RESERVOIR SYSTEM MODELLING USING NONDOMINATED SORTING GENETIC ALGORITHM IN THE FRAMEWORK OF CLIMATE CHANGE

NURUL NADRAH AQILAH BINTI TUKIMAT

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > SEPTEMBER 2014

ABSTRAK

Sistem takungan memerlukan pembangunan model yang berterusan untuk mendapatkan operasi yang optima dalam konteks perubahan iklim pada masa akan datang. Statistik bagi variasi perubahan iklim dan percambahan kaedah evolusi telah mendorong pembangunan sistem operasi takungan mampan dan jangka panjang. Matlamat kajian ini ialah untuk membentuk dan merumuskan satu sistem operasi dan pengurusan takungan jangka panjang yang mampan bersesuaian dengan perubahan iklim menggunakan model yang bersepadu. Model ini terdiri daripada kaedah Tidak Dominasi Pengisihan Algoritma Genetik jenis II (NSGA-II), Pengaturcaraan Linear (LP), model Penurunan Skala Statistik (SDSM) dengan Kepelbagaian Linear Kolerasi Matrik (M-CM), model hidrologi dan model tanaman. Terdapat dua kumpulan model dicadangkan dikenali sebagai Model A dan Model B. Model A adalah gabungan kaedah NSGA-II dengan M-CM, model hidrologi dan model tanaman yang mengambilkira variasi iklim. Manakala, Model B pula tidak mengambilkira faktor perubahan iklim dengan menggunakan kaedah Valencia Schaake (VS) dan kaedah Thomas Fiering (TF). Kebolehpercayaan, keanjalan, dan kelemahan model tersebut telah dinilai. Modelmodel ini telah diaplikasikan keatas sistem takungan Pedu-Muda yang berfungsi membekalkan air untuk tujuan pertanian bagi Rancangan Pengairan Muda, Kedah, Malaysia. Kemasukkan M-CM sebagai alat penyaringan di dalam model SDSM adalah berjaya menghasilkan nilai yang rendah dalam purata ralat mutlak (MAE = 4mm/hari), purata ralat kuasa dua (MSE = 29mm/hari), and sisihan piawai (St.D = 1mm/hari). Dijangkakan hujan dan suhu masa depan akan meningkat sebanyak 4% dan 0.2°C pada setiap dekad. Keperluan isipadu air untuk penanaman padi dijangka akan menurun sebanyak 0.9 % setiap dekad. Ini kerana peningkatan kuantiti hujan dan air larian tidak terkawal ke bendang. Aliran masuk sintetik yang dijana menggunakan model VS dan TF menghasilkan perbezaan sebanyak +0.4% dan -1.3% daripada rekod sejarah. Model NSGA-II dan LP juga telah berjaya membentuk sistem operasi takungan yang mampan bagi jangka masa panjang. Tambahan lagi, model NSGA-II telah berjaya memenuhi kepelbagaian permintaan dalam objektif dan menyediakan satu set penyelesaian alternatif dalam bentuk lengkung Pareto optima dengan mengambilkira corak iklim. Pembentukan corak lengkung operasi bagi Model A adalah lebih tinggi secara konsisten daripada Model B dengan julat 1% hingga 5%. Penilaian kebolehpercayaan, keanjalan, dan kelemahan menunjukkan kaedah Model A-NSGA-II adalah baik dan berpotensi untuk dijadikan sebagai panduan operasi bagi bekalan air yang mencukupi sepanjang tahun. Model B (VS) adalah model kedua terbaik diikuti Model B (TF). Kesimpulannya, penemuan ini menyumbang kepada pembangunan model dengan menggunakan evolusi algoritma dan kaedah statistik bagi merancang dan mengurus sumber air secara mampan dalam konteks perubahan iklim masa hadapan.

