243259	478.5769107	0	0.458186786
0.1	0.000125074	571.62354	153.59277	23.830389	495.8104004	0.000279086	0.503584097
0.1125	0.000125236	583.25732	197.37245	52.349907	475.2855387	0.000844212	0.584195962
0.125	0.000125462	590.79956	240.59793	49.268452	475.6550287	0.00154354	0.617160119
0.1375	0.000125692	594.51196	265.57037	52.213943	473.1818281	0.002209538	0.64266787
0.15	0.000125958	596.58826	285.63373	53.156895	472.2537939	0.002939929	0.660223307
0.1625	0.000126253	598.70221	299.60632	54.909943	471.718222	0.00372623	0.673579006
0.175	0.000126578	600.08771	308.77747	55.830257	471.7263971	0.004568864	0.681677234
0.1875	0.000126924	601.3197	312.80121	56.460857	472.1312866	0.00545147	0.685248499
0.2	0.000127294	602.16528	315.16965	56.451965	472.8085124	0.006389	0.686526624
0.2125	0.000127683	602.9502	316.33533	56.310246	473.5861926	0.007366605	0.686672452

0.225	0.000128097	603.77258	317.24835	56.041237	474.5135809	0.008400086	0.686360522
0.2375	0.000128526	605.21594	318.03912	56.190247	475.6342563	0.009468051	0.686413488
0.25	0.000128994	606.45715	319.28949	56.109238	476.7615834	0.010624817	0.686475807
0.2625	0.000129496	607.73749	320.91754	55.992649	477.945859	0.011857309	0.68672191
0.275	0.000130048	609.14075	322.77026	55.844784	479.2623927	0.013200578	0.68699722
0.2875	0.000130661	610.73468	324.72339	55.689983	480.7531496	0.014678689	0.68721897
0.3	0.000131358	612.60913	326.59729	55.585365	482.4504027	0.016338244	0.687318862
0.3125	0.000132157	614.50671	328.92279	55.327293	484.2960327	0.018219143	0.687428574
0.325	0.000133052	616.72461	331.03653	55.14727	486.3602562	0.020293556	0.687356335
0.3375	0.000134143	620.07489	332.95758	54.283241	490.0034268	0.022569897	0.685243991
0.35	0.000135173	626.96765	334.1875	52.699104	497.3584256	0.025041135	0.679492697
0.3625	0.000136331	634.71704	337.34082	52.297489	504.422982	0.027738245	0.676915595
0.375	0.000137657	643.01392	341.26959	51.95731	511.9028717	0.030682912	0.674763956
0.3875	0.000139097	651.2525	346.17438	52.167381	518.8474861	0.033910573	0.674311359
0.4	0.000140833	658.94885	351.90396	52.259361	525.4164997	0.037533212	0.674456786
0.4125	0.000142895	667.61664	357.27042	51.624954	533.4645103	0.04172495	0.672654565
0.425	0.000145368	677.73871	363.2323	50.813049	542.9293449	0.046589099	0.670304567
0.4375	0.000148282	688.44275	369.32672	49.972504	552.9261628	0.052084386	0.667805847
0.45	0.000151727	700.20227	376.17523	48.651459	564.2568515	0.058237709	0.664608063
0.4625	0.000155739	713.0072	382.32745	47.507217	576.3380825	0.065058134	0.66097886
0.475	0.000160641	723.91003	389.97986	46.613705	586.5691725	0.072608948	0.659486638
0.4875	0.000166476	736.0351	394.30469	45.58321	597.9533595	0.080934405	0.655526601
0.5	0.000173419	747.48755	403.15991	41.584091	611.3852922	0.090078227	0.650016482
0.5125	0.000182223	760.18152	399.55829	44.951591	619.4086529	0.10013007	0.64830189
0.525	0.000193135	762.8598	430.32056	26.543324	638.6566795	0.11124742	0.636608955
0.5375	0.000206146	826.23767	354.84674	41.25983	684.367738	0.12346657	0.595364243
0.55	0.000222222	962.67139	640.76324	-284.27521	1121.193246	0.13565417	0.392189132
0.5625	0.000233916	1627.6042	261.3288	-331.19629	1739.910584	0.14333525	0.29843233
0.575	0.000245837	1778.0802	730.97852	-564.47211	2032.487038	0.15153623	0.318917427
0.5875	0.000264977	1947.2844	527.69354	-78.836029	1801.132404	0.160788	0.443451003
0.6	0.000288054	2037.7711	1191.4258	-184.08649	1942.271977	0.17358957	0.522602815

