BREAST CANCER DRUG DELIVERY SYSTEMS
BY DIFFERENTIAL DELIVERY SYSTEM USING
FINITE ELEMENT ANALYSIS

SRI POOVEYNINTHRAN NAIR

Thesis submitted in partial fulfilment of the requirements
for the award of the degree of
Bachelor of Chemical Engineering (Biotechnology)

Faculty of Chemical & Natural Resources Engineering
UNIVERSITI MALAYSIA PAHANG

JULY 2013

© SRI POOVEYNINTHRAN NAIR (2013)
ABSTRACT

Breast cancer is the most common form of cancer affecting women in Malaysia. Conventional drug treatment for breast cancer, chemotherapy would destroy the cancer cells because of the medicine targets on rapidly dividing cells. However, healthy cells and tissues in blood, mouth, intestinal tract, nose, nails, vagina and hair also divide rapidly, they could be damaged. A more promising technology called transdermal patch has been introduced due to side effects are common expected results from conventional treatment. Therefore, the aim of this study was to treat breast cancer by delivering drug from transdermal patch precisely and safely to targeted cancer cell so that reducing the side effects and dosage of drug used. The objectives of this study were to determine the drug concentration at breast tumor, to investigate the relationship between drug diffusivity and drug delivery efficiency, and to evaluate the efficiency of drug delivery under other parameters (i.e. deepness of tumor, temporal and spatial placement of transdermal patch). Available software, COMSOL was used in this study. Drug concentrations that able to diffuse and reach tumor in breast were studied. The simulation results showed that there was optimal drug diffusivity for maximum concentration of drug reached tumor in breast. However, below and higher than this drug diffusivity optimal value, the delivery of drug concentration was poorer when the lesser. Production of microchannels in the skin by microneedle can increase the drug diffusivity and ensure delivery of pharmacologically effective concentration of drug to the targeted site, breast cancer cell. Deeper the tumor grown within breast, lesser drug’s concentration could be diffused to it. However, this could be solved by changing the place of transdermal patch application. The nearer the spatial placement of transdermal patch to tumor growth in the breast on the breast skin increased the effectiveness of drug delivery to tumor. The longer the temporal placement resulted in higher drug concentration could be delivered to breast tumor. However, this constant concentration gradient only achieved for less than one month. After this, the concentration gradient would become zero. As a conclusion, the drug diffusivity, deepness of breast tumor, spatial and temporal placement of transdermal patch must be taken into account when engineering, constructing and applying the transdermal patch in order to achieve the maximum breast cancer treatment with reducing the undesired side effects.
ABSTRAK

1 INTRODUCTION

1.1 Background of the Study 1
1.2 Problem statement 2
1.3 Objective 2
1.4 Research scope 3
1.5 Rationales and significances 3
1.6 Organization of thesis 3

2 LITERATURE REVIEW

2.1 Overview of breast cancer statistic 5
2.2 Conventional breast cancer drug therapy 7
 2.2.1 Docetaxel 8
 2.2.2 Doxorubicin (adriamycin) 8
 2.2.3 Herceptin (trastuzumab) 9
 2.2.4 Paclitaxel (taxol) 10
 2.2.5 Methorexate (maxtrex) 10
2.3 Materilaise's Interactive Medical Image Control System (Mimics) 11
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>Comsol</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Concept</td>
</tr>
<tr>
<td>2.4.2.1</td>
<td>Organize</td>
</tr>
<tr>
<td>2.5</td>
<td>Transdermal Application</td>
</tr>
<tr>
<td>2.6</td>
<td>Patch Design</td>
</tr>
<tr>
<td>2.7</td>
<td>Theory Of Transdermal Drug Delivery System</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Penetration Of Drug From Patch Through Passive Diffusion Process</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Fick’s Law</td>
</tr>
<tr>
<td>2.8</td>
<td>Skin Barrier</td>
</tr>
<tr>
<td>2.9</td>
<td>Enhancement Techniques</td>
</tr>
<tr>
<td>3</td>
<td>METHODOLOGY</td>
</tr>
<tr>
<td>3.1</td>
<td>Material And Instrumentation</td>
</tr>
<tr>
<td>3.2</td>
<td>Methodology Flow Chart</td>
</tr>
<tr>
<td>3.3</td>
<td>Collection Of Drug Diffusivity Data</td>
</tr>
<tr>
<td>3.4</td>
<td>Collection Of Breast Volume Data</td>
</tr>
<tr>
<td>3.5</td>
<td>Implementation In Comsol</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Steps For Solving Specified Problem In Comsol</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Steps For Monte Carlo Simulation</td>
</tr>
<tr>
<td>4</td>
<td>RESULTS AND DISCUSSION</td>
</tr>
<tr>
<td>4.1</td>
<td>Efficiency Of Drug Delivery Under Drug Diffusivity Parameter</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Discussion On Efficiency Of Drug Delivery Under Drug Diffusivity Parameter</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Discussion On Efficiency Of Drug Delivery Under Temporal Placement Of Transdermal Patch Parameter</td>
</tr>
<tr>
<td>4.2</td>
<td>Efficiency Of Drug Delivery Under Deepness Of Breast Tumor</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Discussion On Efficiency Of Drug Delivery Under Deepness Of Breast Tumor Parameter</td>
</tr>
<tr>
<td>4.3</td>
<td>Efficiency Of Drug Delivery Under Spatial Placement Of Transdermal</td>
</tr>
</tbody>
</table>
Patch