TABLE OF CONTENT

1

TITLE

PAGE

DEC	CLARATION	ii
DED	DICATION	iii
ACK	KNOWLEDGEMENT	iv
ABS	TRACT	v
ABS	TRAK	vi
TAB	SLE OF CONTENTS	vii
LIST	Г OF TABLES	xiii
LIST	Γ OF FIGURES	XV
LIST OF SYMBOLS		
LIST	Γ OF ABBREVATIONS	xxiv
LIST	Γ OF APPEDICES	xxvii
INT	RODUCTION	1
1.1	Introduction and Background	1
1.2	Statement of the Problem	6
1.3	Objectives of the Study	11
1.4	Scope of the Study	11

1.5	The Importance of the Study	12
1.6	Structure of the Thesis	13

2	LITERATURE REVIEW		
	2.1	Introduction	15

Clima	te Model Prediction	18
2.2.1	General Circulation Model (GCMs)	18
2.2.2	Dynamical Downscaling (DD)	20
2.2.3	Statistical Downscaling (SD)	21
	2.2.3.1 Predictors Selection in SDSM Model	23
2.2.4	Emission Scenarios	24
Rainfa	ll-Runoff Modelling	26
2.3.1	Conceptual-metric of Rainfall-Runoff Model	
	- IHACRES Model	28
2.3.2	Conventional Streamflow Model	29
	2.3.2.1 Disaggregation Methods	30
	2.3.2.2 Aggregation Methods	31
Crop V	Water Requirement (CWR)	32
2.4.1	Crop Modelling	34
Reserv	oir Operation and Management for Crop	35
2.5.1	Optimization Models in Reservoir Operations	38
2.5.2	Linear Programming (LP)	39
2.5.3	Multi-objective Evolutionary Algorithm (MOEAs)	41
2.5.3.1	Nondominated Sorting Genetic Algorithm type II	
	(NSGA-II)	42
Rule-C	Curve Operation	44
Summ	ary of Literature Review	45
2.7.1	Summary on the Climate Change and Downscaling	
	Model	45
2.7.2	Summary on the Synthetic Inflow Model	46
2.7.3	Summary on the Crop Management	47
2.7.4	Summary on the Reservoir Optimization	
	Management	47
2.7.5	Summary on the Rule-Curves Operation	48

2.2

2.3

2.4

2.5

2.6 2.7

MET	HODO	LOGY	49
3.1	Introd	uction	49
3.2 Statistical Downscaling Model (SDSM)		51	
	3.2.1	Predictors Selection using Multi-Correlation Matrix (M-CM)	54
]	METI 3.1 3.2	METHODO 3.1 Introd 3.2 Statist 3.2.1	 METHODOLOGY 3.1 Introduction 3.2 Statistical Downscaling Model (SDSM) 3.2.1 Predictors Selection using Multi-Correlation Matrix (M-CM)

		3.2.1.1	Multi-Correlation Matrix Analysis	
			(M-CM)	56
	3.2.2	Perform	ance of M-CM Analysis	58
	3.2.3	Calibrat	ion and Validation Processes for SDSM	
		Model		59
3.3	Rainfa	all-Runof	f Model	60
	3.3.1	IHACR	ES Model due to Climate Simulation	61
		3.3.1.1	Calibration and Validation Processes	
			for IHACRES Model	63
3.4	Time	Series Str	reamflow Model	64
	3.4.1	Valencia	a-Schaake Model (VS)	64
	3.4.2	Thomas	Fiering Model (TF)	66
3.5	Crop	Model		67
	3.5.1	Crop W	ater demand (CWD)	70
3.6	Reser	voir Optin	nization Model	70
	3.6.1	Objectiv	ves Model	71
	3.6.2	Constra	int Model	73
	3.6.3	Nondon	ninated Sorting Genetic Algorithm Type II	
		(NSGA-	-II)	74
		3.6.3.1	Populations	76
		3.6.3.2	Nondominated Sorting Operation	76
		3.6.3.3	Crowding Distance Sorting	78
		3.6.3.4	Crossover	79
		3.6.3.5	Mutation	80
		3.6.3.6	Optimization of NSGA-II	80
	3.6.4	Linear F	Programming (LP)	81
3.7	Rule-	Curves O _J	perations for Pedu-Muda Reservoir	82
3.8	Perfor	mance Ev	valuation	84
	3.8.1	Reliabil	ity	84
		3.8.1.1	Volumetric Reliability	84
		3.8.1.2	Periodic Reliability	85
		3.8.1.3	Shortage Index	85
	3.8.2	Resilien	ce	86
	3.8.3	Vulnera	bility	86
3.9	Descr	iption of t	the Study Area	87