0.6125	0.000325439	2677.0103	965.19922	123.05686	2254.105609	0.18402234	0.556801238
0.625	0.000377198	2823.6992	1768.156	-46.223988	2514.195976	0.19905485	0.602662012
0.6375	0.000441478	3579.1138	1456.0157	462.6825	2757.363666	0.21198665	0.664621799
0.65	0.000537748	3876.353	2507.8931	90.056381	3320.710464	0.2290218	0.649891296
0.6625	0.000655331	4650.2822	2081.3354	949.86218	3284.236126	0.24526277	0.779631294
0.675	0.000843333	4925.541	3413.7715	495.00848	3900.875496	0.26514384	0.754900704
0.6875	0.001105991	4346.5063	1498.4274	-621.28943	4317.582204	0.28533733	0.40328468
0.7	0.001288272	4367.9717	1799.538	-1723.5562	5296.917985	0.30958501	0.279656555
0.7125	0.0014336	4924.8765	1480.0569	-935.9223	5101.553772	0.33336365	0.357342837
0.725	0.001602606	4468.4629	2103.0815	-1802.917	5485.476507	0.36034757	0.289772906
0.7375	0.001741528	6121.4023	1419.7355	-1308.3998	6509.55938	0.38715261	0.319158212
0.75	0.001865439	4005.6914	2267.2107	-1433.7686	4811.77721	0.41320321	0.335228426
0.7625	0.011492938	1858.8383	936.74731	242.9471	1404.036907	0.72999883	0.721380066
0.775	0.016735323	2109.4438	1418.2144	113.55764	1755.472969	0.82168621	0.691402622
0.7875	0.026041016	3281.4983	1881.4014	1841.8271	1420.283992	0.85628939	1.64397328
0.8	0.059472758	1825.4015	272.13565	182.60187	1599.897424	0.88330191	0.475059419
0.8125	0.076775499	2325.1094	838.72797	818.75787	1496.452069	0.92330176	0.887119457

(e) Fifth node from the tip, denote by number 4

Time step	Void volume	σ1 (MPa)	σ2 (MPa)	σ3 (MPa)	σeq (MPa)	εeq	Т
	fraction, f						
0	0.000125	0	0	0	0	0	0
0.0125	0.000125	15.714476	6.1405969	-0.97419238	9.820792081	0	0.70873036
0.025	0.000125	31.427748	12.281219	-1.9471279	19.64009275	0	0.708785504
0.0375	0.000125	47.132103	18.413208	-2.9174223	29.45108856	0	0.708835018
0.05	0.000125	62.830349	24.539812	-3.8852017	39.25601174	0	0.7088932
0.0625	0.000125	78.522514	30.66107	-4.8504786	49.05489618	0	0.708954753
0.075	0.000125	94.208664	36.777031	-5.8132629	58.84779474	0	0.709017971
0.0875	0.000125	109.88893	42.887814	-6.7735868	68.6348246	0	0.709082005

0.1	0.000125	125.6018	49.021011	-7.7401457	78.44755889	0	0.709104985
0.1125	0.000125	141.39326	55.210407	-8.7229309	88.32363298	0	0.709061776
0.125	0.000125	157.3214	61.502296	-9.7321529	98.30977409	0	0.708954747
0.1375	0.000125	173.39169	67.911232	-10.758465	108.4055318	0	0.708895118
0.15	0.000125	189.65016	74.443306	-11.795715	118.6305543	0	0.708917284
0.1625	0.000125	206.1429	81.083679	-12.849939	129.0081771	0	0.708938628
0.175	0.000125	222.86681	87.787811	-13.922701	139.5271401	0	0.708898927
0.1875	0.000125	239.8119	94.542946	-15.057896	150.2113388	0	0.708550483
0.2	0.000125	257.01361	101.43489	-16.217978	161.0716263	0	0.708236722
0.2125	0.000125	274.51987	108.49569	-17.417675	172.1499963	0	0.707905688
0.225	0.000125	292.36505	115.77697	-18.614965	183.4454189	0	0.707798278
0.2375	0.000125	310.58725	123.18105	-19.970581	195.069735	0	0.707093661
0.25	0.000125	329.15939	130.74985	-21.500402	207.0325817	0	0.705861262
0.2625	0.000125	348.11908	138.44136	-23.254293	219.3785182	0	0.703967661
0.275	0.000125	367.56622	146.36134	-25.31842	232.2470773	0	0.701277774
0.2875	0.000125	387.86069	154.65341	-27.665745	245.8290725	-4.35E-07	0.698111564
0.3	0.000125	411.27164	163.4498	-28.508869	259.9128067	-2.06E-06	0.700507448
0.3125	0.000124998	440.85162	172.00185	-28.497066	276.2941377	-6.45E-06	0.704993127
0.325	0.000124999	471.11655	181.18777	-27.906725	292.8279561	-2.02E-06	0.710767286
0.3375	0.000125007	499.38892	191.52446	-24.949425	307.0006482	2.49E-05	0.723086372
0.35	0.00012503	523.2511	202.89696	-16.14521	315.1046736	9.79E-05	0.751076187
0.3625	0.000125055	547.6319	215.19026	-5.1710978	322.2046846	0.00017873	0.783819622
0.375	0.000125108	565.7453	230.3813	15.129688	320.2589506	0.000359574	0.844375347
0.3875	0.000125228	583.20728	247.88506	38.810162	316.1184776	0.000741406	0.91727476
0.4	0.000125364	598.71936	265.48611	59.662678	312.86356	0.001140554	0.984314215
0.4125	0.000125534	615.97729	284.5647	76.334396	313.4886393	0.001594049	1.038715351
0.425	0.00012575	630.8147	304.10605	89.670822	315.1980844	0.00213398	1.083542511
0.4375	0.000126021	642.3833	325.19629	99.252769	318.3588076	0.00276581	1.117012559
0.45	0.000126337	654.19189	339.34909	110.59085	319.2042801	0.003466273	1.153004412
0.4625	0.000126747	662.70392	352.30728	117.90676	321.1147195	0.004331987	1.17602619
0.475	0.000127257	666.78595	363.04065	120.47429	323.9861561	0.005369384	1.183487698