4.3.1 Discussion On Efficiency Of Drug Delivery Under Spatial Placement Of Transdermal Patch

4.4 Summary

5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion

5.2 Recommendation

REFERENCES

APPENDICES

A Technical Paper

B Breast Images for Simulation Run of 1-13
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table 2.1:</th>
<th>Deaths from cancers in Malaysia women for the years of 1994, 1995 and 1998</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.2:</td>
<td>Differences between transdermal application and chemotherapy.</td>
<td>17</td>
</tr>
<tr>
<td>Table 4.1:</td>
<td>Concentration of drug at breast tumor with different drug diffusivity, from 10^{-9} to 10^{-1}.</td>
<td>27</td>
</tr>
<tr>
<td>Table 4.2:</td>
<td>Concentration of drug at tumor that grown at the top and bottom of breast.</td>
<td>34</td>
</tr>
<tr>
<td>Table 4.3:</td>
<td>Concentration of drug at tumor when patch applied at different locations.</td>
<td>38</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Page</th>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Figure 2.1</td>
<td>Breast cancer in University Malaya Medical Centre, Kuala Lumpur 1993-2003, with total number of 1818 cases.</td>
</tr>
<tr>
<td>6</td>
<td>Figure 2.2</td>
<td>Percentage of different kinds of cancer in Malaysian women, in the year of 2002 and 2003.</td>
</tr>
<tr>
<td>12</td>
<td>Figure 2.3</td>
<td>Process of converting in Mimics</td>
</tr>
<tr>
<td>13</td>
<td>Figure 2.4</td>
<td>Mimics six modules</td>
</tr>
<tr>
<td>15</td>
<td>Figure 2.5</td>
<td>COMSOL Desktop</td>
</tr>
<tr>
<td>16</td>
<td>Figure 2.6</td>
<td>COMSOL Model Builder, Settings, Graphics window</td>
</tr>
<tr>
<td>18</td>
<td>Figure 2.7</td>
<td>Components of transdermal patch, which consisted of five main key elements such as liner, drug, adhesive, membrane and backing.</td>
</tr>
<tr>
<td>20</td>
<td>Figure 2.8</td>
<td>Mechanism of action of transdermal patch, diffusion.</td>
</tr>
<tr>
<td>21</td>
<td>Figure 2.9</td>
<td>Schematic structure of the epidermis, which consisted by five layers.</td>
</tr>
<tr>
<td>22</td>
<td>Figure 2.10</td>
<td>Microneedles drug patch</td>
</tr>
<tr>
<td>24</td>
<td>Figure 3.1</td>
<td>Flow chart of methodology</td>
</tr>
<tr>
<td>29</td>
<td>Figure 4.1</td>
<td>Drug’s concentration after one week using drug diffusivity of $2.7 \times 10^{-9} \text{ cm}^2/\text{s}$.</td>
</tr>
<tr>
<td>30</td>
<td>Figure 4.2</td>
<td>Drug’s concentration after one week using drug diffusivity of $2.7 \times 10^{-5} \text{ cm}^2/\text{s}$.</td>
</tr>
<tr>
<td>31</td>
<td>Figure 4.3</td>
<td>Drug’s concentration after one week using drug diffusivity of $2.7 \times 10^{-1} \text{ cm}^2/\text{s}$.</td>
</tr>
<tr>
<td>32</td>
<td>Figure 4.4</td>
<td>Indication of colours, from maximum to minimum.</td>
</tr>
<tr>
<td>35</td>
<td>Figure 4.5</td>
<td>Diffusion of drug into skin to reach target site, tumor at the bottom of breast after one month</td>
</tr>
<tr>
<td>36</td>
<td>Figure 4.6</td>
<td>Diffusion of drug into skin to reach target site, tumor at the top of breast after one month.</td>
</tr>
</tbody>
</table>
Figure 4.7: Diffusion of drug into skin to reach tumor after one month when patch was applied at the bottom of breast.
LIST OF SYMBOLS

