INFLUENCE OF NANOFILLERS ON THE PROPERTIES OF UREA FORMALDEHYDE RESIN AND MEDIUM DENSITY FIBERBOARD

ANUJ KUMAR

Thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy in Chemical Engineering

Faculty of Chemical and Natural Resources Engineering

UNIVERSITI MALAYSIA PAHANG

November 2013

ABSTRACT

Wood based panel is typically a panel manufactured with wood in the form of fibers combined with a thermoset resin, and bonded at an elevated temperature and pressure in a hot press. The density of boards lie in the range of 600-800 kg/m³ are known as Medium Density Fiberboard (MDF). The required pressing time depends on the curing time of thermoset resin (UF resin). The thermal conductivity of wood fibers is low due to which long duration for the complete curing is required. Several methods and heat transfer models were tested to increase the heat transfer for attaining proper cure of the fiber matrix with steam injection, electromagnetic heating, longer pressing time, etc. Further, emission of formaldehyde with the use of resin is observed. To overcome the problem, wood based composite industries have initiated with reduced formaldehyde content in the resin and included formaldehyde scavengers in the manufacture of MDF. These measures decrease the formaldehyde emissions to a certain extent, but adversely affect the mechanical properties of the boards.

In the present work three different types of nanofillers such as multiwalled carbon nanotubes (CNTs), aluminum oxide nanoparticles and nanosize activated charcoal were mixed with UF resin and used in the preparation of MDF. The process has improved heat transfer during hot pressing and achieved proper curing due to enhanced thermo physical properties of wood fibers. The influence of the nanofillers on the curing behaviour, cross-link density of UF resin and visco-elasticity properties were investigated using differential scanning calorimetry (DSC) and dynamical mechanical analysis (DMA). To improve the dispersion of nanofillers into UF matrix, high speed mechanical stirring and ultrasonic treatments were used. The CNTs were oxidized with nitric acid and the functional groups formed on its surface improved the dispersion and interaction with UF matrix. The dispersion of nanofillers in UF resin matrix was confirmed with XRD, FESEM, and DMA tests undertaken. The mixing of CNTs and Aluminum oxide with UF resin have reduced the curing time due to enhanced thermal conductivity of MDF matrix. The heat transfer during hot pressing of MDF improved significantly with the addition of CNTs and Al₂O₃ nanoparticle and activated charcoal did not have effect on heat transfer. The curing rate of UF resin improved with all the three nanofillers, as the activation energy of UF curing decreased by the DSC results. The physical and mechanical properties of MDF have improved significantly with CNTs and Al₂O₃ nanoparticle. The activated charcoal has significantly decreased the formaldehyde emission of MDF.

The RSM models were developed to optimize the use of CNTs in the production of MDF because CNTs has gave the best results in three nanofillers. The regression models were developed with three independent variables (Pressing time; CNTs% and UF%) for two responses IB and MOR. The optimum values for each variable are 238 s pressing time, 3.5% CNTs and 8.18% UF resin with the predicated values for IB 0.71 MPa and 48.78 MPa for MOR.

ABSTRAK

Panel berasaskan kayu merupakan panel yang diperbuat dengan menggunakan kayu berbentuk gentian yang digabungkan dengan resin termoset, dan diikat pada suhu dan tekanan tinggi dengan menggunakan penekan panas. Ketumpatan panel tersebut yang terletak dalam lingkungan 600-800 kg/m³ dikenali sebagai Papan Serat Ketumpatan Sederhana (MDF). Tempoh masa kenaan tekanan bergantung kepada masa pengawetan resin termoset (resin UF). Kekonduksian haba gentian kayu adalah rendah yang mana tempoh yang panjang diperlukan untuk proses pengawetan lengkap berlaku. Terdapat beberapa kaedah dan model pemindahan haba telah diuji untuk meningkatkan pemindahan haba dalam mencapai pengawetan yang sesuai bagi matrik berserat termasuk kaedah suntikan wap, pemanasan elektromagnetik, tempoh kenaan tekanan yang lebih lama, dan lain-lain lagi. Tambahan pula, pelepasan formaldehid dengan penggunaan resin juga diperhatikan. Untuk mengatasi masalah ini, industri komposit berasaskan kayu telah mengambil langkah dengan mengurangkan kandungan formaldehid dalam resin dan memasukkan pemungut formaldehid dalam pembuatan MDF. Langkah-langkah ini didapati dapat mengurangkan pelepasan formaldehid sehingga ke tahap tertentu, namun sebaliknya menjejaskan sifat-sifat mekanikal papan.