		3.9.1	Reservoir System in Muda Irrigation	
			Scheme	88
			3.9.1.1 Pedu Reservoir	89
			3.9.1.2 Muda Reservoir	89
		3.9.2	Climate Pattern of Muda Irrigation Scheme	92
		3.9.3	Water Supply and Demand	94
1	DECI	TT TS A	ND DISCUSSION	100
-	4 1	Introd		100
	4.2	Calibr	ration of SDSM Model at Study Area	100
	1.2	4 2 1	Temperature Simulation	102
		4.2.2	Rainfall Simulation	102
			4.2.2.1 Predictors Selection Performance by M-CM	108
		4.2.3	The Calibrated and Validated Performance	112
	4.3	Histor	rical Rainfall Trend in Kedah	121
		4.3.1	Historical Wet Day Length	123
		4.3.2	Historical Dry Day Length	123
	4.4	Rainfa	all Trend in the Future Year 2010 to 2099	125
		4.4.1	Rainfall Trend at Pedu-Muda Reservoir	130
		4.4.2	Prediction of Wet Length in the Future Year	131
		4.4.3	Prediction of Dry Length in the Future Year	136
	4.5	Inflow	v Prediction	138
		4.5.1	Inflow Simulation using Rainfall-Runoff Model	139
		4.5.2	Future Inflow Trend	143
		4.5.3	Time Series Inflow Models	146
			4.5.3.1 Valencia Schaake Method (VS model)	150
			4.5.3.2 Thomas-Fiering Method (TF model)	153
	4.6	Crop	Water Demand (CWD) using CROPWAT model	156
		4.6.1	Simulated of Historical CWD for Paddy Field	156
		4.6.2	Generated Future CWD Incorporating	
			Climate Change	157
		4.6.3	Estimated Historical Average Water Demand	159
	4.7	Optim	nization of Reservoir with NSGA-II model	160
		4.7.1	Optimization with Model A	162

		4.7.1.1 The Formation of Rule-Curve Operation	
		for Pedu Reservoir	167
		4.7.1.2 The Reservoir Optimization in the Future	
		Year 2010 to 2099	170
	4.7.2	Optimization with Model B	174
		4.7.2.1 Valencia Schaake (VS) and Thomas-Fieri	ng
		(TF) models using NSGA-II Optimization	1
		Model	175
4.8	Linea	r Programming Optimization (LP model)	180
	4.8.1	Optimization with Model A	180
		4.8.1.1 The Formation of Reservoir Rule-Curve	183
		4.8.1.2 Reservoir Rule-Curve for the Future	
		Year (2010 to 2099)	186
	4.8.2	Optimization with Model B	189
		4.8.2.1 Valencia Schaake (VS) and Thomas-	
		Fiering (TF) models	190
4.9	Perfor	rmance Evaluation	194
	4.9.1	Reliability	194
	4.9.2	Resiliency	198
	4.9.3	Vulnerability	199
4.10	Calib	ration SDSM using M-CM Analysis	200
4.11	Futur	e Climate Trend Prediction using Hydrologic Mode	ls 201
4.12	Reser	voir System Modelling with Climate Change	
	Adapt	tation	205
CON	CLUSI	ON AND RECOMMENDATION	212
5.1	Concl	lusions	212
	5.1.1	Best Predictor-Predictand Relationships using	
		M-CM	213
	5.1.2	Projection of Future Hydrological Trends	213
	5.1.3	Performances of NSGA-II and LP models	215
	5.1.4	Optimal Rule-Curve With and Without Climate	
		Change Adaptation	216

5.2	Implication/Contribution of Findings	217
5.3	Recommendation	217
REFERENCES		218
Appendices A - F		245 - 266

LIST OF TABLES

TITLE

TABLE NO.

2.1 23 Comparison characteristics of SD and DD 2.2 Greenhouse gasses lifetime and global warming potential (GWP) 26 2.3 Comparison characteristics between NSGA and NSGA-II model 44 3.1 List of predictors and predictand for M-CM analysis 55 3.2 List of statistical equations 59 3.3 The parameters in NSGA-II 72 3.4 Properties of Pedu-Muda reservoir 91 Selection of rainfall stations at Kedah state 3.5 95 Meteorological parameters at AlorSetar, Kedah 97 3.6 4.1 Performance of calibration and validation results of temperature using SDSM model 104 4.2 M-CM analysis between rainfall station and climate variable during year 1961 to 1990 110 4.3 MAE for monthly mean rainfall during year 1961 to 1990 (mm/day) 118 4.4 MSE for monthly mean rainfall during year 1961 to 1990 (mm/day) 120 4.5 St.D for monthly mean rainfall during year 1961 to 1990 (mm/day) 121 4.6 Calibrated model parameters value for IHACRES model 138 Evaluation for calibration and validation process using 4.7

