FABRICATION AND CHARACTERIZATION OF BIODEGRADABLE
COMPOSITE FILM FROM BANANA STEM

LIM RWI HAU

A thesis submitted in fulfillment of the
requirements for the award of the degree of
Bachelor of Chemical Engineering

Faculty of Chemical and Natural Resources Engineering
Universiti Malaysia Pahang

APRIL 2009
I declare that this thesis entitled “Fabrication and characterization of biodegradable composite film from banana stem” is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature : ...
Name : Lim Rwi Hau
Date : April 16, 2009
ACKNOWLEDGEMENT

In preparing this thesis, I had been in contact with so many people, namely researchers, academicians, and practitioners. They have directly or indirectly contributed towards my understanding and thoughts on the field of my research. In particular, I wish to express my sincere appreciation to my undergraduate research project’s supervisor, Madam Norashikin Bt. Mat Zain, for her encouragement, guidance, critics and friendship. Without her continued support and interest, this thesis would not have been the same as presented here.

I am also indebted to Universiti Malaysia Pahang (UMP) for funding my undergraduate research project as part of the fulfillment of my degree. Librarians at UMP also deserve my special thanks for their never-ending assistance in supplying relevant literatures for the completion of this thesis.

My sincere appreciation also extends to all my friends and others who have provided me with assistance at various possible occasions, specifically Zulsyazwan Bin Ahmad Khushairi, Mohd Faizan Bin Jamaluddin, and Nor Hafiza Binti Hamidon. Their views and tips were very useful indeed. Unfortunately, it is not possible for me to list all the names of those involved directly or indirectly in this limited space. I am also very grateful to all my family members for the kind support and unconditional love they have showered me with.
ABSTRACT

The diverse utilization of packaging films from bio-based compounds has received so much attention lately due to the fact that they are readily biodegradable. Banana stem fiber was subjected to acid hydrolysis and three types of film samples, banana stem fiber-chitosan, cassava starch-chitosan and banana stem fiber-cassava starch-chitosan were fabricated with the addition of PEG400. The film samples were later characterized in terms of their morphological and physical properties through FTIR, TGA, DSC and AFM. Analytical results showed that the three compounds used were almost identical in structure and therefore the miscibility between them was of considerable degree. Results also showed that the thermal stability of the three films was significantly noteworthy to be used as a packaging material. The addition of bio-fibers also affected the thermal and mechanical properties of the film samples. Thus, this study gave a new in-depth look into the usage of biofibers as reinforcing agents of biodegradable films of low thermal and mechanical properties.
Penggunaan filem pembungkusan mudah terbiodegradasi yang diperbuat daripada bahan biologi telah menerima perhatian yang meluas baru-baru ini. Serat batang pisang dihidrolisis melalui asid hidrolisis dan tiga jenis sampel filem dihasilkan iaitu serat batang pisang-chitosan, tepung ubi kayu-chitosan dan serat batang pisang-tepung ubi kayu-chitosan dengan campuran PEG400. Sampel filem tersebut kemudiannya dianalisis morfologi dan kualiti fizikal mereka melalui FTIR, TGA, DSC dan AFM. Keputusan analitikal menunjukkan ketiga-tiga bahan yang digunakan membentuk struktur yang sangat identikal maka kebolehlarutan di antara ketiga-tiga bahan tersebut adalah agak tinggi. Keputusan juga menunjukkan kestabilan haba ketiga-tiga sampel filem tersebut adalah sesuai dengan penggunaan mereka sebagai filem pembungkusan. Penambahan serat tumbuhan juga memberi impak kepada kualiti haba dan mekanikal sampel-sampel filem tersebut. Oleh yang demikian, kajian ini memberikan satu pendedahan baru kepada penggunaan serat tumbuhan sebagai agen pengawal untuk biofilem yang mempunyai kualiti haba dan mekanikal yang rendah.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION OF THE STATUS OF THESIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPERVISOR’S DECLARATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DECLARATION ON COOPERATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CERTIFICATION OF EXAMINATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TITLE PAGE</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION OF ORIGINALITY AND</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>EXCLUSIVENESS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xvi</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Research background 1
1.2 Identification of problems 2
1.3 Significance of study 3
1.4 Objectives 6
1.5 Scopes of study 6

2 LITERATURE REVIEW

2.1 Carbohydrates 7
2.1.1 Carbohydrate Units 7
2.1.1.1 Monosaccharide 8
2.1.1.2 Disaccharide 9
2.1.1.3 Oligosaccharide and polysaccharide 9