Dalam kajian ini, tiga jenis partikel nano telah digunakan iaitu Multiwalled Nanotube Carbon (CNTs), partikel nano aluminium oksida dan arang bersaiz nano yang diaktifkan telah dicampur dengan resin UF dan digunakan dalam penyediaan MDF. Proses ini telah meningkatkan pemindahan haba semasa proses penekanan dan mencapai proses pengawetan lengkap yang disebabkan oleh peningkatan ciri-ciri termofizikal. Kesan partikel nano terhadap sifat-sifat tingkah-laku pengawetan, ketumpatan sambung silang resin UF dan juga visco-elastik diuji dengan menggunakan kalorimeter pengimbasan pembezaan (DSC) dan analisis mekanikal dinamik (DMA). Untuk meningkatkan penyebaran partikel nano dalam UF matriks, pengadun mekanikal berkelajuan tinggi dan rawatan ultrasonik telah digunakan. Partikel nano CNTs telah dioksidakan dengan menggunakan asid nitrik di mana kumpulan berfungsi yang terbentuk di permukaan partikel telah meningkatkan penyebaran dan interaksi dengan UF matriks. Penyebaran partikel nano dalam UF resin matriks telah disahkan melalui analisis XRD, FESEM, dan ujian DMA yang telah dijalankan. Pencampuran antara CNTs dan aluminium oksida dengan resin UF telah mengurangkan masa pengawetan yang mana ia disebabkan oleh peningkatan kekonduksian haba MDF matriks. Pemindahan haba semasa penekanan panas MDF meningkat dengan ketara dengan penambahan partikel nano CNTs dan Al₂O₃, manakala panambahan arang yang telah diaktifkan pula tidak memberi kesan ke atas pemindahan haba. Kadar pengawetan resin UF telah meningkat bagi ketiga-tiga partikel nano di mana tenaga pengaktifan untuk pengawetan UF menurun berdasarkan keputusan DSC. Ciri-ciri fizikal dan mekanikal MDF juga telah meningkat dengan ketara dengan kandungan CNTs dan Al₂O₃ partikel nano. Arang yang diaktifkan juga telah mengurangkan pelepasan formaldehid dengan ketara dalam MDF.

Model RSM telah dibangunkan untuk menoptimumkan penggunaan CNTs dalam pengeluaran MDF kerana CNTs didapati dapat memberikan hasil yang baik di antara tiga jenis pengisi nano. Model regresi telah dibangunkan dengan menggunakan tiga pembolehubah bebas (tempoh penekanan; CNT % dan UF %) untuk dua keadaan iaitu IB dan MOR. Nilai optimum untuk setiap pembolehubah adalah 238 s untuk tempoh penekanan, 3.5 % CNT dan 8.18 % resin UF dengan nilai jangkaan untuk IB 0.71 MPa dan MOR 48.78 MPa.

TABLE OF CONTENTS

			Page
SUPERV	/ISOR'S	DECLARATION	ii
STUDE	NT'S DEC	CLARATION	iii
DEDICA	TION		iv
ACKNO	WLEDG	EMENTS	v
ABSTRA	ACT		vi
ABSTRA	AK		vii
TABLE	OF CON	TENTS	viii
LIST OF	TABLE	S	xiv
LIST OF	FIGUR	ES	xvii
NOMEN	CLATU	RES	xxiii
LIST OF	F ABBRE	VIATIONS	XXV
CHAPT	ER- 1 IN	FRODUCTION	1
1.1.	BACK	GROUND	1
1.2.	OBJEC	CTIVES OF RESEARCH	4
1.3.	HYPO	THESIS	5
1.4.	SCOPE	EOFRESERACH	5
1.5.	THESI	S OUTLINES	6
СНАРТ	ER- 2 RF	VIEW OF LITERATURE	8
2.1	INTRO	DUCTION	8
2.1.	WOOD	BASED PANELS	8
2.3	FIBER	BOARDS	10
2.01	2.3.1.	Wet-Process Hardboard	11
	2.3.2.	Drv-Process Fiberboard	12
2.4.	BASIC	PRINCIPLES OF WBC HOT PRESSING	14
	2.4.1.	Description of The Press	15
	2.4.2	Heat Transfer Modes During Hot Pressing	15
	2.4.3	Core Temperature Profile During Hot Pressing	17
2.5.	MECH	ANISM OF HEAT TRANSFER DURING HOT PRESSING	18

