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ABSTRACT 

 

Wood based panel is typically a panel manufactured with wood in the form of 

fibers combined with a thermoset resin, and bonded at an elevated temperature and 

pressure in a hot press. The density of boards lie in the range of 600-800 kg/m
3
 are 

known as Medium Density Fiberboard (MDF). The required pressing time depends on 

the curing time of thermoset resin (UF resin). The thermal conductivity of wood fibers 

is low due to which long duration for the complete curing is required. Several methods 

and heat transfer models were tested to increase the heat transfer for attaining proper 

cure of the fiber matrix with steam injection, electromagnetic heating, longer pressing 

time, etc. Further, emission of formaldehyde with the use of resin is observed. To 

overcome the problem, wood based composite industries have initiated with reduced 

formaldehyde content in the resin and included formaldehyde scavengers in the 

manufacture of MDF. These measures decrease the formaldehyde emissions to a certain 

extent, but adversely affect the mechanical properties of the boards.  

 

In the present work three different types of nanofillers such as multiwalled 

carbon nanotubes (CNTs), aluminum oxide nanoparticles and nanosize activated 

charcoal were mixed with UF resin and used in the preparation of MDF. The process 

has improved heat transfer during hot pressing and achieved proper curing due to 

enhanced thermo physical properties of wood fibers. The influence of the nanofillers on 

the curing behaviour, cross-link density of UF resin and visco-elasticity properties were 

investigated using differential scanning calorimetry (DSC) and dynamical mechanical 

analysis (DMA). To improve the dispersion of nanofillers into UF matrix, high speed 

mechanical stirring and ultrasonic treatments were used. The CNTs were oxidized with 

nitric acid and the functional groups formed on its surface improved the dispersion and 

interaction with UF matrix. The dispersion of nanofillers in UF resin matrix was 

confirmed with XRD, FESEM, and DMA tests undertaken.  The mixing of CNTs and 

Aluminum oxide with UF resin have reduced the curing time due to enhanced thermal 

conductivity of MDF matrix. The heat transfer during hot pressing of MDF improved 

significantly with the addition of CNTs and Al2O3 nanoparticle and activated charcoal 

did not have effect on heat transfer. The curing rate of UF resin improved with all the 

three nanofillers, as the activation energy of UF curing decreased by the DSC results. 

The physical and mechanical properties of MDF have improved significantly with 

CNTs and Al2O3 nanoparticle. The activated charcoal has significantly decreased the 

formaldehyde emission of MDF. 

 

The RSM models were developed to optimize the use of CNTs in the production 

of MDF because CNTs has gave the best results in three nanofillers. The regression 

models were developed with three independent variables (Pressing time; CNTs% and 

UF %) for two responses IB and MOR. The optimum values for each variable are 238 s 

pressing time, 3.5% CNTs and 8.18% UF resin with the predicated values for IB 0.71 

MPa and 48.78 MPa for MOR. 
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ABSTRAK 

Panel berasaskan kayu merupakan panel yang diperbuat dengan menggunakan 

kayu berbentuk gentian yang digabungkan dengan resin termoset, dan diikat pada suhu 

dan tekanan tinggi dengan menggunakan penekan panas. Ketumpatan panel tersebut 

yang terletak dalam lingkungan 600-800 kg/m
3
 dikenali sebagai Papan Serat 

Ketumpatan Sederhana (MDF). Tempoh masa kenaan tekanan bergantung kepada masa 

pengawetan resin termoset (resin UF). Kekonduksian haba gentian kayu adalah rendah 

yang mana tempoh yang panjang diperlukan untuk proses pengawetan lengkap berlaku. 

Terdapat beberapa kaedah dan model pemindahan haba telah diuji untuk meningkatkan 

pemindahan haba dalam mencapai pengawetan yang sesuai bagi matrik berserat 

termasuk  kaedah  suntikan wap, pemanasan elektromagnetik, tempoh kenaan tekanan 

yang lebih lama, dan lain-lain lagi. Tambahan pula, pelepasan formaldehid dengan 

penggunaan resin juga diperhatikan. Untuk mengatasi masalah ini, industri komposit 

berasaskan kayu telah mengambil langkah dengan mengurangkan kandungan 

formaldehid dalam resin dan memasukkan pemungut formaldehid dalam pembuatan 

MDF. Langkah-langkah ini didapati dapat mengurangkan pelepasan formaldehid 

sehingga ke tahap tertentu, namun sebaliknya menjejaskan sifat-sifat mekanikal papan. 

Dalam kajian ini, tiga jenis partikel nano telah digunakan iaitu Multiwalled 

Nanotube Carbon (CNTs), partikel nano aluminium oksida dan arang bersaiz nano yang 

diaktifkan  telah dicampur dengan resin UF dan digunakan dalam penyediaan MDF. 

Proses ini telah meningkatkan pemindahan haba semasa proses penekanan dan 

mencapai proses pengawetan lengkap yang disebabkan oleh peningkatan ciri-ciri termo-

fizikal. Kesan partikel nano terhadap sifat-sifat tingkah-laku pengawetan, ketumpatan 

sambung silang resin UF dan juga visco-elastik diuji dengan menggunakan kalorimeter 

pengimbasan pembezaan (DSC) dan analisis mekanikal dinamik (DMA). Untuk 

meningkatkan penyebaran partikel nano dalam UF matriks, pengadun mekanikal 

berkelajuan tinggi dan rawatan ultrasonik telah digunakan. Partikel nano CNTs telah 

dioksidakan dengan menggunakan asid nitrik di mana kumpulan berfungsi yang 

terbentuk di permukaan partikel telah meningkatkan penyebaran dan interaksi dengan 

UF matriks. Penyebaran partikel nano dalam UF resin matriks telah disahkan melalui 

analisis XRD, FESEM, dan ujian DMA yang telah dijalankan. Pencampuran antara 

CNTs dan aluminium oksida dengan resin UF telah mengurangkan masa pengawetan 

yang mana ia disebabkan oleh peningkatan kekonduksian haba MDF matriks. 

