THE EFFECT OF ONLINE TEACHING APPROACH IN ENHANCING STRATEGIC THINKING SKILLS FOR ENGINEERING STUDENTS

NAJAH BINTI OSMAN

Thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy in Technology Management.

Faculty of Technology
UNIVERSITY MALAYSIA PAHANG

APRIL 2014
ABSTRACT

This research examines the effect of utilising strategic thinking skills in process based learning and its employment of self regulation towards learning performance. This research links online learning to strategic thinking skills by exploring at how strategies can manage learning performance and self regulation. This research used a pre-post test quasi experimental as the main data gathering method. Motivated Strategies for Learning Questionnaires (MSLQ) was used to investigate motivation and learning strategies. This study expands previous research by including in its outcome, the use of thinking strategies as means to inculcate strategic thinking skills. It also sustained the conduct of enhancing strategic thinking skills strategies through self regulation as established in the research. It also measures online learning and conventional approach. Based on the pilot test outcome, the main study tested the hypothesis that using strategic thinking skills would assist engineering students in self regulation practice and to perform better in process based learning. Results from test scores and questionnaires supported the hypothesis. Results supported that students using the online taxonomy performed better than those who did not engage in self regulation practice. This research has come out with innovative study, unlike previous study that was done through classroom contact. As such, this study experience students learning through online system. Software was build to manage the teaching and learning contact. As a result, the study has identified new approaches that help established strategic thinking skills. The incorporated domain of metacognition in the six levels of strategies used for establishing strategic actions (taxonomy) and self regulation practice through think aloud protocols in process based learning contributed significantly to the study. Whereby, both are done through online intervention. The approaches have shown positive effects on process based learning that is predominant in engineering environment. This study also looked at students’ learning performance, motivation, learning strategies and learning condition with the use of strategic thinking skills taxonomy. The findings indicate that strategic thinking skills help to enhanced metacognitive through self regulation and are suitable for students who were more attemptive in learning. Hence, through the findings a taxonomy of six thinking skills has been proposed to explain the strategic cognitive processes. The taxonomy takes into account the strategies used for cognitive processes, metacognitive process and self regulation practice in an online learning approach.

Oleh itu kajian mendapati bahawa penggunaan pemikiran strategik dapat menguatkan metakognitif dan pembelajaran kendiri serta sesuai bagi pelajar yang “attemptive” suka membuat banyak cubaan atau mengulang kaji kaedah yang digunakan. Hasil dari kajian ini maka satu taksonomi telah di usulkan untuk menerangkan proses pemikiran secara berstrategi. Taksonomi ini mengambil kira strategi yang digunakan untuk proses pemikiran, metakognitif dan pembelajaran kendiri.
TABLE OF CONTENTS

TITLE PAGE i
DECLARATION OF THESIS AND COPYRIGHT ii
SUPERVISOR’S DECLARATION iv
STUDENT’S DECLARATION v
ACKNOWLEDGEMENTS vii
ABSTRACT viii
ABSTRAK ix
TABLE OF CONTENTS x
LIST OF TABLES xviii
LIST OF FIGURES xx
LIST OF ILLUSTRATIONS xxi
LIST OF ABBREVIATIONS xxii