	2.6.	MINIM	IIZING HOT PRESSING TIME	20
	2.7.	UREA	FORMALDEYHDE RESIN	23
		2.7.1.	Synthesis of UF Resin	25
		2.7.2.	Curing Process	27
		2.7.3.	Formaldehyde Emissions	27
	2.8.	MODIF	FICATION OF UF RESIN USING FILLERS/ADDITIVES	30
		2.8.1.	Amine Compounds	30
		2.8.2.	Nanofillers	31
	2.9.	USE OI	F NANOFILLERS IN PLOYMER COMPOSITES	32
		2.9.1.	Nanoclays	33
		2.9.2.	Inorganic Nanoparticles	36
		2.9.3.	Carbon Based Nanofillers	40
	2.10.	PROCE	ESSING OF POLYMER COMPOSITES WITH	
		NANO	FILLERS	47
		2.10.1.	Solution Processing/Blending	47
		2.10.2.	Melt Blending	48
		2.10.3.	In-situ Polymerization	48
	2.11.	NANO	FILLERS USE IN WOOD BASED COMPOSITES	49
	2.12.	SUMM	ARY	50
CF	IAPTE	R- 3 MA	TERIALS AND METHODS	52
	3.1.	INTRO	DUCTION	52
	3.2.	MATE	RIALS	52
		3.2.1.	Wood Fibers	53
		3.2.2.	Urea Formaldehyde (UF) Resin	53
		3.2.3.	Aluminum Oxide (Al ₂ O ₃) Nanoparticles	53
		3.2.4.	Multiwalled Carbon Nanotubes (CNTs)	54
		3.2.5.	Activated Charcoal	54
	3.3.	LABOF	RATORY SCALE MANUFACTURE OF MDF BOARDS	55
		3.3.1.	Mixing of Wood Fibers and Resin in Rotator Drum	56
		3.3.2.	Mat Forming	56
		3.3.3.	Cold Pressing	56
		3.3.4.	Hot Pressing and Core Temperature Measurements	57

	3.3.5.	Conditioning of MDF Boards	59
	3.3.6.	Trimming Pattern of MDF Boards	59
3.4.	ADDIT	TON OF NANOFILLERS IN MDF	60
	3.4.1. N	IDF with Al ₂ O ₃ Nanofiller	61
	3.4.2. N	IDF Boards with CNTs Nanofiller	61
	3.4.3. N	IDF with Activated Charcoal Nanofiller	62
3.5.	DESIG	N OF EXPERIMENTS	62
	3.5.1.	Effect of Nanofillers on UF Resin	62
	3.5.2.	Effect of Nanofillers on MDF	63
3.6.	CHAR	ACTERIZATION OF UF-NANOFILLER RESINS	64
	3.6.1.	Viscosity Measurements	64
	3.6.2.	Differential Scanning Calorimetry Analysis	65
	3.6.3.	Dynamic Mechanical Analysis	67
	3.6.4.	FTIR Analysis	69
	3.6.5.	X-ray Diffraction Analysis	69
	3.6.6.	Thermal Conductivity of Resin	70
	3.6.7.	Thermogravimetric Analysis (TGA)	70
3.7.	CHAR	ATERIZATION OF MDF PROPERTIES	71
	3.7.1.	Density	71
	3.7.2.	Static Bending	72
	3.7.3.	Internal Bonding	73
	3.7.4.	24 Hours Thickness Swelling And Water Absorption Test	74
	3.7.5.	Thermal Conductivity of MDF Samples	75
	3.7.6.	Formaldehyde Emission Testing Using Perforator Method	76
3.8.	FESEN	I ANALYSIS	77
3.9.	STATI	STICAL ANALYSIS	77
3.10.	OPTIM	IIZATION	79

CHAPTER- 4 INFLUENCE OF SYNTHESIED ACTIVATED CHARCOALON THE PROPERTIES OF UF RESIN AND MDF PANELS804.1INTRODUCTION80

4.1.	INTRODUCTION	80
4.2.	PROPERTIES OF ACTIVATED CHARCOAL	80
4.3.	EFFECT OF ACTIVATED CHARCOAL ON UF RESIN	83

	4.3.1.	Curing Behavior of UF/AC Resins	83
	4.3.2.	Crosslink Density of UF and UF/AC resins	86
	4.3.3.	FTIR Analysis of UF/AC Resins	86
4.3.4.	EFFEC	Γ OF ACTIVATED CHARCOAL ON THE PROPERTIES OF	
	MDF		88
	4.3.5.	Formaldehyde Emission	88
	4.3.6.	FESEM Analysis of MDF Prepared using UF/AC resins	89
	4.3.7.	Physical and Mechanical Properties of MDF panels	90
4.4.	SUMM	ARY	93