IHACRES model

PAGE

4.8	The transformation agent for normality	147
4.9	Average monthly CWD	160
4.10	Selection of optimal solutions at point I, II, and III of the	
	Pareto front	164
4.11	Model performance based on periodic reliability during	
	Year 1997 to 2008	196
4.12	Model performance based on resiliency in year 1997	
	to 2008	198
4.13	Model performance based on vulnerability in year 1997	
	to 2008	199

LIST OF FIGURES

FIGURE NO. TITLE

PAGE

3.1	Integrated reservoir system modelling methods	52
3.2	Schematic diagram of SDSM	56
3.3	Basic concept of runoff model by IHACRES	62
3.4	Schematic diagram of crop water demand analysis	70
3.5	Flow Diagram of NSGA-II	75
3.6	Pareto front for two objectives functions	76
3.7	The generation of new offspring	79
3.8	Upper bound (UB) and lower bound (LB) of estimated	
	crop water demand (CWD _{est})	81
3.9	Location of Pedu-Muda reservoir in Kedah state	
	of Malaysia	90
3.10	Hierarchical flow of water supply	91
3.11	Average 30-years monthly rainfall at Kedah for year	
	1961 to 1990	96
3.12	Average monthly rainfall at station 61 for year	
	1997 to 2008	96
3.13	Average monthly rainfall at station 66 for years	
	1997 to 2008	97
3.14	Average monthly temperature at station Alor Setar	98
	year 1972 to 2001	
3.15	Average monthly evapotranspiration and evaporation	
	year 1972 to 2001	98
3.16	Net inflow record of Pedu-Muda reservoir during year	
	1970 to 2000	

3.17	Uncontrolled flow record of Muda Irrigation Scheme	
	area during year 1975 to 1994	99
3.18	Water demand record of Muda Irrigation Scheme	
	area during year 1997 to 2008	99
4.1	Results of calibrated (1972 to 1986) and validated	
	(1987 to 2001) minimum temperature at Alor Setar	
	station using SDSM model	104
4.2	Results of calibrated (1972 to 1986) and validated	
	(1987 to 2001) mean temperature at Alor Setar	
	station using SDSM model	104
4.3	Results of calibrated (1972 to 1986) and validated	
	(1987 to 2001) maximum temperature at Alor Setar	
	station using SDSM model	105
4.4	Result of simulated minimum temperature result at	
	Alor Setar station during 1972 to 2001	106
4.5	Result of simulated mean temperature at Alor Setar	
	station during 1972 to 2001	106
4.6	Result of simulated maximum temperature at	
	Alor Setar station during 1972 to 2001	106
4.7	Projection of temperature trend for year 2010 to 2039	
	using SDSM model	107
4.8	Projection of temperature trend for year 2040 to 2069	
	using SDSM model	107
4.9	Projection of temperature trend for year 2070 to 2099	
	using SDSM model	107
4.10	Results of (a) calibrated (1961 to 1975) and	
	(b) validated (1976 to 1990) of rainfall amount for 20	
	rainfall stations using SDSM model	113
4.11	Results of (a) calibrated (1970 to 1989) and validated	
	(1990 to 2008) rainfall amount at station 61 (Pedu Dam)	
	using SDSM model	116
4.12	Results of (a) calibrated (1970 to 1989) and validated	
	(1990 to 2008) rainfall amount at station 66 (Muda Dam)	

	using SDSM model	117
4.13	Distribution of observed average annual rainfall depth	
	in Kedah	122
4.14	Observed monthly wet length distribution at Kedah	
	during year 1961 to 1990 using SDSM model	124
4.15	Average 20 records stations of maximum dry spell in	
	Kedah during year 1961 to 1990 using SDSM model	125
4.16	Annual rainfall distributions in Kedah year 2010 to 2039	127
4.17	Annual rainfall distributions in Kedah year 2040 to 2069	128
4.18	Annual rainfall distributions in Kedah year 2070 to 2099	129
4.19	Prediction of monthly average rainfall at station 61	
	using SDSM model	131
4.20	Prediction of monthly average rainfall at station 66	
	using SDSM model	131
4.21	Wet length distribution in Kedah during year 2010 to	
	2039 using SDSM model	133
4.22	Wet length distribution in Kedah during year 2040 to	
	2069 using SDSM model	134
4.23	Wet length distribution in Kedah during year 2070 to	
	2099 using SDSM model	135
4.24	Maximum monthly dry length at 20 locations during	
	year 2010 to 2039 using SDSM model	136
4.25	Maximum monthly dry length at 20 locations during	
	year 2040 to 2069 using SDSM model	137
4.26	Maximum monthly dry length at 20 locations during	
	year 2070 to 2099 using SDSM model	137
4.27	Result of calibration (1988 to 1993) and validation	
	(1995 to 2000) for streamflow simulation using IHACRES	
	model	141
4.28	Error of simulated results in year 1995 to 2000 using	
	IHACRES model	141
4.29	Comparison of mean between historical and simulated	
	Result during year 1995 to 2000 using IHACRES model	141