CHAPTER 1 INTRODUCTION

1.1 Introduction 1
1.2 Background of Research 2
1.3 Educational Concerns Related to the Problem 3
 1.3.1 Technology Literacy and Thinking Engagement 3
 1.3.2 The Role of Online Learning as Cognitive Tools 7
 1.3.3 Emphasis of Thinking Skills in Engineering Education 8
1.4 Statement of Problem 9
1.5 The Research Objectives 11
1.6 The Research Questions 11
1.7 Hypothesis 12
1.8 Significance of the Research 12
1.9 Scope of Study 13
1.10 Limitation of Study 14
1.11 Definition of Terms 16
 1.11.1 Strategic Thinking 16
 1.11.2 Strategic Thinking Taxonomy 16
CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 20
2.2 Importance of Online Learning 20
2.3 The Instructional Approach on Teaching and Learning in Enhancing Strategic Thinking Skills 21
 2.3.1 Strategic Approach 22
 2.3.2 Constructive Approach 23
 2.3.3 Thinking Aloud Protocol 24
 2.3.4 Self Regulated Learning 25
2.4 Previous Study on the Effect of Online Learning in Enhancing Strategic Thinking Skills 26
 2.4.1 Online Learning 26
 2.4.2 Strategic Thinking Skills 29
 2.4.2.1 Metacognition 32
 2.4.2.2 Strategic Thinking Skills Taxonomy 34
 2.4.3 Metacognitive Elements in the Strategic Thinking Skills Learning in Online Learning Approach 36
2.5 Infusing Cognitive Processes in Strategic Thinking Skills Taxonomy in Related to its Theories, Approach to Learning and Research Empirical 39
 2.5.1 Infusing Cognitive Processes in Strategic Thinking Skills 39
 2.5.2 The Importance of Learning Using Strategic Thinking Skills 45
 2.5.3 Types of Strategies and Learning Approaches 46
 2.5.4 The Strength and Weaknesses of Using Different Types of Strategies 48
2.6 Building Strategic Thinking Skills Taxonomy into Learning Strategies and Insight into the Taxonomy Features and Content 52
2.6.1 Pedagogical Background of Strategic Thinking Skills 53
2.6.2 Theories of Cognitive Processing in Strategic Thinking Skills 55
2.6.3 Models Of Strategic Thinking Skills Process And Empirical Research 57
2.6.4 Theories That Underpin Metacognitive With Strategic Thinking Skills 61
2.6.5 Theories Supporting Components In Strategic Thinking Skills Taxonomy 62
 2.6.5.1 Decision Making And Metacognitive Influence 64
 2.6.5.2 Planning And Metacognition 65
 2.6.5.3 Monitoring And Metacognitive Enhancement 67
 2.6.5.4 Checking And Metacognitive Abilities 69
 2.6.5.5 Evaluating And Metacognitive Processes 70
 2.6.5.6 Revising And Metacognitive Elements 71
2.7 Model Of Strategic Thinking Taxonomy 73
 2.7.1 Strategic Thinking Skills Taxonomy Software Via Online Learning 76
 2.7.2 Six Generic Thinking Strategies 81
 2.7.2.1 Thinking Strategy Of Decision Making Level 1 82
 2.7.2.2 Thinking Strategy Of Planning Level 2 83
 2.7.2.3 Thinking Strategy Of Monitoring Level 3 85
 2.7.2.4 Thinking Strategy Of Checking Level 4 87
 2.7.2.5 Thinking Strategy Of Evaluating Level 5 89
 2.7.2.6 Thinking Skills Of Revising Level 6 90
 2.7.3 Constructive Learning Of Strategic Thinking Skills Taxonomy 93
2.8 Research Basis And Gap Offer Insights Into Areas That Can Be Explored By The Current Study Based On The Past Studies 94
2.9 Online Teaching And Learning In Enhancing Strategic Thinking Skills 97
 2.9.1 The Historical And Pedagogical Background Of Online Teaching And Learning In Enhancing Strategic Thinking Skills 97
 2.9.2 Previous Study On Online Learning 99
 2.9.3 Research Basis And Gap On The Use Of Online Teaching And Learning In Strategic Thinking 100
2.10 Theoretical Framework 102
CHAPTER 3 METHODOLOGY

3.1. Introduction 105

3.2 Methodological Rationale 105

3.3 Conceptual Framework 107

3.4 Research Design 108

3.4.1 Experimental Design 110

3.4.2 Variables 111

3.4.3 Research Context 112

3.4.4 Sampling 113

3.4.5 External Examiners 114

3.5 Procedures 114

3.5.1 General Procedures 114

3.5.2 Experimental Procedures 117

3.5.2.1 Process Orientation With Strategic Thinking Taxonomy Software 117

3.5.2.2 The Thinking Writing Approach 120

3.5.2.3 Self-Regulation Practice 121

3.5.2.4 Cross Over Effect 121

3.5.2.5 Assessment Evaluation 122

3.6 Pilot Study 122

3.7 Research Instructional Designs 124

3.7.1 Thinking In Writing (Think Aloud Approach) 124

3.7.2 Conventional Approach 125

3.8 Research Instruments 126

3.8.1 Strategic Thinking Skills Taxonomy 127

3.8.2 Questionnaires 128

3.8.3 Academic Report Writing 128

3.9 Marking Scheme 130

3.9.1 Rubric Of Assessment 130

3.10 Validity Of Instruments 131
3.10.1 Strategic Thinking Skills Taxonomy 131
3.10.2 Academic Report Writing 132
3.10.3 Questionnaires 132