CHAPTER- 5 EFFECT OF ALUMINUM OXIDE NANOPARTICLES ONTHE PROPERTIES OF UF RESIN AND MDF PANELS95

5.1.	INTRO	DUCTION	95
5.2.	EFFEC	T OF ALUMINUM OXIDE NANOPARTICLE ON UF RESIN	95
	5.2.1.	Viscosity of UF/ Al ₂ O ₃ Resins	96
	5.2.2.	Chemical Interaction Between UF Resin and Al_2O_3	
		Nanoparticles	96
	5.2.3.	Cure Kinetics	98
	5.2.4.	Viscoelastic Properties	100
	5.2.5.	Thermal Stability and Thermal Conductivity	103
	5.2.6.	X-ray Diffraction Analysis	105
	5.2.7.	Morphology of Cured Resins	106
5.3.	EFFEC	T OF ALUMINUM OXIDE NANOPARTICLE ON MDF	106
	5.3.1.	Core Temperature Profile During Hot Pressing	106
	5.3.2.	Physical and Mechanical Properties of MDF	107
	5.3.3.	Formaldehyde Emission	111
5.4.	SUMM	ARY	112

CHAPTER- 6 EFFECT OF MULTIWALLED CARBON NANOTUBES ON THE PROPERTIES OF UF RESIN AND MDF AND ITS OPTIMIZATION USING RSM 113 6.1. INTRODUCTION 113

6.2. FUNCTIONLISATION OF CNTs 113

6.3.	EFFEC	T OF MULTIWALLED CARBON NANOTUBES ON UF	
	RESIN		115
	6.3.1.	Cure Kinetics	116
	6.3.2.	Viscoelastic Properties	118
	6.3.3.	Thermal Conductivity	120
	6.3.4.	FTIR analysis	121
	6.3.5.	Thermal Stability	121
	6.3.6.	X-ray Diffraction Analysis	122
6.4.	EFFEC	T OF MULTIWALLED CARBON NANOTUBES ON MDF	123
	6.4.1.	Core Temperature Profile During Hot Pressing	123
	6.4.2.	Thermal Conductivity	124
	6.4.3.	Physical and Mechanical Properties of MDF	125
	6.4.5.	Dispersion CNTs in UF Resin and MDF	127
6.5.	OPTIM	1IZATION OF MDF MANUFACTRUING USING CNTS	128
	6.5.1.	Determination of Levels for Independent Variables	128
	6.5.2.	Testing Results	129
	6.5.3.	Effect of Pressing Time and CNTs% on IB and MOR	131
	6.5.4.	Effect of Pressing Time and UF resin % on IB and MOR	133
	6.5.5.	Effect of UF Resin % and CNTs% on IB and MOR	134
	6.5.6.	Regression Model and Optimized Variables	135
	6.5.7.	Validation of Model Predication	136
6.6.	SUMM	IARY	137

CHAPTER – 7 OVERALL COMPARISON ON THE EFFECT OF THREE

	NANOFILLERS ON UF RESIN AND MDF	138
7.1.	INTRODUCTION	138
7.2.	EFFECTS ON UF RESIN PROPERTIES	138
7.3.	EFFECTS ON MDF PROPERTIES	139
	7.3.1. Heat Transfer and Thermal Conductivity of MDF	139
	7.3.2. Physical and Mechanical Properties of MDF	140
	7.3.3. Formaldehyde Emission	142
7.4.	SUMMARY	142
СНАРТИ	ER- 8 CONCLUSIONS AND FUTURE WORK	144

8.1.	CONCLUSIONS	144
8.2.	FUTURE WORK	145
REFERENCES APPENDICS A		147
		163
APPENI	171	
APPENI	DICS C	175
LIST OF	F PUBLICATIONS & ACHIEVEMENTS	183

LIST OF TABLES

Table No.	Title P	age No.
2.1	Maloney's (1989) Classification of WBP	9
2.2	Advantages and disadvantages of adhesives used in the manufacturin of wood composites.	ng 23
2.3	Comparison of International Composite Board Emission Standards	29
2.4	Chemical formulas for nanoclays.	34
2.5	Properties of carbon nanotubes.	42
3.1	Bulk Properties of UF resin	53
3.2	Properties of aluminum oxide nanoparticles	54
3.3	Properties of CNTs	54
3.4	Manufacture of MDF with Al ₂ O ₃	61
3.5	Manufacturing of MDF boards with CNTs	61
3.6	Manufacturing of MDF boards with Activated Charcoal	62
4.1	Shows the differential scanning calorimetry results of UF resin wi different concentrations of activated charcoal.	th 85
4.2	Heat evolution during cross linking and % improvement in crosslin density.	nk 86
4.3	FTIR characteristic bands observed for UF resin and UF/AC resins.	88
5.1	Values of peak curing temperature at different heating rate an activation energy with Al_2O_3 percentages	nd 99
6.1	DSC results of UF resin with different weight percentage of CNTs	117
6.2	Factors and corresponding levels for response surface design	129
6.3	Experimental design and test results	131
6.4	ANOVA for response surface quadratic model of IB	133
6.5	ANOVA for response surface quadratic model of MOR	134