4.30	Comparison of St.D between historical and simulated	
	result during year 1995 to 2000 using IHACRES model	142
4.31	Comparison of skewness between historical and simulated	
	result during year 1995 to 2000 using IHACRES model	142
4.32	Correlation coefficient (r) of simulated inflow during	
	1995 to 2000 for Pedu-Muda reservoir using IHACRES	
	model	142
4.33	Generated monthly inflow time series during year 2010 to	
	2099 using IHACRES model	144
4.34	Comparison monthly inflow of Pedu-Muda reservoir	
	during year 2010	145
4.35	Comparison monthly inflow of Pedu-Muda reservoir	
	during year 2011	145
4.36	Comparison monthly inflow of Pedu-Muda reservoir	
	during year 2012	145
4.37	Comparison of historical monthly mean of Pedu-Muda	
	inflow during year 1972 to 2000	148
4.38	Comparison of historical annual of Pedu-Muda inflow	
	during year 1972 to 2000	148
4.39	Comparison of St.D of Pedu-Muda inflow during year	
	1972 to 2000	149
4.40	Error dispersion between untransformed data and	
	historical data during year 1972 to 2000	149
4.41	Error dispersion between transformed data and	
	historical data during year 1972 to 2000	149
4.42	Comparison of monthly skewness of Pedu-Muda inflow	
	during year 1972 to 2000	150
4.43	Monthly lag one monthly correlation using VS model	
	during year 1972 to 2000	151
4.44	Monthly annual to monthly correlation using VS model	
	during year 1972 to 2000	152
4.45	Generated 100 samples of annual synthetic inflow of	
	Pedu-Muda reservoir using VS model	152

4.46	Box plot for average generated monthly inflow using	
	VS model based on 100 samples of synthetic inflow	153
4.47	Monthly lag one monthly correlation using TF model	
	during year 1972 to 2000	154
4.48	Generated 100 samples of annual synthetic inflow of	
	Pedu-Muda reservoir using TF model	155
4.49	Box plot for average generated monthly inflow using	
	TF model based on 100 samples of synthetic inflow	155
4.50	Simulated of CWR for Muda Irrigation Scheme during	
	year 1997 to 2008 using CROPWAT model	158
4.51	Simulated of CWD for Muda Irrigation Scheme during	
	year 1997 to 2008 using CROPWAT model	158
4.52	Predicted of CWD during year 2010 to 2099 (90 years)	
	using CROPWAT model	159
4.53	Pareto optimal solutions for each population in year 2000	
	Using NSGA-II model	161
4.54	The point location in the optimal line using NSGA-II	
	Model	163
4.55	Optimum water release for Model A-NSGA-II model	
	during year 1997 to 2008	165
4.56	Minimum, average and maximum optimum water release	
	for Model A-NSGA-II model	166
4.57	Comparison between optimum water release and simulated	
	CWD for Model A-NSGA-II model	167
4.58	Comparison between historical water release and optimum	
	water release for Model A-NSGA-II model	167
4.59	Rule-curves of reservoir operation using	
	Model A-NSGA-II during year 1997 to 2008	168
4.60	Comparison performance of water release, storage,	
	spill, and water transfer between Model A-NSGA-II	
	with the historical record (1997 to 2008)	169
4.61	Optimal water release using Model A-NSGA-II	
	(year 2010 to 2099)	171