C Concentration
D Diffusivity
LIST OF ABBREVIATIONS

COMSOL Multi-Physics Software Package
1 INTRODUCTION

This chapter presents the overview of the background for disease of breast cancer and breast cancer drug therapies. The problem statement of current technology is also stated in this chapter. The objectives of the study also presented in this chapter. The scope and importance of work are defined. Lastly, this chapter also outlines the organization of the thesis.

1.1 Background of study

Breast cancer is the most common form of cancer among women other than other skin cancer, and the number of cases for breast cancer is increased annually. About one in nineteen women in Malaysia are at risk. Breast cancer is also the leading cause of cancer-related death for women. In Peninsula Malaysia, the mortality rate per 100,000 showed an increase from 3.7 per 100,000 in 1982 to 5.8 per 100,000 in 1990. However, since only one-third of deaths in Peninsula Malaysia were medically certified, the mortality rate from breast cancer was actually higher. (Yip, C. H. and Ng, E. H., 1996).

Generally, chemotherapy is the common drug therapy for breast cancer. Many anticancer drugs are designed to simply kill cancer cells. They are often in a semi-specific fashion because the anticancer drugs target on rapidly dividing cells. Similar to cancer cells, the normal cells in blood, mouth, intestinal tract, nose, nails, vagina and hair also divide rapidly. Consequently, the distribution of anticancer drugs in healthy organs or tissues is especially undesirable due to the potential for severe side effects. This phenomenon greatly limits the maximal allowable dose of the drugs. However, low local drugs’ concentration will cause less effect on destroying the cancer cells. Therefore, there is still a need for high or frequent drugs dosing.

To overcome such limitations, a new and more promising technology, transdermal technology has been introduced for breast cancer drug therapy. This application provides an alternative route for delivering drugs to cancer cells, which is through the largest organ of humans’ bodies, skin. In this method, a transdermal patch is purposely engineered and constructed to allow the delivering of drugs precisely to the targeted
cancer cells with fewer side effects. Site-specific drugs delivery is a concept that has the potential to increase local drugs’ concentrations, and thereby produce more effective medicines with reducing the dosage of drugs used.

1.2 Problem statement

The new technology, transdermal patch allows the delivering of anticancer drugs to targeted cancer cell as effectively as possible without side effects and reducing the dosage of drugs used. However, transdermal application has limitation due to the remarkable barrier properties of the outermost layer of skin, stratum corneum. This layer is mainly consisted of lipids, has no blood flow, and thus plays a key role in limiting the diffusion of drugs to the bloodstream. For transdermal drugs delivery system to be effective, the drugs must obviously be able to penetrate this skin barrier and reach the targeted cancer cells. To achieve this, suitable modification has been made on the transdermal delivery system. It is hard to deny that drug diffusivity is a very important factor to be considered.