0.4875	0.000127861	667.59656	369.07852	119.88217	326.5781458	0.006573185	1.180480348
0.5	0.000128578	665.56049	373.72421	115.99025	330.1649746	0.00798649	1.166361303
0.5125	0.000129402	664.04297	373.73187	112.9366	331.8920419	0.00960491	1.155708579
0.525	0.000130337	663.05603	371.43674	110.01721	332.9548761	0.011442889	1.145810901
0.5375	0.000131379	665.20081	366.30737	110.0965	332.1303033	0.013489792	1.145739758
0.55	0.000132549	666.97406	363.27826	109.44352	332.4838709	0.015775399	1.142607647
0.5625	0.000133832	668.80872	363.63571	108.69274	334.0045826	0.018274788	1.138843826
0.575	0.000135396	670.81573	362.06256	106.9809	335.7510254	0.021140473	1.131651237
0.5875	0.000137179	676.43164	363.67365	104.50686	340.6963147	0.024386954	1.119875287
0.6	0.000139136	685.04102	363.57797	101.30593	347.0641999	0.028092502	1.104430554
0.6125	0.000141311	689.36127	363.51874	93.507355	354.9512765	0.032261845	1.076567819
0.625	0.00014382	699.07556	363.79221	93.437119	359.5787225	0.036954824	1.071907037
0.6375	0.000146848	703.0368	360.84912	86.584862	365.7383241	0.042324953	1.048537261
0.65	0.000150219	711.98413	363.073	83.242699	373.0573901	0.048178397	1.034961251
0.6625	0.000154345	727.6637	364.09241	80.430786	382.8226057	0.055016026	1.020652802
0.675	0.000158679	754.29083	368.20822	73.18396	401.9528654	0.061900571	0.991561543
0.6875	0.000162903	777.43597	394.7439	40.25811	445.9629703	0.068346068	0.906232177
0.7	0.00016783	815.6178	338.29205	15.484644	467.0335893	0.075341165	0.834625546
0.7125	0.000171926	826.65662	482.77094	16.209854	526.1203458	0.081533089	0.839882247
0.725	0.000177463	944.79175	404.79507	66.439285	510.1743351	0.087935627	0.925190997
0.7375	0.000184156	992.27954	657.45007	-69.644447	764.6637226	0.095645718	0.688793046
0.75	0.000190126	1091.9321	534.81281	20.762522	647.6346234	0.10152292	0.847961372
0.7625	0.000373446	936.82721	519.92706	134.96407	484.8658186	0.19452222	1.094267238
0.775	0.000465219	952.20776	528.62189	132.00792	497.0014065	0.22015394	1.081712277

TIME	SEMESTER 1													
PROJECT ACTIVITIES	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14
Discuss on the title														
Discuss on the objectives and														
scopes														
Literature study														
Discuss on methodology														
& simulation														
Finalize chapter 1,2														
and 3														
Report submission														
and presentation														

Planning schedule	
Actual schedule	

TIME	SEMESTER 2														
PROJECT	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week	Week	Week	Week	Week	Week
Detail study	-	_					-								
on GTN															
model															
Analysis in															
Marc															
Analysis with															
defect															
Comparison															
between															
methods															
Result															
analysis															
Report															
witting															
Report															
and															
presentation															