4.62	Curves of optimum water release using Model A-NSGA-II	
	(year 2010-2099)	172
4.63	Comparison between optimum water release and	
	water demand for Model A-NSGA-II in period year	
	2010 to 2099	173
4.64	Rule-curve of reservoir operation for Model A-NSGA-II	
	in period year 2010 to 2099	173
4.65	Pareto optimum set for Model B-NSGA-II for sample 1	175
4.66	Optimal water release for Model B (a) VS-NSGA-II and	
	(b) TF-NSGA-II for 100 samples	178
4.67	Minimum, average and maximum of optimal water release	
	for Model B (a) VS-NSGA-II and (b) TF model-NSGA-II	
	for 100 samples	179
4.68	Rule-curves of reservoir operation for Model B for	
	VS-NSGA-II	179
4.69	Rule-curves of reservoir operation for Model B for	
	TF-NSGA-II	180
4.70	Optimal water release for Model A-LP during year 1997	
	to 2008	182
4.71	Curves of optimum water release using Model A-LP	
	during year 1997 to 2008	182
4.72	Comparison between historical and optimum water	
	release for Model A-LP during year 2003 to 2008 (6 years)	183
4.73	Rule-curves of reservoir operation for Model A-LP during	
	year 1997 to 2008	185
4.74	Comparison performance between historical and proposed	
	reservoir operation using Model A-LP in year	
	1997 to 2008	185
4.75	The monthly optimum release for Model A-LP during	
	year 2010 to 2099	188
4.76	Curves of optimum water release for Model A-LP during	
	year 2010 to 2099	189
4.77	Rule-curve of reservoir operation for Model A-LP	

	during year 2010 to 2099	189
4.78	Optimum water release for Model B using (a) VS-LP	
	and (b) TF-LP	192
4.79	Curves of optimum water release for Model B using	
	(a) VS-LP and (b) TF-LP	192
4.80	Rule-curves of reservoir operation for Model B of VS-LP	
	model	193
4.81	Rule-curves of reservoir operation for Model B of TF-LP	
	model	193
4.82	Monthly of reliability performance of optimization model	
	During year 1997 to 2008	197
4.83	Comparison rule-curve operations using NSGA-II model	
	between Model A and Model B (VS Model)	211
4.84	Comparison rule-curve operations using LP model	
	between Model A and Model B (VS Model)	211

LIST OF SYMBOLS

P, <i>r</i> _k	-	quantity of rainfall (mm)
t_k	-	Temperature reading (⁰ C)
Cov	-	covariance
Ν	-	number of variable / population
\overline{xy}	-	mean variables
S _X	-	standard deviation for x
s _y	-	standard deviation for y
S_k	-	soil moisture index
r_{xy}	-	correlation matrix
u_k , P_e , P_{eff}	-	effective rainfall (mm)
$ au_w$	-	Catchment drying time constant
R	-	reference temperature (⁰ C)
С	-	proportion of rainfall
f	-	temperature modulation factors
x_k	-	streamflow (MCM)
D	-	Determination coefficient
Y_t	-	Seasonal flow (MCM/month)
Q_t	-	Annual flow (MCM/year)
I_t	-	value of random deviate
W _{irr}	-	irrigation water requirement
W_{lp}	-	water required for land preparation
W_{ps}	-	persolation and seepage losses
W_t	-	water required to establish standing water layer
K_c	-	crop coefficient

	٠	٠	٠
vv	1	1	1
$\Lambda\Lambda$	1		.1

e _s	-	saturation of water vapour
e _a	-	actual water vapour
Δ	-	slope
u ₂	-	wind speed
G	-	soil heat flux density
γ	-	psychrometric constant
R_n	-	radiation
R_t	-	Water release
S_t	-	reservoir storage
D_t	-	Water demand
I_t	-	water inflow
Sp_t	-	water spill
S _{muda}	-	water storage in the Muda reservoir
Eva_t	-	Evaporation
See_t	-	Evaporation

LIST OF ABBREVIATIONS

MADA	-	Muda Agriculture Development Authority
NSGA	-	Nondominated sorting genetic algorithm
LP	-	Linear Programming
NLP	-	Non-linear Programming
TF	-	Thomas Fiering
GCM	-	General circulation model
RCM	-	Regional Climate Model
NCEP	-	National Centers for Environmental Prediction
SWG	-	Stochastic Weather Generator
WT	-	Weather Typing
DP	-	Dynamical programming
SD	-	Statistical Downscaling
CLS	-	Classical Least Square
MLR	-	Multiple Linear Relationship
AR	-	Autoregression
ARMA	-	Autoregression Moving Average
CWR	-	Crop Water Requirement
CWD	-	Crop Water Demand
ET	-	Evapotranspiration
ETc	-	Evapotranspiration of crop
MOEA	-	Multi-objective evolutionary algorithm
MSL	-	Mean sea level
KOD	-	Kodiang
JIT	-	Jitra
LTP	-	Ladang Tanjung Pauh