6.6	Experimental summary of optimization for IB and MOR according to independent variables.	136
A.1	Parameters used in manufacturing of MDF panels-	163
A.2	Parameters used in manufacturing of MDF panels for second method.	166
A.3	One way ANOVA of means comparison between the samples for thickness swelling and water absorption.	170
B.1	Statistical fit summary for internal bonding given by RSM transforms	171
B.2	Statistical fit summary for modulus of rupture given by RSM transforms	173
C.1	Internal bonding testing results of MDF prepared by using pure UF and activated charcoal reinforced UF resin.	175
C.2	One way ANOVA results for IB values of MDF prepared UF and activated charcoal reinforced UF resin.	176
C.3	Tukey's Test for mean comparison data of IB standard MDF and activated charcoal reinforced MDF.	176
C.4	Modulus of rupture testing results of MDF prepared by using pure UF and activated charcoal reinforced UF resin.	177
C.5	One way ANOVA results for MOR values of MDF prepared UF and activated charcoal reinforced UF resin.	178
C.6	Tukey's Test for mean comparison data of MOR standard MDF and activated charcoal reinforced MDF.	178
C.7	Thickness swelling testing results of MDF prepared by using pure UF and activated charcoal reinforced UF resin.	179
C.8	One way ANOVA results for TS values of MDF prepared UF and activated charcoal reinforced UF resin	179
C.9	Tukey's Test for mean comparison data of TS standard MDF and activated charcoal reinforced MDF.	179

C.10	WA testing results of MDF prepared by using pure UF and activated	
	charcoal reinforced UF resin.	180
C.11	One way ANOVA results for TS values of MDF prepared UF and activated charcoal reinforced UF resin.	181
C.12	Tukey's Test for mean comparison data of WA standard MDF and	
	activated charcoal reinforced MDF.	181

LIST OF FIGURES

Figure No.	. Title I	Page No.
2.1	Classification of wood based composites	9
2.2	Different types of wood elements used in the manufacturing of WBC	Cs 10
2.3	Industrial setup for the manufacturing of MDF	12
2.4	Setup of laboratory based hot pressing system.	15
2.5	Core temperature distribution at initial stage of pressing.	16
2.6	Core temperature distribution at the end of pressing.	16
2.7	Core temperature profile during hot pressing.	17
2.8	Hot-pressing mechanism and involved factors.	19
2.9	Difference between heat transfers during the conventional h pressing, steam pre-heated and microwave pre-heated hot pressing.	not 21
2.10	World wide consumption of urea formaldehyde resin.	24
2.11	UF resin history and formaldehyde emission control.	25
2.12	Urea formaldehyde resin synthesis process.	26
2.13	Three dimensional cross-link structure of UF resin.	27
2.14	Types of nanofillers.	33
2.15	Chemical structure of commonly used smectite type clays, I monovalent cation, x: degree of cations isomorphous substitution octahedral sheets.	M: in 34
2.16	Impact of nano-alumina content reinforcement on the strength epoxy adhesive.	of 38
2.17	The pull-off adhesion strength of epoxy adhesives reinforced w different inorganic nanoparticles.	ith 40
2.18	The formation of first multiwalled carbon nanotubes formation electric arc-discharge method of (002) lattice of graphite, (a) fi graphitic sheets, (b) two graphite sheets and (c) seven sheets tube.	by ive 41

2.19	Chirality of carbon nanotubes.	42
2.20	Illustration shows the different types of graphite arrangement to form the carbon nanotubes.	43
3.1	Rotating drum blender	56
3.2	Resinated wood fibers (a) Loose mat of resinated fibers (b)	57
3.3	Cold/ pre-pressing of loose mat (a) pre-pressed mat of resinated wood fibers (b)	57
3.4	Hot-pressing process of MDF manufacturing	58
3.5	Schematic view of hot-press with thermocouple locations	59
3.6	Trimming pattern of MDF panels	60
3.7	Experimental process flow chart; Mixing of UF resin and nanofillers	63
3.8	Flow chart of the MDF manufacturing process	64
3.9	Typical DSC curve	65
3.10	Differential scanning calorimetry	67
3.11	Schematic view of basic principle of DMA	68
3.12	Bragg diffraction.	70
3.13	MOR/MOE testing setup	73
3.14	IB testing setup	73
3.15	Thickness swelling and water absorption testing pattern.	75
3.16	KD2 pro setup for thermal conductivity measurements.	76
3.17	Setup for formaldehyde extraction from MDF panels as BS-EN 120 (1992) norms	77
4.1	X-ray diffraction pattern of activated charcoal prepared from wood fibers.	81
4.2	Show the FESEM micrographs of activated charcoal (a) at 100 nm and X-250000 magnification scale (b) at 10 nm and X-300000 magnification scale.	82
4.3	BET results (a) Adsorption curve, (c) Desorption curve	82
4.4	FTIR spectra of net activated charcoal.	83