2.2 Starch 10
2.2.1 Composition of starch 11
2.2.1.1 Amylose 11
2.2.1.2 Amylopectin 12

2.3 Crystalline structure 13
2.3.1 Plasticizer 14

2.4 Gelatinization of starch 15

2.5 Chitin 16

2.6 Chitosan 18
2.6.1 Composition of chitosan 19
2.6.2 Degree of acetylation of chitosan 20
2.6.3 Biocide properties of chitosan 20
2.6.3.1 Antimicrobial agent 21
2.6.3.2 Elicitation of defense responses by chitosan in plants 22
2.6.3.3 Economic applications of chitosan as microbial inhibitors 23
2.6.3.4 Potential antimicrobial activity of chitosan-incorporated films 24
2.6.3.5 Effect of the nature of chitosan on antimicrobial activity 25
2.6.3.6 Biodegradability of chitosan 25

2.7 Microorganisms 26

2.8 Miscibility of starch and chitosan 26

2.9 Packaging films 28

2.10 Biopolymers 29

2.11 Biofibers 31

2.12 Biodegradable polymers/films 31

2.13 Composite biodegradable films 33

2.14 Factors that affect the performance of biodegradable films 35
2.14.1 Concentration of starch 35
2.14.2 Concentration of chitosan 35
2.14.3 Concentration of plasticizer 36
2.14.4 Amount of water 37
2.14.5 Thickness of film 37
2.14.6 Poly(lactic acid) (PLA) 38

2.15 Innovations in food packaging 38
2.15.1 Active packaging 39
2.15.2 Bioactive packaging 39

2.16 Atomic force microscopy (AFM) 39
2.17 Fourier transform infrared (FTIR) 40
2.18 Thermal gravimetric analysis (TGA) 42
2.19 Differential scanning calorimetry (DSC) 43

3 MATERIALS AND METHOD
3.1 Materials 45
3.1.1 Equipment 45
3.1.2 Chemicals and raw materials 45

3.2 Methodology 46
3.2.1 Overview of methods 46
3.2.2 Film fabrication 47
3.2.2.1 Isolation of banana stem fibers through acid hydrolysis 47
3.2.2.2 Preparation of banana stem fiber-chitosan composite film 50
3.2.2.3 Preparation of cassava starch-chitosan composite film 50
3.2.2.4 Preparation of banana stem fiber-cassava starch-chitosan composite film 51

3.2.3 Film characterization 54
3.2.3.1 Fourier transform infrared (FTIR) 54
3.2.3.2 Thermal gravimetric analysis (TGA) 55
3.2.3.3 Differential scanning calorimetry (DSC) 56
3.2.3.4 Atomic force microscopy (AFM) 57
4 RESULTS AND DISCUSSION

4.1 Film samples
 4.1.1 Banana stem fiber-chitosan film sample 59
 4.1.2 Cassava starch-chitosan film sample 61
 4.1.3 Banana stem fiber-cassava starch-chitosan film sample 63

4.2 Fourier transform infrared (FTIR) spectroscopy 66
 4.2.1 Infrared spectrum of banana stem fiber-chitosan film 67
 4.2.2 Infrared spectrum of cassava starch-chitosan film 70
 4.2.3 Infrared spectrum of banana stem fiber-cassava starch-chitosan film 73
 4.2.4 Comparing the infrared absorption trend of the three film samples by their FTIR spectra 75

4.3 Thermal gravimetric analysis (TGA) 77
 4.3.1 Thermogravimetric traces for the decomposition of banana stem fiber-chitosan film sample 77
 4.3.2 Thermogravimetric traces for the decomposition of cassava starch-chitosan film sample 80
 4.3.3 Thermogravimetric traces for the decomposition of banana stem fiber-cassava starch-chitosan film sample 81
 4.3.4 Comparing the decomposition trend of the three film samples by their TGA curves 85

4.4 Differential scanning calorimetry (DSC) 87
 4.4.1 DSC curve of banana stem fiber-chitosan film sample 87
 4.4.2 DSC curve of cassava starch-chitosan film sample 89
 4.4.3 DSC curve of banana stem fiber-cassava starch-chitosan film sample 94
4.4.4 Comparing the melting and glass transition trend of the three film samples

