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ABSTRACT 

 

The emission of formaldehyde vapours from the adhesives such as urea 

formaldehyde (UF) and phenol formaldehyde (PF) is a serious concern associated with 

the wood composite industry. In this research a sequential and systematic application of 

laccase enzyme was applied to modify the rubberwood (Hevea brasiliensis) fibers and 

prepared an improved medium density fiberboard (MDF) without synthetic adhesive. 

The treated fiber was dried in an oven and stored in a desiccator whereas the solution 

obtained was called enzyme hydrolysis lignin (EHL) retained and concentrated until 3% 

solid content. The fiber properties were characterised by furrier transform infrared 

spectroscopy (FTIR), scanning electron microscope (SEM), thermo-gravimetric analysis 

(TGA) and x-ray diffrection (XRD).  However the EHL and concentrated EHL were 

characterised by Brookfield viscometer, FTIR, DSC and TGA. Laccase treatment to 

fiber was optimised in order to obtain the best and improved fiber for MDF 

manufacturing. The best reaction parameters such as temperature, time, pH and enzyme 

amount, were investigated using response surface methodology. Crystallinity index was 

taken as response and maximum up to 10% increment was observed. The first approach 

included the laccase treatment to wood fiber in various amounts and reaction time in the 

pulp suspension. A successful binderless board were prepared from treated fibers at 

different platen temperature and at various pressing time. Water resistance properties 

and mechanical test such as MOE, MOR and IB of the boards were investigated. The 

binderless boards could not stand for longer time in water, whereas the mechanical 

properties were not strong enough to meet the international standard as per the ASTM 

D1037. Thus in order to improve the strength of MDF boards, another approach was 

applied and concentrated enzyme hydrolysis lignin (Con-EHL) was used as an adhesive. 

To evaluate the capability of Con-EHL as an adhesive, 6 mm MDF board of density 800 

(±10) kg/m
3
 was prepared from 5, 10 and 15% con EHL by weight of fiber and it was 

compared with standard UF based boards prepared  using the same  parameters. The 

prepared MDF boards exhibited a higher mechanical strength and meet the international 

standard but the board still cannot stand in the moisture resistance test. In the third 

approach, nine different combinations of soy-lignin based adhesives were prepared 

using different parameters such as pH and soy content. Physical and chemical properties 

of soy-lignin adhesives were investigated. It was observed that the MDF prepared by 

the alkali treated soy-lignin adhesives have improved physical and mechanical 

properties. Water absorption and thickness swelling was reduced in comparison to 

previous boards. Mechanical properties were comparable to the commercial grade MDF 

boards. In the fourth approach, the alkali based soy-lignin was further improved by 

increasing the soy content up to 20%, and treating it with different chemicals to improve 

the water resistance. The physical and mechanical properties of MDF were compared 

with commercial grade UF based MDF. Mechanical properties were found comparable 

to UF based MDF whereas thickness swelling and water absorption was observed better 

than the “C-series” of soy lignin adhesive. The present soy lignin based adhesive can be 

used as a replacement for the formaldehyde based adhesive. It will be more ecofriendly 

and less harmful for the health. 
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ABSTRAK 

Pengeluaran wap formaldehid dari bahan pelekat seperti urea formaldehid (UF) 

dan fenol formaldehid (PF) menjadi kebimbangan yang serius dalam industri komposit 

kayu. Dalam kajian ini, enzim lakase telah digunakan untuk mengubahsuai serat kayu 

pokok getah (Hevea brasiliensis) dengan menggunakan aplikasi yang sistematik dan 

berjujukan serta menyediakan papan gentian berketumpatan sederhana (MDF) yang 

lebih baik iaitu tanpa bahan pelekat sintetik. Serat kayu yang dirawat dikeringkan di 

dalam oven dan kemudiannya disimpan di dalam baling pengering manakala cecair 

lignin enzim hidrolisis (EHL) yang diperoleh dikekalkan sehingga kandungan pepejal 