3.11 Reliability 134
3.11.1 Strategic Thinking Skills Taxonomy 134

3.12 Data Collection And Analysis 135
3.12.1 Self -Regulation Process Data Collection 136
3.12.2 T Test 136
3.12.3 Analysis Techniques 136

3.13 Strategic Thinking Skills Taxonomy Software: Level Of Process Orientation 137
3.13.1 Thinking Strategy of Decision Making-Level 1 138
3.13.2 Thinking Strategy of Planning- Level 2 140
3.13.3 Thinking Strategy of Monitoring- Level 3 141
3.13.4 Thinking Strategy of Checking- Level 4 143
3.13.5 Thinking Strategy of Evaluating- Level 5 145
3.13.6 Thinking Strategy of Revising- Level 6 146

3.14 Summary 149

CHAPTER 4 FINDINGS AND DISCUSSION

4.1 Introduction 150
4.2 Formal Study 150
4.2.1 Analysis of Results for Pre-Test and Post-Test Questionnaires 151
4.3 Hypothesis Testing 152
4.3.1 Hypothesis 1: There is No Significant Difference of Self- Regulation in Learning Process of Students in the Experimental Group. 153
4.3.2 Hypothesis 2: There is No Significant Relationship between Strategic Thinking Skills Development and Learning Performance in a Technology Application Environment. 155
4.3.3 Hypothesis 3: There is No Significant Relationship between Strategic Thinking Skills Approach And
Conventional Approach In Learning Condition

4.3.4 Hypothesis 4: There Is No Significant Difference In The Most Applicable Metacognitive Functions In Process Based Learning.

4.3.5 Hypothesis 5: There Is No Significant Relationship In Strategic Thinking Skills Process Of The Product Than Product Of A Process.

4.4 Interpretation And Discussion

4.4.1 Feedback On Questionnaires

4.4.1.1 Interpretations and Discussions: MSLQ Feedback

4.4.1.2 Interpretation and Discussions: Section D of Strategic Thinking Skills Taxonomy

4.4.2 Strategic Thinking Skills Developed Self-Regulation And Enhanced Learning Performance

4.4.2.1 Interpretations And Discussions: Self-Regulation Enhanced Learning Performance

4.4.2.2 Interpretation And Discussion: Self-Regulation Enhanced Learning Performance For The Control Group In Cross-Over Effect

4.4.3 Strategic Thinking Skills Helped Develop Performance When Used With Online Learning

4.4.3.1 Interpretation And Discussion: The Effect Of Using Online Learning To Enhance Strategic Thinking Skills

4.4.4 Strategic Thinking Skills Development And Performance In Learning Condition

4.4.4.1 Interpretation And Discussion On Strategic Thinking Skills Influences Learning Performance

4.4.5 Students’ Thinking Preference Is Not Dominant In One Particular Skill

4.4.5.1 Interpretation And Discussion On Strategic Thinking Skills Preferences

4.4.6 Strategic Thinking Contributes Significantly To Process-Based Learning

4.4.6.1 Interpretation And Discussion: Effect Of Strategies From Taxonomy Online
CHAPTER 5 CONCLUSION AND INTERPRETATION

5.1 Introduction 180
5.2 Conclusion 180
5.2.1 Conclusion On The Strategic Thinking Skills Taxonomy 180
5.2.2 Conclusion On Developing Self Regulatory Of Students In The Experimental Group 181
5.2.3 Conclusion On Learning Performance Using Online Learning 182
5.2.4 Conclusion On The Strategic Thinking Skills Approach And Face To Face Approach 182
5.2.5 Conclusion On Metacognitive Functions Most Applicable In Process Based Learning 183
5.2.6 Conclusion On Strategic Thinking Skills Process Of The Product Than Product Of A Process 183
5.3 Recommendations 184
5.3.1 Recommendation On Developing Strategic Thinking Skills Taxonomy For Self-Regulation Training 184
5.3.2 Recommendation On A New Instructional Design For Teaching Of Thinking Skills 185
5.3.3 Recommendation On The Design Of Graphical Component Of Self- Regulation 186
5.3.4 Recommendations To Incorporate Implicit Proactive Learning 186
5.3.5 Recommendations On The Design Of Strategic Thinking Skills Taxonomy 187
5.4 Educational Implication 188
5.5 Future Research Direction 189
5.5.1 Improvement In The Strategic Thinking Skills Taxonomy Model 189
5.6 Closing Remarks 190