Pemindahan haba semasa penekanan panas MDF meningkat dengan ketara dengan 

penambahan partikel nano CNTs dan Al2O3, manakala panambahan arang yang telah 

diaktifkan pula tidak memberi kesan ke atas pemindahan haba. Kadar pengawetan resin 

UF telah meningkat bagi ketiga-tiga partikel nano di mana tenaga pengaktifan untuk 

pengawetan UF menurun berdasarkan keputusan DSC. Ciri-ciri fizikal dan mekanikal 

MDF juga telah meningkat dengan ketara dengan kandungan CNTs dan Al2O3 partikel 

nano. Arang yang diaktifkan juga telah mengurangkan pelepasan formaldehid dengan 

ketara dalam MDF. 

Model RSM telah dibangunkan untuk menoptimumkan penggunaan CNTs 

dalam pengeluaran MDF kerana CNTs didapati dapat memberikan hasil yang baik di 

antara tiga jenis pengisi nano. Model regresi telah dibangunkan dengan menggunakan 

tiga pembolehubah bebas (tempoh penekanan; CNT % dan UF %) untuk dua keadaan 

iaitu IB dan MOR. Nilai optimum untuk setiap pembolehubah adalah 238 s untuk 

tempoh penekanan, 3.5 % CNT dan 8.18 % resin UF dengan nilai jangkaan untuk IB 

0.71 MPa dan MOR 48.78 MPa.  
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CHAPTER- 1 

 

 

INTRODUCTION 

 

 

1.1. BACKGROUND 

 

Over the last decades, there is a growing interest in the development of wood 

based panels (WBP). These industries are continuously seeking ways for increased 

productivity; cost effectiveness, higher quality of the boards and at the same time 

safeguard the environment. 

 

The WBP industry currently has 15 plants with a total annual installed capacity 

of 2.9 million m
3
 in Malaysia (MIDA, 2012). In 2011, exports of MDF from Malaysia 

amounted to RM1.1 billion. Currently, Malaysia is the world's third largest exporter of 

MDF, after Germany and France (MIDA, 2012). The global wood-based composites 

market is valued over US$ 80 billion in 2011 (New markets research report, 2012). 

Since the eighties large scale production of WBCs began in North America and Europe 

and over time MDF has become a general name for processed fiberboard panels. 

 

The bonding of wood materials (fibers, flakes, particles, chips, wood powder) 

together with the help of adhesives is termed as wood based composites (WBC). The 

WBCs have been classified based on the type of wood materials used ranging from 

fiberboards to laminated beams used for structural, non-structural purposes, exterior and 

interior grade panels. The WBP have certain advantages over natural wood. The 

properties of wood being highly variable between species to trees of same species and 

even pieces of the same tree. The natural wood defects such as growth stress and knots 
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affect the end uses. The WBP can also be recycled and manufactured by using wood 

wastes from various industries, small diameter wood, forest residues, and barks. 

 

Maloney (1989) classified WBPs according to the type of raw materials and 

process of manufacturing namely dry and wet processing methods. Further he proposed 

the division of panels according to their density and specific gravity. However, he also 

classified the WBC according to composites types such as veneers, particleboards and 

plywood, all of which may be fashioned into different shapes and sizes required for a 

variety of industrial and domestic purposes. 

 

Medium-density fiberboard (MDF) is an engineered wood breakdown product 

from hard and soft wood residuals combined with wax and resin binders to form panels 

by application of high temperatures and pressures. Fiberboards are wood based 

composite products specially engineered from fibers of wood. MDF is called an 

engineered wood product primarily because it is composed of fine wood fibers unlike 

plywood, combined with a synthetic resin, and subjected to heat and pressure to form 

boards (Irle and Barbu 2010). Heavily used in furniture, fiberboards are classified based 

on their density into low density particle boards, medium density fiberboards (MDF) 

and high density hard boards. Plywood, commonly confused as fiberboard, is actually 

made up of layers of thin sheets of wood and is not made of wood fibers. Economical, 

easily produced and easy to fabricate, MDF and rarely hardboards are used in the 

manufacture of expensive furniture. The MDF board can be easily moulded into many 

shapes and sizes as per requirements. Apart from extensive use in the packaging and 

insulation industry, home interiors and exteriors from floors to doors and roofs to 

cabinets are fashioned with different kinds of fiberboards. Thus, in MDF 

manufacturing, the boards with controlled density, desired thickness, and dimension can 

be prepared, but in case of natural wood these properties cannot be maintained.  

 

Many types of organic (urea formaldehyde UF, phenol formaldehyde) and 

natural adhesives (lignin, tannin, soya adhesives) are extensively used by the WBP 

industries. The MDF and particle board manufacturing units consume 68% of UF resins 

produced in the world while 23% of it is used in plywood manufacturing (SRI, 2009). 

Although minimally used, other types of adhesives used in the manufacturing of wood 