1.3 Objectives

The aim of this study was to treat breast cancer by delivering drug from transdermal patch precisely to targeted cancer cells so that reducing the side effects and dosage of drugs used. This can be achieved by the following specific objectives:

1. To convert Materilaise's Interactive Medical Image Control System (MIMICS) image files into comsol,
2. To determine the drug concentration at breast tumor
3. To investigate the relationship between drug diffusivity and drug delivery efficiency, and
4. To evaluate the efficiency of drug delivery under other parameters (i.e. deepness of tumor, temporal and spatial placement of transdermal patch).
1.4 Research scope

This study mainly focused on the efficiency of drug delivery from transdermal patch, which was evaluated by response parameter, drug concentration successfully reaching at the breast tumor. The study was carried out by using COMSOL software. Before implementing the COMSOL software, data collection for drug diffusivity and breast volume were needed. After data collection, Materilaise's Interactive Medical Image Control System (MIMICS) image files were converted by using COMSOL software. After converting the image files, simulation was run by using COMSOL software. The simulation was conducted with identified independent variables (i.e. drug diffusivity, deepness of tumor, temporal and spatial placement of transdermal patch). Simulation produced with different parameters was saved for further analyses. Graphs that relate the drug concentration at breast tumor were also developed. From the developed graphs, the association between the efficiency of drug delivery and drug concentration could be made.

1.5 Rationales and significances

This study had the significance to do a new strategy on developing a more promising technology to treat breast cancer. This study also important for eliminate the side effects or toxicities caused by conventional drug therapies. This was replaced by the application of new technology, transdermal patch. The other significance was including reducing the drug dosage used for breast cancer treatment. Reduce side effects and drug dosage used, thereby decreasing the cost of breast cancer treatment.

1.6 Organization of thesis

This thesis is mainly delegated into five different chapters. In first chapter, the background of study, problem statement, objectives, scope and significances of project are reviewed in order to list out the tasks and act as a guideline for this study. The statistic of breast cancer, skin structure, theoretical background, previous studies and
some basic information related to the project title are detailed in the second chapter. Chapter 3 presents the methodology used from the starting until the end of the study, which including the material or instrument used for completing the study, designing the simulation and how to run the simulation. An overview of overall methodology that designated in a flow chart as guideline for task sequences also included in this chapter.

Chapter 4 shows the results obtained from the simulation. Several graphs made to preview the relationship between the drug concentration and time, which were resulting from different parameters also presented. At the end of this chapter, results, some of findings and the sources of errors that affect the simulation outcomes are discussed in details. The last chapter, chapter 5 states the conclusions of the study. Recommendations for improvement of the study in the future also are outlined in this chapter.
2 LITERATURE REVIEW

This chapter includes the statistic of breast cancer, drug therapies of breast cancer, structure of skin, theories of transdermal application and some basic information related to the study. Studies on some recent patents related to the field of transdermal patch are also presented.

2.1 Overview of breast cancer statistic

The problem of cancer in Malaysia is in a growing trend, and breast cancer is the most common cancer among women. Over the years from 1993 to 2003, there were a total of 1818 breast cancer patients in the University Hospital. The number of breast cancer patients increased annually, with the highest recorded in 2003. This was 6 times the number of breast cancer patients in 1993 (Figure 2.1).

![Figure 2.1: Breast cancer in University Malaya Medical Centre, Kuala Lumpur 1993-2003, with total number of 1818 cases. Source: College Of Radiology Breast Health Information Centre (2008)](image)

Breast cancer formed 30% and 31.1% of newly diagnosed cancer cases in women in 2002 and 2003. This was followed by cancer of the cervix, which only formed 12% and 12.9% of total female cancers in 2003 and 2003 respectively (Figure 2.2).
Figure 2.2: Percentage of different kinds of cancer in Malaysian women, in the year of 2002 and 2003.

Source: College Of Radiology Breast Health Information Centre (2008)

The number of deaths from breast cancer also showed an increasing trend, which were 260, 320 and 339 for the year of 1994, 1995 and 1998 respectively. And within these numbers, only 1/3 of all deaths in Malaysia were medically certified (Table 2.1). This indicated that the awareness of breast cancer among women still low and not effective enough. Within the detected women with breast cancer, only 55.6% of Malaysian women presented with early stage breast cancer (Stage 0 – 1) compared with 72% of Singaporean women in 1990. (Yip, C. H. and Ng, E. H., 1996) From the year of 1993 to 2004, there were 30-40% of the patients presented in the late stage and although women are now presenting with smaller tumours, the decrease in size is not significant. (College Of Radiology Breast Health Information Centre, 2008).
Table 2.1: Deaths from cancers in Malaysia women for the years of 1994, 1995 and 1998