REFERENCES 192
APPENDICES 223
A MSLQ Questionnaires 223
B Academic Report Writing Rubric 235
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>AACU Problem Solving Value Rubric</td>
<td>236</td>
</tr>
<tr>
<td>D</td>
<td>Strategic Thinking Skills Online</td>
<td>238</td>
</tr>
<tr>
<td>E1</td>
<td>Lesson Plan of Strategic Thinking Skills Input</td>
<td>242</td>
</tr>
<tr>
<td>E2</td>
<td>Summary of Strategic Thinking Skills Taxonomy Enhancement</td>
<td>244</td>
</tr>
<tr>
<td>E3</td>
<td>Online Self Regulatory Experimental Group of Strategic Thinking Skills Taxonomy</td>
<td>246</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>No of Tables</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The Strength and Weaknesses of Using Different Types of Strategies</td>
<td>48</td>
</tr>
<tr>
<td>3.1</td>
<td>Summary of the General Procedures and Instruments of the Main Study</td>
<td>114</td>
</tr>
<tr>
<td>3.2</td>
<td>Summary Table of Research Instruments</td>
<td>126</td>
</tr>
<tr>
<td>3.3</td>
<td>Mean Score and Standard Deviation of Phase I in a Pilot Study of Experimental Group and Control Group</td>
<td>131</td>
</tr>
<tr>
<td>3.4</td>
<td>Mean Score and Standard Deviation of Phase II in a Pilot Study of the Experimental Group and the Control Group</td>
<td>132</td>
</tr>
<tr>
<td>3.5</td>
<td>Reliability Test of Trial Basis and Pilot Test on Strategic Thinking Taxonomy Intervention</td>
<td>135</td>
</tr>
<tr>
<td>3.6</td>
<td>Summary of Data Analysis</td>
<td>137</td>
</tr>
<tr>
<td>4.1</td>
<td>Mean Score and Standard Deviation of Pilot Study Experimental Group and Control Group MSLQ Section C and B</td>
<td>151</td>
</tr>
<tr>
<td>4.2</td>
<td>Mean Score And Standard Deviation Of MSLQ Section D In Comparison Between Experimental Group And Control Group</td>
<td>152</td>
</tr>
<tr>
<td>4.3</td>
<td>Final Report of Academic Report Writing and Attempts Made</td>
<td>153</td>
</tr>
<tr>
<td>4.4</td>
<td>Cognitive Activities of Strategic Thinking Skills of Experimental Group</td>
<td>154</td>
</tr>
<tr>
<td>4.5</td>
<td>Metacognitive Component of self regulation</td>
<td>155</td>
</tr>
<tr>
<td>4.6</td>
<td>Comparison of Conventional and Strategic Thinking Skills Online for Control Group</td>
<td>156</td>
</tr>
<tr>
<td>4.7</td>
<td>Comparison of Strategic Thinking Skills Taxonomy Learning Performance for the Experimental Group and the Control Group</td>
<td>157</td>
</tr>
<tr>
<td>4.8</td>
<td>Control Group Metacognitive component of self-regulation</td>
<td>157</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.9</td>
<td>Control Group Cognitive Activities of Strategic Thinking Skills Taxonomy</td>
<td>158</td>
</tr>
<tr>
<td>4.10</td>
<td>Cross-over Effect of Learning Performance</td>
<td>158</td>
</tr>
<tr>
<td>4.11</td>
<td>Summary Result of Control Group Academic Report Writing Comparison of Strategic Thinking Skills (ST) and Conventional approach (CV)</td>
<td>159</td>
</tr>
<tr>
<td>4.13</td>
<td>Mean and Standard Deviation for Students’ Metacognitive Skills in Formal Test</td>
<td>160</td>
</tr>
<tr>
<td>4.14</td>
<td>Process-Based Learning for Experimental Group and Control Group</td>
<td>162</td>
</tr>
<tr>
<td>4.15</td>
<td>Summary of Strategies Used by Experimental Students and Cross-Over Effect Who Achieved Higher Marks</td>
<td>162</td>
</tr>
<tr>
<td>4.16</td>
<td>Summary on Questionnaires Feedback of Both Groups</td>
<td>164</td>
</tr>
<tr>
<td>4.17</td>
<td>Summary Result on Final Results for Both Groups Before and After Treatment</td>
<td>166</td>
</tr>
<tr>
<td>4.18</td>
<td>Summary Result of Control Group Conventional and Cross-over effect observations</td>