3%.  Sifat-sifat serat kayu tersebut dikaji dengan menggunakan spektroscopi inframerah 

transformasi furrier (FTIR), mikroscop electron imbasan (SEM), analisis gravimetri 

haba (TGA) and pembelauan x-ray (XRD). EHL dan EHL pekat pula  dikaji dengan 

menggunakan meter kelikatan Brookfield, FTIR, kalorimetri pembesa imbasan (DSC) 

dan TGA. Rawatan lakase ke atas serat dioptimumkan untuk mendapatkan serat terbaik 

dalam pembuatan MDF. Parameter tindak balas terbaik seperti suhu, masa, pH dan 

jumlah enzim dikaji dengan menggunakan kaedah gerak balas permukaan. Indeks 

penghabluran telah diambilkira sebagai tindak balas dan kenaikan maksimum sehingga 

10% diperhatikan. Pendekatan pertama meliputi rawatan lakase ke atas serat kayu dalam 

pelbagai jumlah dan masa tindak balas dalam penggantungan pulpa. Sekeping papan 

telah berjaya disediakan daripada serat kayu yang dirawat pada suhu plat dan masa 

menekan serat kayu yang berbeza. Ciri-ciri fizikal seperti rintangan air dan ciri-ciri 

mekanikal seperti MOE, MOR dan IB papan tersebut dikaji. Papan tersebut tidak boleh 

berada di dalam air dalam masa yang lama dan mempunyai ciri-ciri mekanikal yang 

tidak cukup kuat untuk memenuhi standard antarabangsa seperti ASTM D1037. Oleh 

itu, dalam usaha untuk meningkatkan kekuatan papan MDF, Satu lagi pendekatan telah 

digunakan dan Con-EHL telah digunakan sebagai bahan pelekat. Untuk menilai 

keupayaan Con-EHL sebagai bahan pelekat, 6 mm MDF pada ketumpatan papan 800 (± 

10) kg/m
3
 telah disediakan daripada 5, 10 dan 15% kepekatan EHL mengikut berat serat 

dan ia telah dibandingkan dengan papan berasaskan UF disediakan menggunakan 

parameter yang sama. Papan MDF mempamerkan kekuatan mekanikal yang tinggi dan 

memenuhi standard antarabangsa tetapi masih tidak dapat bertahan dengan ujian 

rintangan kelembapan. Dalam pendekatan ketiga, sembilan kombinasi yang berbeza 

bahan pelekat berasaskan lignin soya telah disediakan daripada pelbagai parameter 

seperti pH dan kandungan soya. Sifat-sifat fizikal dan kimia bahan pelekat soya lignin 

telah dikaji. Dalam pemerhatian yang telah dilakukan, MDF yang disediakan dengan 

menggunakan lignin soya yang dirawat dengan alkali telah meningkat ciri-ciri fizikal 

dan mekanikal. Penyerapan air dan pembengkakkan ketebalan telah dikurangkan 

berbanding dengan papan sebelumnya. Sifat-sifat mekanikal adalah setanding dengan 

papan MDF gred komersil. Dalam pendekatan yang keempat, alkali berasaskan lignin 

soya telah dipertingkatkan lagi dengan meningkatkan kandungan soya sehingga 20%, 

dan merawat dengan bahan kimia yang berbeza untuk meningkatkan rintangan air. Ciri-

ciri fizikal dan mekanikal MDF dibandingkan dengan gred MDF berasaskan UF 

komersial. Ciri-ciri mekanikal didapati dengan membandingkan asas UF di mana 

pembengkakkan ketebalan dan penyerapan air diperhatikan jauh lebih baik daripada 

bahan yang sebelumnya iaitu bahan pelekat soya lignin. Bahan pelekat lignin soya boleh 

digunakan untuk menggantikan formaldehid. Ia akan menjadi keluaran yang tidak 

mencemarkan alam sekitar dan kurang berbahaya untuk kesihatan.   
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

1.1 INTRODUCTION 

 