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast</td>
<td>260</td>
<td>320</td>
<td>339</td>
</tr>
<tr>
<td>Lung</td>
<td>244</td>
<td>254</td>
<td>272</td>
</tr>
<tr>
<td>Cervix</td>
<td>165</td>
<td>142</td>
<td>177</td>
</tr>
<tr>
<td>Colorectal</td>
<td>128</td>
<td>164</td>
<td>149</td>
</tr>
<tr>
<td>Leukemia</td>
<td>128</td>
<td>142</td>
<td>139</td>
</tr>
<tr>
<td>Stomach</td>
<td>99</td>
<td>105</td>
<td>103</td>
</tr>
<tr>
<td>Liver</td>
<td>98</td>
<td>102</td>
<td>106</td>
</tr>
<tr>
<td>Ovary</td>
<td>88</td>
<td>95</td>
<td>122</td>
</tr>
</tbody>
</table>

Source: Vital Statistic Malaysia

2.2 Conventional breast cancer drug therapy

The most common breast cancer drug therapy, also known as chemotherapy, in simplest sense, is a treatment with the aid of drugs that killing microorganisms or cancerous cells. The chemotherapy drugs can be swallowed by someone as tablets or capsules, or injected intravenously through the veins. When the drugs reach cancer cells, the drugs work by disrupting the growth of cancer cells.

However, when the drugs circulate in the blood, they not only reach cancer cells, but wherever they are in body. Many anticancer drugs are designed simply kill cancer cells. They have no the capability to distinguish between the cancer cells and normal cells. In contrast, they work by killing the cells that are actively growing and dividing into new cells. Cancer cells do grow and divide much more often than normal cells because most normal cells grow and divide in a precise, orderly way. Thus, cancer cells are more likely to be killed by the chemotherapy drugs. However, there are still some normal cells do divide and grow rapidly such as cells in hair follicles, nails, mouth, intestinal tract and bone marrow. Chemotherapy drugs can unintentionally harm these other types of rapidly dividing cells. As a result, the distribution of anticancer drugs in healthy and normal cells is especially undesirable due to the potential for severe side effects.

The side effects caused are significantly depending on the types of drugs, drugs dosage used, how long the drugs are taken and how through of the own body of the one who...
consuming these chemotherapy drugs. The possibilities of common side effects caused by some different kinds of anticancer drugs are discussed with details in the next sub-topic.

2.2.1 Docetaxel

Docetaxel is one of the taxane drugs that were originally developed from the yew tree. Docetaxel is a man-made drug that was first made from the needles of the yew tree. It is known by its brand name, Taxotere. It works by stopping the cancer cells from separating into two new cells, so it blocks the growth of the cancer. Common side effects caused by this drug are as following (Cancer Health UK, 2009):

- Have temporary drop in the number of blood cells made by the bone marrow. For example, a drop in white blood cells result a person with increased risk of getting an infection. When there is a dropping of red blood cells, a person will easy feel tired and breathless. Besides, bruising easily is another common side effect due to a drop in platelets.
- Fatigue is the most disruptive side effect where tiredness often carries on after treatment has just ended.
- Patients may experience fluid retention such as swelling of the hands and feet and resulting in weight gain and breathless.
- Some people develop soreness, redness and peeling on the palms of the hands and soles of the feet.
- Patients may have rash, hair loss, sore mouth, diarrhoe, numbness and tingling in hands and feets, allergic reaction during the infusion and fingernails become discoloured.
- Docetaxel may have a harmful effect on a baby developing in the womb.

2.2.2 Doxorubicin (adriamycin)

Doxorubicin works by binding to the cancer cells’ DNA and blocking an important enzyme called topo-isomerase II. This makes the DNA get tangled up and the cancer
cells cannot divide and grow. The common side effects associated with doxorubicin are listed below (Cancer Health UK, 2009):

- Have temporary drop in the number of blood cells made by the bone marrow. For example, a drop in white blood cells result a person with increased risk of getting an infection. When there is a dropping of red blood cells, a person will easy feel tired and breathless. Besides, bruising easily is another common side effect due to a drop in platelets.
- Fatigue during and after treatment.
- Feeling or being sick may be severe.
- Urine may become a pink or red colour for one or two days after treatment.
- Patients may have hair loss, sore mouth, sensitivity to sunlight, black or brown lines may appear in the creases of skin, watery eyes and conjunctivitis but very rare to happen.
- A woman may stop or temporarily stop having periods, and loss of fertility.
- Doxorubicin may have a harmful effect on a developing baby.