4.5 Atomic force microscopy
 4.5.1 The topographic analysis of the three film samples
 4.5.2 Surface roughness

5 CONCLUSION AND RECOMMENDATION
 5.1 Conclusion
 5.2 Recommendation

6 REFERENCES
<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Classification of monosaccharides</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>The sources of chitin and chitosan</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Applications of chitin and chitosan</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Packaging films commonly used</td>
<td>29</td>
</tr>
<tr>
<td>2.5</td>
<td>List of important biofibers</td>
<td>31</td>
</tr>
<tr>
<td>2.6</td>
<td>Types of biodegradable polymers and their examples</td>
<td>32</td>
</tr>
<tr>
<td>2.7</td>
<td>The types of composite films, materials used, year, and reference</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>List of equipments with their brand name and model</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>List of chemicals and raw materials with their major supplier</td>
<td>46</td>
</tr>
<tr>
<td>4.1</td>
<td>Some characteristic infrared absorption peaks</td>
<td>66</td>
</tr>
<tr>
<td>4.2</td>
<td>Some important infrared regions that were analyzed from the three film samples</td>
<td>75</td>
</tr>
<tr>
<td>4.3</td>
<td>The availability and ash composition of bio-fibers</td>
<td>86</td>
</tr>
<tr>
<td>4.4</td>
<td>The oxidation temperature, ash content, water content and onset temperature of the three film samples that were analyzed</td>
<td>86</td>
</tr>
<tr>
<td>4.5</td>
<td>Glass transition and melting temperatures of the three film samples that were analyzed</td>
<td>97</td>
</tr>
<tr>
<td>4.6</td>
<td>The surface roughness of the three film samples that were analyzed</td>
<td>100</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Degradation reactions which occur when bio-based resources are exposed to nature</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Some important carbohydrates</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>A structural formula of amylose</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>A structural formula of amylopectin</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Crystalline and amorphous regions of a polymer</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Structural formula of chitin</td>
<td>17</td>
</tr>
<tr>
<td>2.6</td>
<td>The chemical structures of cellulose, chitin and chitosan</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Bacteriostatic antimicrobial activity</td>
<td>21</td>
</tr>
<tr>
<td>2.8</td>
<td>Bacteriocidal antimicrobial activity</td>
<td>21</td>
</tr>
<tr>
<td>2.9</td>
<td>Bacteriolytic antimicrobial activity</td>
<td>21</td>
</tr>
<tr>
<td>2.10</td>
<td>Some components of natural disease resistance</td>
<td>23</td>
</tr>
<tr>
<td>2.11</td>
<td>X-Ray diffractograms of: (a) free chitosan film, (b) glycerol-plasticized starch films, and (c) chitosan coated starch film</td>
<td>27</td>
</tr>
<tr>
<td>2.12</td>
<td>Attenuated total reflection (ATR) spectra of rice starch-chitosan biodegradable film with the ratio of rice starch to chitosan 1:1</td>
<td>28</td>
</tr>
<tr>
<td>2.13</td>
<td>Schematic presentation of bio-based polymers based on their origin and method of production</td>
<td>30</td>
</tr>
<tr>
<td>2.14</td>
<td>Naturally occurring bio-polymers of use in biodegradable packaging films and composites</td>
<td>32</td>
</tr>
<tr>
<td>2.15</td>
<td>An atomic force microscope</td>
<td>40</td>
</tr>
<tr>
<td>2.16</td>
<td>Photo of a basic student-grade benchtop FTIR spectrometer. Spectra are recorded in a few seconds and displayed on the LCD panel for viewing and interpretation</td>
<td>41</td>
</tr>
</tbody>
</table>
2.17 The typical decomposition trends of various polymers 43
2.18 The typical trend of a DSC curve 44
2.19 The typical melting point curve obtained through DSC analysis 44
3.1 The banana pseudostem is being cut off 48
3.2 The soft central stalk is being shown 48
3.3 The pseudostem is dissected and the central stalk is taken out 48
3.4 Pieces of banana central stalk immersed in a solution of 17.5 % w/w sodium hydroxide at ambient temperature 49
3.5 Pieces of banana central stalk taken out of the oven after being dried at 60°C. Acid hydrolysis has been carried out beforehand 49
3.6 Blended banana central stalk. The fibers have been subjected to acid hydrolysis 49
3.7 2g of cassava starch is weighed on an electronic balance ` 51
3.8 4g of low viscous chitosan is weighed on an electronic balance 52
3.9 Chitosan is dissolved in a solution of acetic acid 1% v/v 52
3.10 Cassava starch is dissolved in 100mL of distilled water and heated to 82 – 89°C 52
3.11 Cassava starch forms a viscous and almost transparent solution after being brought to gelatinization 53
3.12 Solution of banana stem fiber-chitosan is stirred at 300RPM for 8 hours 53
3.13 Cast solution is peeled off when dry 53
3.14 Drops of acetone are spread on the germanium crystal to clean it from any impurities 54
3.15 Film sample is placed on top of the germanium crystal 54
3.16 A platinum pan that holds a sample 55
3.17 The pan with the sample is placed on the TGA analyzer 55
3.18 Film sample is placed in a standard pan using a stainless tweezer 56
3.19 A standard lid is placed on top of the film sample 56
3.20 The standard pan and lid are crimp pressed using a sample crimp press 57
3.21 The crimped pan is placed into the DSC analyzer 57
4.1 Banana stem fiber-chitosan film sample 60
4.2 Banana stem fiber-chitosan film when brought in contact with water 61
4.3 Cassava starch-chitosan film sample 63
4.4 Cassava starch-chitosan film sample when brought in contact with water 63
4.5 Banana stem fiber-cassava starch-chitosan film sample 65
4.6 Banana stem fiber-cassava starch-chitosan film sample when brought in contact with water 65
4.7 Chitosan 67
4.8 Cellulose 67
4.9 IR spectrum of banana stem fiber-chitosan film sample 69
4.10 Amylose 70
4.11 IR spectrum of cassava starch-chitosan film sample 72
4.12 IR spectrum of banana stem fiber-cassava starch-chitosan film sample 76
4.13 The decomposition trend of banana stem fiber-chitosan film sample 79
4.14 The decomposition trend of cassava starch-chitosan film sample 82
4.15 The decomposition trend of banana stem fiber-cassava starch-chitosan film sample 84
4.16 A schematic representation of interaction 88
4.17 DSC curve of banana stem fiber-chitosan film sample 90
4.18 DSC curve of cassava starch-chitosan film sample 93
4.19 DSC curve of banana stem fiber-cassava starch-chitosan film sample 96
4.20 Banana stem fiber-chitosan film sample in 2D projection 98
4.21 Banana stem fiber-chitosan film sample in 3D projection 98
4.22 Cassava starch-chitosan film sample in 2D projection 98
4.23 Cassava starch-chitosan film sample in 3D projection 99
4.24 Banana stem fiber-cassava starch-chitosan film sample in 2D projection 99
4.25 Banana stem fiber-cassava starch-chitosan film sample in 3D projection
LIST OF ABBREVIATIONS/SYMBOLS