Wood is the best example of a natural composite where mechanically strong 

cellulose fibers are oriented in a film of hemicelluloses and surrounded by a matrix of 

lignin (Winandy and Rowell, 2005). Since the start of civilization wood has been the 

most widely used building material. Due to the environmental concern and increasing 

demand from growing population, it is impossible to supply wood for present and future 

generation. Wood composite has emerged  as an alternative for wood from the 20th 

century, where small logs, non-commercial timber, woodchips, shavings, and sawdust 

can be utilized to prepare a wood like structure (Isroi et al., 2011). With the increasing 

demand of wood composite, it is sure that future of wood industries will certainly 

depend on engineered wood product. Wood composite exhibits many advantages over 

solid wood like, smoothness, uniform structure, knots free surface, dimensionally stable, 

availability in different sizes and thickness, resistance to corrosion and fire, with a good 

tensile strength and easier to work (Hsu et al., 1989).  

 

Composite wood panel products are made from wood-based materials bonded 

together with a synthetic adhesive using heat and pressure (Li et al., 2007). The wood 

materials include veneer, strands, particles, chips and fibers whereas adhesives are most 

commonly urea formaldehyde or phenol formaldehyde. Wood-based panel products 

have become increasingly specialized in recent years and are used in a wide range of 

applications. There are various wood based composites such as plywood, oriented 

strand board (OSB), particle board and medium density fiberboard available in the 
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market. The composite wood panels have been expanding into hybrid products also 

which combine two or more panels, or panels with other materials, into a single product. 

Wood based panels are an important sector, accounting for 9 %, (€13 000 million) of 

total industry production, employing around 80 000 people in the Europe (European 

Panels Federation, 2004). Total production of wood composite was estimated to be 45.6 

million m
3
, in the year 2005. The construction and furniture market is the most 

important end-user for wood composite, followed by packaging. The furniture industry 

is the most important user of particleboard and MDF. Laminate flooring is a booming 

market for MDF and now accounts for nearly more than 40% of all applications 

(European Panels Federation, 2004). 

 

Wood adhesives are essential components in wood composites. As the demand 

of wood composites are increasing, especially MDF market, there is greater demand of 

adhesives to convert low value wood to high quality and useful products. At present, 

formaldehyde-based synthetic adhesives such as phenol-formaldehyde (PF) and urea- 

formaldehyde (UF) resins are predominantly used (Kim et al., 2006). These adhesives 

are synthetically produced from non-renewable resources such as petroleum and natural 

gas (Moubarik et al., 2010a). The major drawbacks of formaldehyde-based resins are 

they emit formaldehyde which is harmful to human health (Li et al., 2009). Agency for 

Research on Cancer has classified it as a carcinogenic to human (IARC 2004). 

Furthermore, the decreasing petroleum resources and increasing price of fossil fuel has 

been a concern to the future cost and continues supply of synthetic adhesives (Imam et 

al., 2001). Number of research has been done to reduce or replace formaldehyde 

contents in adhesive preparation but none of them is commercially applicable till now 

(Mozaffar et al., 2004; Khan and Ashraf, 2006). 

 

Due to environment concern and to maintain continues supply of adhesive, bio-

based adhesives are a growing interest among researchers. Number of natural products 

like tannin, lignin, and more recently proteins based adhesives are under intense study 

to produce a bio-based natural adhesive (Pizzi, 2006; Mansouri et al., 2010). Since 

tannin and lignin both are polymer of phenol compound, they are primarily viewed as 

substituting option for synthetic phenolic resins. Tannin based adhesives have received 

more improvement and it is being used commercially for the last 20 years in southern 
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hemisphere of the world (Pizzi, 2003a). A huge availability of lignin as a by product of 

pulp and paper mills has made it an attractive raw material for adhesives (Pizzi, 2003b). 