4.5	Variation of temperature with heat flow for different heating rates (a) UF (b) 1.0 wt% (c) 2.5 wt% concentration (d) 5.0 wt% of activated charcoal	84
4.6	Linear curves plotting between and according to Kissinger's equation.	85
4.7	FTIR spectra of UF and UF/AC resins.	87
4.8	Formaldehyde emission from MDF boards by perforator method with different concentration of activated charcoal.	89
4.9	FESEM monographs show the microscopic structure of MDF panels (a) UF (b) AC1 (c) AC2.	90
4.10	Shows the mean comparison of MOR between control MDF and MDF with nanofillers.	91
4.11	Shows the mean comparison of IB between control MDF and MDF with nanofillers.	92
4.12	Shows the mean comparison of TS between control MDF and MDF with nanofillers.	93
4.13	Shows the mean comparison of WA between control MDF and MDF with nanofillers.	93
5.1	Viscosity of UF resin after nanoparticles reinforcements	96
5.2	FTIR spectrum of pre-cured pure UF resin network and nanoparticles reinforced UF resin	97
5.3	DSC thermograms of UF/Al_2O_3 resin with different concentrations of nanoparticles at different heating rates (a) UF, (b) AL1, (c) AL2 and (d) AL3	100
5.4	The Kissinger's plot between $[\ln(\beta/T_p^2)]$ and $[1000/T_P]$	101
5.5	Storage modulus (E) of pure UF resin and nanoparticles reinforced UF resin at heating rate of 5 $^{\circ}$ C/min	101
5.6	Tano of pure UF resin and nanoparticles reinforced UF resin	102
5.7	TG (a) and DTG (b) curves of UF resins for evaluating the effect of nanofillers on the thermal stability of cured UF resins	103
5.8	Thermal conductivity of UF/Al ₂ O ₃ resins	104
5.9	X-ray diffraction pattern of cured UF resins with and without nanoparticle reinforcement	105

5.10	FESEM micrographs (a) cured UF resin (b) cured UF/Al ₂ O ₃ resin	106
5.11	Core temperature of MDF during hot pressing with nanoparticle loading	107
5.12	Internal bonding of MDF with different weight percentage of nanoparticles loading	108
5.13	MOR of MDF reinforced with nanofillers	109
5.14	Thickness swelling results of MDF reinforced with nanofillers	110
5.15	WA of MDF reinforced with nanofillers.	111
5.16	Formaldehyde emission from MDF panels	112
6.1	FTIR spectra of untreated CNTs and Treated CNTs	114
6.2	Weight loss curve of untreated CNTs and treated CNTs	115
6.3	DSC curves of resins (a) UF (b) CNT1 and (c) CNT2 at heating rate of 5, 10, 15 and 20 $^{\rm o}C/min$	116
6.4	Kissinger's plot for estimating the activation energy	118
6.5	Storage modulus of UF/CNTs resins	119
6.6	Tanδ of UF/CNTs resins	120
6.7	Thermal conductivity of UF/CNTs resins	120
6.8	FTIR analysis of UF/CNTs resins	121
6.9	TGA analysis of UF/CNTs resins	122
6.10	X-ray diffraction (XRD) spectra for CNT (a), UF, CNT1 and CNT2 (b)	123
6.11	Core temperature profile during hot pressing of MDF	124
6.12	Thermal conductivity of MDF with different wt% of CNTs	125
6.13	Modulus of rupture of MDF prepared with UF and UF/CNTs resins with their mean density of samples.	126
6.14	Internal bonding of MDF prepared with UF and UF/CNTs resins	126
6.15	Thickness swelling and water absorption results of MDF panels	127
6.16	FESEM micrographs (a) CNTs (b) MDF and (c) Cure UF resin with CNTs.	128