<td>167</td>
</tr>
<tr>
<td>4.19</td>
<td>Summary of Technology Integration</td>
<td>169</td>
</tr>
<tr>
<td>4.20</td>
<td>Summary of Strategic Thinking Skills and Learning Condition</td>
<td>171</td>
</tr>
<tr>
<td>4.21</td>
<td>Summary of Strategy Mostly Used By Students In Experimental Groups</td>
<td>175</td>
</tr>
<tr>
<td>4.22</td>
<td>Summary of Process-Based Learning</td>
<td>176</td>
</tr>
<tr>
<td>4.23</td>
<td>Summary of Strategies and Attempts Made by Experimental Students and Cross-Over Effect Who achieved Higher Marks</td>
<td>177</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The process of meta-cognition involves planning, doing (thinking/acting) and reflecting</td>
<td>47</td>
</tr>
<tr>
<td>2.2</td>
<td>The Cognitive Process Model of the Composing Process (Flower and Hayes, 1981)</td>
<td>56</td>
</tr>
<tr>
<td>2.3</td>
<td>Strategic Thinking Skills Taxonomy Components</td>
<td>63</td>
</tr>
<tr>
<td>2.4</td>
<td>Theoretical Framework</td>
<td>102</td>
</tr>
<tr>
<td>3.1</td>
<td>Conceptual framework</td>
<td>107</td>
</tr>
<tr>
<td>3.2</td>
<td>The present research design</td>
<td>109</td>
</tr>
<tr>
<td>3.3</td>
<td>The variables and their relationship</td>
<td>112</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>No of illustrations</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Sample of Login webpage</td>
<td>77</td>
</tr>
<tr>
<td>2.2 Sample preview of part of The Strategic Thinking Skills Taxonomy software online</td>
<td>78</td>
</tr>
<tr>
<td>2.3 Strategic Thinking Skills Taxonomy Content online</td>
<td>78</td>
</tr>
<tr>
<td>2.4 Content Based on Lecturer’s Input</td>
<td>80</td>
</tr>
<tr>
<td>2.5 Content on Students’ Input</td>
<td>81</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTS</td>
<td>Activating Children Thinking Skills</td>
</tr>
<tr>
<td>ARTS</td>
<td>Arts Reasoning and Thinking Skills</td>
</tr>
<tr>
<td>CA</td>
<td>Conventional Approach</td>
</tr>
<tr>
<td>CALLA</td>
<td>Cognitive Academic Language Learning Approach</td>
</tr>
<tr>
<td>CASE</td>
<td>Cognitive Acceleration in Science Education</td>
</tr>
<tr>
<td>CDC</td>
<td>Curriculum Development Centre</td>
</tr>
<tr>
<td>CGPA</td>
<td>Cumulative Grade Point Average</td>
</tr>
<tr>
<td>CLPP</td>
<td>Computer Literacy Pilot Project</td>
</tr>
<tr>
<td>CMC</td>
<td>Computer-Mediated Communication</td>
</tr>
<tr>
<td>CMLHS</td>
<td>Centre of Modern Languages and Social Sciences</td>
</tr>
<tr>
<td>EAC</td>
<td>Engineering Accreditation Council</td>
</tr>
<tr>
<td>EFL</td>
<td>English for Foreign Language</td>
</tr>
<tr>
<td>ICSS</td>
<td>Integrated Curriculum for Secondary Schools</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communication Technology</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>KBSM</td>
<td>Kurikulum Baru Sekolah Menengah</td>
</tr>
<tr>
<td>McRAT</td>
<td>Multicultural Reading and Thinking Program</td>
</tr>
<tr>
<td>MOE</td>
<td>Ministry of Education</td>
</tr>
<tr>
<td>MUET</td>
<td>Malaysia University English Test</td>
</tr>
<tr>
<td>MSLQ</td>
<td>Motivational Students Learning Questionnaires</td>
</tr>
<tr>
<td>SOLO</td>
<td>Structure of Observe Learning Outcome</td>
</tr>
<tr>
<td>STTO</td>
<td>Strategic Thinking Taxonomy online</td>
</tr>
<tr>
<td>TESL</td>
<td>Teaching of English as Second Language</td>
</tr>
<tr>
<td>UKM</td>
<td>Universiti Kebangsaan Malaysia</td>
</tr>
</tbody>
</table>
UMP : Universiti Malaysia Pahang
UPM : Universiti Putra Malaysia
UPSI : Universiti Pendidikan Sultan Idris
UTM : Universiti Teknologi Malaysia
WGCTA : Watson-Glaser Critical Thinking Appraisal
CHAPTER I