KN	-	Kuala Nerang
AP	-	Ampang Pedu
GM	-	Gajah Mati
TC	-	Teluk Chengai
KT	-	Keretapi Tokai
KS	-	Kuala Sala
Kg.LB	-	Kampung Lubuk Badak
LH	-	Ladang Henrietta
SL	-	Sungai Limau
KP	-	Kedah Peak
SG	-	Sungai Gurun
SIK	-	Sik
Kg.LS	-	Kampung Lubuk Segintah
PEN	-	Pendang
IBT	-	Ibu Bekalan Tupah
KSS	-	Kota Sarang Semut
Kg.T	-	Kampung Terabak
mlsp	-	mean sea level pressure
p_f	-	surface airflow strength
p_u	-	surface zonal velocity
p_v	-	surface meridional velocity
p_z	-	surface vorticity
p_th	-	surface wind direction
p_zh	-	surface divergence
p5_f	-	500hpa airflow strength
p5_u	-	500hpa zonal velocity
p5_v	-	500hpa meridional velocity
p5_z	-	500hpa vorticity
p500	-	500hpa geopotential height
p5th	-	500hpa wind direction
p5zh	-	500hpa divergence
p8_f	-	850hpa airflow strength
p8_u	-	850hpa zonal velocity

p8_v	-	850hpa meridional velocity
p8_z	-	850hpa vorticity
p850	-	850hpa geopotential height
p8th	-	850hpa wind direction
p8zh	-	850hpa divergence
r500	-	relative humidity at 500hpa
r850	-	relative humidity at 850hpa
rhum	-	near surface relative humidity
shum	-	surface specific humidity
temp	-	mean temperature
MCM	-	$x10^6$ cubic meter
MAE	-	Mean absolute error
MSE	-	Mean square error
StD	-	Standard deviation
N-E	-	North-East monsoon
S-W	-	South-West monsoon
M-CM	-	multi-correlation matrix
ARPE	-	Average Relative Parameter Error (%)

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Simulated of H3A2 Results for Remaining 19 Rainfall Stations at Kedah	245
В	Prediction the Future Monthly Rainfall for Remaining 19 Locations of Rainfall Station at Kedah	248
С	Generated Monthly Inflow for 100 Samples using VS Model	254
D	Generated Monthly Inflow for 100 Samples using TF model	259
E	Generated Monthly Water Demand in the Future Year	264
F	Nondominated Solutions for Pedu-Muda Reservoir Operation with Five Different Populations for Model A	265
		200

CHAPTER 1

INTRODUCTION

1.1 Introduction and Background

Global climate change is a pressing issue that needs an aggressive attention and action from the global authorities. Karl *et al.* (2009) classified the climate warm as unequivocal and had become greater than over the last century. Increment of the greenhouse gases emission such as carbon dioxide, methane, nitrous oxide, sulphur hexafluoride, CFC, and water vapor into the atmosphere could ruin the earth's life year by year. A major contaminant is carbon dioxide (CO₂) that comes from human activities such as burning of fossil fuel, clearing forest, animal husbandry and agricultural practices at least 5 times greater than natural effects from the sunrise. A report by United States Environmental Protection Agency (EPA) stated that the electricity is the largest single source of CO₂ in range 38 % followed by transportation (31 %), industry (14 %), residential & commercial (10 %) and others (6 %) during year 1990 to 2011. This is supported by a report from National Oceanic and Atmospheric Administration (NOAA) which stated that the increment of monthly CO₂ achieved 395 ppm in August 2013, 45 ppm higher than CO₂ safety limit while an annual reading of year 2012 is 394 ppm (+0.6 % than year 2011).

Intergovernmental Panel on Climate Change AR4 (IPCC, 2007) reported that the global average surface temperature for the past 100 years had increased from 0.6 $^{\circ}$ C (1901 - 2000) to 0.74 $^{\circ}$ C (1906 - 2005). The World Meteorological Organization (WMO) claimed that the year of 2010 is the warmest year achieved with temperature of 1.2 $^{\circ}$ C to 1.4 $^{\circ}$ C especially in Africa, parts of Asia and parts of the Arctic.