6.17	Predicated vs. Observed values of IB(a) and MOR(b)	130
6.18	3D graphic surface optimization of IB (a) and MOR (b) as influenced by pressing time and CNTs.	132
6.19	3D graphic surface optimization of IB (a) and MOR (b) as influenced by pressing time and UF resin percentages.	134
6.20	3D graphic surface optimization of MOR (a) and IB (b) and as influenced by UF resin % and CNTs %.	135
7.1	Activation energy of cure reactions of UF and UF-nanofillers resin.	139
7.2	Thermal conductivity values of MDF with different nanofillers weight percentages.	140
7.3	Internal bonding and modulus of rupture of MDF with Al2O3 nanoparticles and activated charcoal	140
7.4	TS and WA properties of MDF with Al_2O_3 and activated charcoal.	141
7.5	Comparisons of formaldehyde emission results between Al2O3 and Activated charcoal from MDF	142
A.1	Shows the internal bond strength of different MDF panels	164
A.2	Shows the modulus of rupture (MOR) of different MDF panels.	164
A.3	Modulus of elasticity (MOE) of different MDF panels.	165
A.4	Thickness swelling of MDF panels with different weight percentage of Al_2O_3 nanoparticles.	165
A.5	The comparison of core temperature profile between the control board and nanoparticles reinforced board during hot pressing.	167
A.6	Internal bonding of MDF panels after nanoparticles loadings.	168
A.7	MOR properties of MDF panels.	169
A.8	Thickness swelling of MDF panels.	169
A.9	Show the thickness swelling of MDF panels.	170
B .1	BOX-COX plot for power transforms for internal bonding.	171
B.2	Residuals vs. Predicted values of internal bonding.	172
B.3	Normal plot for residuals between internally studentized residuals and normal % probability for internal bonding.	172

B.4	BOX-COX plot for power transforms for modulus of rupture.	173
B.5	Residuals vs. Predicted values of modulus of rupture.	174
B.6	Normal plot for residuals between internally studentized residuals and normal % probability for modulus of rupture.	174
C.1	Tuckey's test mean comaprison plots of IB bewteen all the type of MDF.	177
C.2	Tuckey's test mean comaprison plots of MOR bewteen all the type of MDF	178
C.3	Tuckey's test mean comaprison plots of TS bewteen all the type of MDF	180
C.4	Tuckey's test mean comaprison plots of TS bewteen all the type of MDF.	182

NOMENCLATURES

List of symbols

Symbol	Meaning
Α	Frequency factor
a	Thickness of sample (m)
b	Width of sample (m)
d	spacing between atomic planes or lattice spacing (A^{o})
E	Storage modulus resins(MPa)
E''	Loss modulus of resins (MPa)
\overline{E}^{*}	Complex modulus
Ea	Activation Energy (kJ/mol)
k	Rate constant
L	Length of span (m)
l	Length of specimen (m)
Р	Peak load (N)
R^2	Coefficient of determination
t	Thickness of specimen (m)
tan δ	Loss factor or loss tangent
T_f	Final thickness of sample (mm)
T_i	Initial thickness of sample (mm)
T_P	Peak curing temperature (°C)
w	Width of specimen (m)
W_f	Final weight of sample (g)
Wi	Initial weight of sample (g)
w_p	Weight of nanofillers (g)
W _R	Weight of resins (g)
$\Delta E'$	Rigidity of resins (%)

Greek Symbols

Symbol	Meaning
α	Extent of the curing reaction in Kissinger's equation

β	Heating rate of sample in DSC (°C/min)
λ	X-ray wavelength
Ø	diffraction angle (degree)
φ	Volume concentration of nanofillers (%)
$\sigma_{\rm A}$	Sinusoidal stress
ε _A	Sinusoidal strain
ρ	Density of MDF sample (Kg/m ³)
$ ho_p$	Density of nanofillers (Kg/m ³)
ρ_R	Density of UF resin (Kg/m ³)
ΔH	Cure enthalpy (J/g) of UF curing reaction
ΔH_t	Cure enthalpy at time t (J/g)
ΔH_{Total}	Cure enthalpy at the end of curing process of UF resin in DSC