INTRODUCTION

1.1 INTRODUCTION

This chapter presents the background and context of learning in an engineering environment, the need for and potential benefits of thinking skills in facing the challenge of today’s globalization. The study provides explicit enhancement towards facilitating cognitive engagement in teaching and learning, as stated in Ministry of Education (MOE) Curriculum development 14.2.1 which emphasises the importance of knowledge and brain power, which are the main resources for graduates to successfully compete in the world, because through this combination, incomparable and inimitable know-how and ideas are created in the third world wave (Ministry of Education, 2006).

In establishing this quest the teaching and learning of the cognitive process is evident and crucial. Hence, students must receive an education that enables them to develop their potential to the maximum towards creativity and thinking, as well as their capability for innovation (MOE Curriculum; 14.2.2). The teaching of thinking with innovative engagement via technology enables the spread of knowledge, skills and cognitive engagement to be interconnected to produce effective and efficient learning context. Hence, this study evaluates an innovative and explicit approach to the teaching and learning process of cognitive engagement for process-based learning of students in higher institutions. The study hopes to establish the Ministry of Higher Education’s mission, which is to acquire knowledge and skills that would enable them to be competitive through the implementation of research-led or knowledge-generating education (Ministry of Education, 2006).

This thesis will demonstrate the use of online teaching and learning with strategic thinking skills engagement. Software of strategic thinking skills taxonomy was developed to observe
the learning performance and self-regulation enhancement. The thinking engagement was
drawn-out through thinking aloud protocol. Thus metacognition were used to facilitate
activities that promote cognitive engagement, such as decision-making skills, planning,
monitoring and evaluation. These thinking components were supported by activities that
helped strategic functions.

1.2 BACKGROUND OF RESEARCH

The background deals with the need for thinking development in a learning process
integrating online learning for process-based learning condition among engineering
students, and the effort of making learning to think explicit both to the learners and teacher. Concurrently, enhancing self-regulation and learning performance.

In the light of assisting learning of higher order thinking, strategic thinking skill has
captured interest as the mechanism for cognitive development. Strategic thinking activities
involve mental activities, which by nature cannot be observed directly (Beyer, 1987). As a
result, the teaching of thinking explicitly is due to cases where students failed to do the
process of decision making and solving problems in a planned action because they did not
know how to think in a strategic way, so that a plan looked and acted as they thought it
should. This is the reason why things that they planned failed - because of what they had
wanted it to be - or for most cases in a project base, why students resort to copying other
people’s work. As a result, the effort in developing thinking skills lessens, hence we need
to assist and guide our students to keep on thinking (Jonassen, Peck & Wilson, 1999;
Schwartz & Parks, 1994)

One of the reasons for the teaching and learning of strategic thinking skills in
engineering education the roles of decision making and problem solving are focal. The aim
of producing novel invention is ideal, therefore students need to be exposed to the learning
process of creating novelty. According to Piaget Piaget’s constructive theory, in order for
students to experience learning they need to assimilate and accommodate the process. How
do we do it? Students first need to be exposed to how to think. They need to be made aware
of thinking processes that involved the strategies of decision making and problem solving in learning (Piaget, 1972)

Studies on metacognition have indicated that strategic thinking can be fostered and learnt (Liedtka, 1998) through technology assistance, specifically through learning and teaching materials (Cropley, 2001; Cropley & Cropley, 2008). Despite the effort made to provide highly technological advantages to educational communities, the question that needs to be asked is whether this technology can be developed and utilised as learning tools in order to develop strategic thinking skills. Therefore, the present study aims to explore whether providing engineering students with taxonomy can enhance their strategic thinking.