In the past few decades number of patents has been done dealing with the application of 

pulp lignin as a wood adhesive, where lignin is cross-linked by condensation reactions 

(Nimz, 1983). The commercial use of lignin is still growing but the progress is very 

slow (Pizzi, 2006). A variety of protein has been suggested for protein based adhesive 

however, soy protein is the most popular among all due to its abundant and inexpensive 

availability to worldwide. Soy based adhesive was first reported in 1920s but shortly 

after World War II, it was substituted by petroleum-based adhesives because of their 

improved adhesion and water resistance. Selection of protein as an adhesive is based on 

its functional properties such as solubility, gelation, viscosity, and emulsion stability 

(Wolf, 1970). A part of their intrinsic property all the proteins are desired to modify to 

improve its functional property through physical, chemical or enzymatic means.  

 

Although, no of research have been done to utilized lignin as an adhesive but 

none of them is commercially viable. Thus, in order to improve the performance of 

lignin, an enzyme treatment technique has given a hope to prepare an eco-friendly board 

from lignin based adhesive. A variety of enzymes are available for the surface 

modification of ligno-cellulosic fibers (Chandra et al., 2004). Compared to chemical 

treatments which involve harsh reaction conditions and potential use of hazardous 

chemicals, enzymatic treatment conditions are often milder, less damaging to the fiber, 

and are environmentally friendly (Kunamneni et al., 2008). Enzymatic surface 

modifications of fibers can be accomplished with glucohydrolysis and oxidative 

enzymes. One of these oxidoreductases is laccase (benzenediol:oxygen oxidoreductase) 

which is a multi-copper-containing oxidoreductase enzyme widely distributed in plants 

and fungi (Milstein et al., 1989). The majority of fungi that produce laccase belong to 

the class of white rot fungi involved in lignin degradation and can mineralize this 

substrate (Ohkuma et al., 2001). Laccase can catalyze the oxidation of various 

substrates including phenols, diphenols, aminophenols, polyphenols, polyamines, and 

lignin related molecules, with concomitant reduction of oxygen to water. 

 

The use of laccase enzymes to improve the bonding between pulp fibers has 

been applied frequently compared to other oxidoreductase enzymes (Felby et al., 1997, 
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(Lund and Felby, 2001; Mattinen et al., 2008). The treatments usually involve the 

application of laccase enzymes to activate lignin on fibers (one-component system) or 

the addition of another component with laccase to act as a potential cross-linking agent 

(two component system) (Gochev and Krastanov, 2007). Because laccase enzymes are 

too large to penetrate fibers (50-100 kDa) treatments should only result in a surface 

modification (Kunamneni et al., 2007). Therefore, during treatments of fibers to 

increase board strength, free phenolic groups on the fiber surface should act as potential 

reactive sites for laccase enzymes to create phenoxy radicals. Based on this theory, it is 

apparent that laccase can be employed to generate reactive quinonoid structures in 

lignin-rich fibers that could be reacted with amino acids to generate, enhanced fiber 

charge. This study examines the optimal grafting conditions with respect to fiber charge 

and its impact on sheet strength properties.  

 

Obviously, there is an urgent need of a natural and low cost adhesive for a 

sustainable supply for wood composite products. Preparing a lignin based adhesive 

which is usually a waste of wood process is a very interesting concept.  It would be 

highly desirable if adhesive is obtained from renewable resource while maintaining the 

mechanical strength and water resistance of the composite wood. A lot of work has been 

done to modify the lignin for adhesive purpose, but very few works has been done to 

use enzyme for lignin modification. It would be right time now, to make the wood 

composite industries an eco-friendly, self-sufficient with improved technology. 

 

In addition to being eco-friendly, the composite materials of lignin-based 

adhesive will reduce the cost of production also as the chief raw material   lignin, is a 

waste for pulp and paper process and available in huge quantity (Pizzy, 2003b). Since 

laccase has been recently commercialized and most abundant and cheaply available 

enzyme, it is further helping in reducing the cost of production. Owing to recent 

developments in the wood-composite market, it is apparently the most promising 

development in this field.  

 

 