LIST OF ABBREVIATIONS

AC	Activated charcoal
AC0	Sample having 0.0 wt% loading of activated charcoal in UF resin
AC1	Sample having 1.0 wt% loading of activated charcoal in UF resin
AC2	Sample having 2.5 wt% loading of activated charcoal in UF resin
AC3	Sample having 5.0 wt% loading of activated charcoal in UF resin
AL0	Sample having 0.0 wt% loading of Al_2O_3 nanoparticles in UF resin
AL1	Sample having 1.0 wt% loading of Al_2O_3 nanoparticles in UF resin
AL2	Sample having 2.5 wt% loading of Al_2O_3 nanoparticles in UF resin
Al_2O_3	Aluminum oxide nanoparticles
AL3	Sample having 5.0 wt% loading of Al_2O_3 nanoparticles in UF resin
ANOVA	Analysis of Variance
BET	Brunauer, Emmett and Teller
BET	Surface area
CARB	California Air Resources Board
CNT1	Sample having 1 wt% loading of CNTs in UF resin
CNT2	Sample having 2.5 wt% loading of CNTs in UF resin
CNTs	Multiwalled carbon nanotubes
DMA	Dynamic Mechanical Analysis
DSC	Differential Scanning Calorimetry
DTG	Derivative thermogarvimetry
EM	Electro-magnetic
F/U	Formaldehyde/urea molar ratio
FESEM	Field Emission Scanning Electron Microscope
FTIR	Fourier Transform Infrared Spectoscopy
IB	Internal bonding (MPa)
LCL	Lower control limit in Tukey's test
MC	Moisture content (%)
MDF	Medium density fiberboard
MOE	Modulus of elasticity
MOR	Modulus of rupture (MPa)

Melamine urea formaldehyde resin
Oriented strand board
Phenol formaldehyde resin
Polymeric 4, 4 –diphenylmethane diisocyanate
Regression model equation of RSM model for IB
Regression model equation of RSM model for MOR
Response surface methodology
Single walled carbon nanotubes
Thermogravimetry
Thero-mechanical pulping
24 hrs Thickness swelling (%)
Upper control limit in Tukey's test
Urea-formaldehyde resin
Universial Testing Machine
Vertical density profile
24 hrs Water absorption (%)
Wood based composites
X-ray diffraction

CHAPTER-1

INTRODUCTION

1.1. BACKGROUND

Over the last decades, there is a growing interest in the development of wood based panels (WBP). These industries are continuously seeking ways for increased productivity; cost effectiveness, higher quality of the boards and at the same time safeguard the environment.

The WBP industry currently has 15 plants with a total annual installed capacity of 2.9 million m³ in Malaysia (MIDA, 2012). In 2011, exports of MDF from Malaysia amounted to RM1.1 billion. Currently, Malaysia is the world's third largest exporter of MDF, after Germany and France (MIDA, 2012). The global wood-based composites market is valued over US\$ 80 billion in 2011 (New markets research report, 2012). Since the eighties large scale production of WBCs began in North America and Europe and over time MDF has become a general name for processed fiberboard panels.

The bonding of wood materials (fibers, flakes, particles, chips, wood powder) together with the help of adhesives is termed as wood based composites (WBC). The WBCs have been classified based on the type of wood materials used ranging from fiberboards to laminated beams used for structural, non-structural purposes, exterior and interior grade panels. The WBP have certain advantages over natural wood. The properties of wood being highly variable between species to trees of same species and even pieces of the same tree. The natural wood defects such as growth stress and knots

affect the end uses. The WBP can also be recycled and manufactured by using wood wastes from various industries, small diameter wood, forest residues, and barks.

Maloney (1989) classified WBPs according to the type of raw materials and process of manufacturing namely dry and wet processing methods. Further he proposed the division of panels according to their density and specific gravity. However, he also classified the WBC according to composites types such as veneers, particleboards and plywood, all of which may be fashioned into different shapes and sizes required for a variety of industrial and domestic purposes.

Medium-density fiberboard (MDF) is an engineered wood breakdown product from hard and soft wood residuals combined with wax and resin binders to form panels by application of high temperatures and pressures. Fiberboards are wood based composite products specially engineered from fibers of wood. MDF is called an engineered wood product primarily because it is composed of fine wood fibers unlike plywood, combined with a synthetic resin, and subjected to heat and pressure to form boards (Irle and Barbu 2010). Heavily used in furniture, fiberboards are classified based on their density into low density particle boards, medium density fiberboards (MDF) and high density hard boards. Plywood, commonly confused as fiberboard, is actually made up of layers of thin sheets of wood and is not made of wood fibers. Economical, easily produced and easy to fabricate, MDF and rarely hardboards are used in the manufacture of expensive furniture. The MDF board can be easily moulded into many shapes and sizes as per requirements. Apart from extensive use in the packaging and insulation industry, home interiors and exteriors from floors to doors and roofs to cabinets are fashioned with different kinds of fiberboards. Thus, in MDF manufacturing, the boards with controlled density, desired thickness, and dimension can be prepared, but in case of natural wood these properties cannot be maintained.

Many types of organic (urea formaldehyde UF, phenol formaldehyde) and natural adhesives (lignin, tannin, soya adhesives) are extensively used by the WBP industries. The MDF and particle board manufacturing units consume 68% of UF resins produced in the world while 23% of it is used in plywood manufacturing (SRI, 2009). Although minimally used, other types of adhesives used in the manufacturing of wood