1.3 EDUCATIONAL CONCERNS RELATED TO THE PROBLEM

There are a few concerns in regards to developing strategic thinking skills using technology. Firstly, is the impact of technology literacy and thinking engagement, secondly is the role of online learning as cognitive tools in delivering the practice for thinking engagement and third, emphasis of thinking skills in engineering education

1.3.1 Technology Literacy and Thinking Engagement

Technology literacy is introduced in Information Communication Technology (ICT) learning for Form 4 and 5 students as an elective subject which implies that not all students are included. Computers started to play a prominent role in schools with the launching of the Computer Literacy Pilot Project (CLPP) in 1986 for secondary (Form Four) school students (Gan, 2001). The objective of the subject is to acquire knowledge about ICT principles, processes and related fields, examine and understand ICT principles, processes and related fields and communicate and manage information effectively through Curriculum Development Centre, (CDC) in 2005. The exclusion of some students will affect technology literacy. Furthermore, schools that are not fully equipped with ICT have the tendency to produce students that are backward in technology handling. This impacts on the thinking development, learning efficiency, communication ability and problem-solving skills. Furthermore, there are still a number of literacy problems in the east coast
region of Malaysia, thus increasing difficulty in participating in the evolving knowledge-based society and making the area at greater risk in this digital age, deepening the social divide (Reimers, 2000). Innovative intervention to counter the effect of globalization and technological advancement will decrease the gap of uneducated people from society and will secure their well-being with the necessary skills needed.

The importance of learning IT (Information Technology) is evident in schools, as the trend appears to be toward integrating computer technology and instruction within subject areas that are taught in schools, such as Science and Mathematics, as well as toward the creation of software especially aimed at enhancing the usage of computers so that they would produce a fresh look at instruction and learning (Kumar, Che Rose, & D’Silva, 2008). The opportunity to learn IT at school level provides a lot of benefits for students when they reach higher learning.

Besides, the advent of World-Wide Web has given students easy and rapid access to ample multimedia information, flexible communications through electronic mail, and a variety of components that help students communicate visually and verbally with their friends, locally and internationally (Sia, 2000).

The engagement during a learning process using technological tools such as computers and the internet not only involves physical movement but it moves the thinking process at large in terms of decision making and problem solving. In return this contributes means to develop thinking skills. The emphasis in today's learning culture must be on thinking, the use of the mind to find solutions to emerging problems. Students must be taught the means through which they can maximise their creativity and capacity for innovation (Deputy Prime Minister Datuk Seri Najib Tun Razak, 2007).

Students are seen handling technology-based equipment throughout their years of studies in the university. Most of them become technology savvy as they go through exploring, scrutinising and enriching their experience with all the details almost every day of their life. However, these students are novel when it comes to exploring knowledge for the advancement of real life needs and lifelong learning. How many of these students can
create something new with the knowledge they read from the internet? Many projects done by the students are copied from existing materials. Little and shallow ideas are presented in their writing. This shows that the students did browse the internet but what they were searching for and how to process the information into action fell below expectations. This issue is addressed by Lynch and Wolcott (2001), saying that it is unfortunate that while teachers are aware of many of the skills they would like to exhibit, the steps between typical students’ performance and desirable performance often remain unarticulated or vague.

This demonstrates that many students’ produced pieces of work, be they their assignment or project works, are not recognised as ‘advanced’ as they should be with the aid and advancement of technology. Where did we fall short? The negligible aspect that is left unseen is when the students enter higher institutions, where an enormous amount of IT knowledge is required, especially in colleges of engineering. How many educators and students realise that their expertise in using this technology, with the proper aid of strategic thinking methods or strategic guidance, is critical in developing effective and quality learning outcomes? Most of these students are intelligent in their own ways but most of them are unaware of the existence of metacognition and the ability to focus on their metacognition to help improve performance based for lifelong learning or future use, because it has never been taught in schools before and neither is it implemented in the university.