2.2.3 *Herceptin (trastuzumab)*

Herceptin is a monoclonal antibody. It targets a protein called HER2. This protein is found in roughly 25 to 30 percent of breast cancers. By interfering with this protein, this medicine can stop cancer cell growth. With this drug, the common side effects are:

- Breathing difficulties.
- Chest pain or palpitations.
- Cough.
- Dizziness or fainting.
- Fever or chills, sore throat.
- Skin rash, itching or hives.
- Swelling of the legs or ankles.
- Usually weak or tired.
- Loss of appetite.
- Headache.
- Muscle aches.
2.2.4 Paclitaxel (taxol)

Paclitaxel is in a class of drugs known as taxanes. It slows or stops the growth of cancer cells in body. Side effects from paclitaxel are common, and include:-

- Nausea and vomiting.
- Loss of appetite.
- Change in taste.
- Thinned or brittle hair.
- Pain in the joints of the arms or legs lasting 2-3 days.
- Changes in the colour of the nails.
- Tingling in the hands or toes.

2.2.5 Methorexate (maxtrex)

Methotrexate is similar to a normal body molecule called folinic acid, but has a slightly different in structure. So it stops some cells working properly. Cancer cells need to make and repair DNA to grow and multiply. Anti-metabolites often stop cells making and repairing DNA. Methotrexate also stops some normal cells working properly, causing side effects as following (Cancer Health UK, 2009):-

- Have temporary drop in the number of blood cells made by the bone marrow. For example, a drop in white blood cells result a person with increased risk of getting an infection. When there is a dropping of red blood cells, a person will easy feel tired and breathless. Besides, bruising easily is another common side effect due to a drop in platelets.
- Fatigue during and after treatment.
- A patient may experience taste changes, mouth sores, diarrhoe, gritty eyes and hair loss or hair thinning.
- This drug may harm a baby developing in the womb.

Besides of individual chemotherapy drugs, there are some chemotherapy combinations of drugs used for killing cancer cells such as doxorubicin and cyclophosphamide (AC), methotrexate, mitozantrone and mitomycin (MMM), epirubicin, cyclophosphamide and
fluorouracil (FEC) and the list goes on. These combinations are known as combination regimens and different combinations of drugs have different side effects.

2.3 Materilaise's interactive medical image control system (MIMICS)

Materilaise's Interactive Medical Image Control System (MIMICS) is an interactive toolbox for the visualization and segmentation of stacked images (CT, microCT, MRI,…) and 3D rendering of objects. It provides the users the tools to convert the images to 3D objects and prepare these objects for different application domains.

Mimics Software is developed by Materialise NV a Belgian company that is specialized in additive manufacturing software and technology. Nowadays, engineers are playing a crucial role by supporting doctors and improving the quality of life of patients through optimized implants and devices, scientifically validated surgical procedures, studying surgical simulation, and more. Together, these Engineering professionals are working towards a better and healthier world.

Mimics offers the following services as shown in Figure:

1. DICOM to 3D
2. 3D to CAD
3. 3D analysis
4. Medical models
5. FEA/CFD modeling
Mimics most involvement is in the biomedical engineering area and it's a purpose for research and development in various medical specializations such as:

- Orthopedic.
- Cranio-maxillofacial.
- Cardiovascular.
- Pulmonology.
- Dentistry.
- Orthoses & Prostheses.

As such Mimics provides a link between stacked images and the following:

- Rapid prototyping.
- Visualization.
- Finite element analysis.
- Computational fluid dynamics.
- Computer aided design.
- Surgical simulation.
- Porous structures analysis.
Mimics modules:

Mimics consist of six modules, the links between the base program, the modules and the main application areas as shown in figure 2.4

![Mimics six modules diagram](image)

Figure 2.4: Mimics six modules

Source: application of ddm in medical implant

2.4 Comsol

2.4.1 Introduction

COMSOL is all about flexible platform that allows even novice users to model all relevant physical aspects of their designs. Advanced users can go deeper and use their knowledge to develop customized solutions, applicable to their unique circumstances. With this kind of all-inclusive modeling environment, COMSOL gives us the confidence to build the model we want with real-world precision.