Higher institutions in Malaysia, especially in the east coast region, are still lagging behind in the teaching and learning of thinking processes, let alone making it a subject to be learnt. All educators acknowledge that the teaching of thinking is teachable (Dewey, 1933). Bodies of knowledge are important, of course, but they often become outdated. Thinking skills never become outdated.

On the contrary, they enable us to acquire knowledge and to reason with it, regardless of the time or place or the kinds of knowledge to which they’re applied (Sternberg, 1986). How can educators help these students realise that they can adopt a strategic thinking ability explicitly to enhance performance in the future. Effective ways
that we can teach thinking is to engage students in substantive tasks, requiring the kinds of
tinking we want them to develop and then to explicitly teach, as the occasions and need
arise, the specific cognitive operations they need to complete the tasks successfully (Beyer, 1987).

Nowadays, students are taught to think divergently, so as to expose them to higher
order thinking skills, which most of them do implicitly. Unfortunately, these students do
not realise their capabilities or how they can function effectively with the thinking skills
taught explicitly, such as problem solving in mathematics, comprehension in reading or
making inferences for hypothesis testing. In realising this, educators need to explore ways
and approaches to strategic thinking using appropriate methodology with the aids of
technology advancement.

Thinking skills has surfaced as a national priority in learning for all countries. The
pedagogical aspect has been reviewed in order to attain the needs to teach thinking skills
for students so that they will accelerate in life, not just for the purpose of learning but for
survival too. Therefore, engineering students should be able to develop higher level
thinking processes - the need for learners to go beyond mere recall of information. They
need to develop deeper understanding of what is learnt, the need to be critical about
evidence and facts to solve problems and the ability to think flexibly in order to make
reasoned judgement and produce effective decision making. This helps students to be able
to compete in conventional and outmoded ways and, in situations which previously ended
up in failure. Students can now take the initiative to undertake new and original ventures in
pioneering enterprises. Hence, the students need to be taught how to decide, plan, monitor,
check, evaluate and revise their work quality, be it for the purpose of improving their
grades, project work or, most importantly, the need to be quality-innovative via technology
use.

In order to do so, engineering students need to observe how they go through their
learning process and manage their thinking skills for the benefit of present and future use.
The country therefore very much needs human resources with this high level of creativity,
people with the skills to carry out tasks without adhering to old procedures or imitating
other people (MOE. Part IV Excellent in Teaching and Learning: pg 126). Thus, the learning of strategic thinking with the use of technology integration will help develop human resources who not only think strategically but also critically, as well as being IT literate.

1.3.2 The Role of Online Learning as Cognitive Tools

University or college students are dynamic learners, eager to learn about the sophisticated and technologically-based world that they live in, and about the types of jobs that will be available to flexible, creative, lifelong learners.

Online learning as defined above brings forth valuable knowledge application and the ability to promote thinking in the learning process (Curtis & Lawson, 2001). As all university students nowadays are given access to use sophisticated technological equipment which helps them learn how to learn, they are learning new skills that will help them both in the classroom and in the workplace; they are learning how to communicate through media conferencing and use feedback that captures their interest. This learning process via online learning integration can only happen when one has the capability to think as to “how” first, before they can proceed to the “why, what, who, when” and so forth. In doing so, students have developed the ability to think how to use the equipment and what to communicate during the conferencing, which in turn impacts the learning process. The role of online learning as cognitive tools helps to develop metacognition, inquiry learning, motivation and skills application (Stanculescu, 2007). Gibson (1979) claims that technology affords the most meaningful thinking when used as tools.

In a technology-rich classroom, instruction often involves the use of problem-based learning, Internet research, computer-mediated communication, online dialogue and multimedia projects in a variety of disciplines. The process of learning to use these tools will engage the learners more and result in more meaningful and transferable knowledge in the learners. Thus integration of technology as a tool to gauge cognitive functions precedes the purpose as cognitive tools. Cognitive tools are generalisable computer tools that are