% - percentage
< - less than
> - more than
°C - degree celcius
µm - micrometer
10^5 - 0.00001
10^7 - 0.0000001
ABO - blood group system
AFM - Atomic Force Microscopy
alpha-Gal - alpha-Galactosidase A
ATR - attenuated total reflectance
cm - centimeter
CO₂ - carbon dioxide
DA - degree of N-acetylation
DD - degree of deacetylation
DDA - degree of deacetylation
DNA - deoxyribonucleic acid
DRR - disease resistance response
DSC - Differential Scanning Calorimtry
et al. - et alii/and others
etc. - etcetera
FDA - Food and Drug Administration of the USA
FTIR - Fourier Transform Infrared
g - gram
H⁺ - hydrogen ion
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>water</td>
</tr>
<tr>
<td>H_m</td>
<td>heat of melting</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>i.e.</td>
<td>id est that is</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>J.g⁻¹</td>
<td>joule per gram/unit for energy</td>
</tr>
<tr>
<td>kHz</td>
<td>kilohertz</td>
</tr>
<tr>
<td>LCD</td>
<td>liquid crystal display</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>mL</td>
<td>milliliter</td>
</tr>
<tr>
<td>mL/min</td>
<td>milliliter per minute</td>
</tr>
<tr>
<td>N/m</td>
<td>newton per meter</td>
</tr>
<tr>
<td>NCMC</td>
<td>N-carboxy-methylchitosan-N,O-sulfate</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>O₂</td>
<td>oxygen</td>
</tr>
<tr>
<td>O-GlcNAc</td>
<td>O-linked N-acetylglucosamine</td>
</tr>
<tr>
<td>pH</td>
<td>negative logarithm for hydrogen ion concentration</td>
</tr>
<tr>
<td>PoP</td>
<td>point-on-purchase</td>
</tr>
<tr>
<td>PR</td>
<td>pathogenesis-related gene</td>
</tr>
<tr>
<td>R</td>
<td>replicate gene</td>
</tr>
<tr>
<td>RH</td>
<td>relative humidity</td>
</tr>
<tr>
<td>rms</td>
<td>root-mean-square</td>
</tr>
<tr>
<td>RPM</td>
<td>revolution per minute</td>
</tr>
<tr>
<td>T_c</td>
<td>conclusion temperature</td>
</tr>
<tr>
<td>T_c</td>
<td>conclusion temperature</td>
</tr>
<tr>
<td>T_g</td>
<td>glass transition temperature</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric Analysis</td>
</tr>
<tr>
<td>T_m</td>
<td>melt transition temperature</td>
</tr>
<tr>
<td>T_o</td>
<td>onset temperature</td>
</tr>
<tr>
<td>T_o</td>
<td>oxidation temperature</td>
</tr>
<tr>
<td>T_onset</td>
<td>onset temperature</td>
</tr>
<tr>
<td>T_p</td>
<td>peak temperature</td>
</tr>
</tbody>
</table>
T_p - peak temperature
v/v - volume per volume
w/w - weight per weight
α - Alpha – glycoside link
β - Beta – glycoside link
ΔH - enthalpy
CHAPTER 1

INTRODUCTION

1.1 Research background

Almost the entire available consumer products have been dispensed through packaging system. This system is greatly utilized to fulfill at least one of the listed functions below (Davis and Song, 2005):

a) to provide product protection from physical damage, contamination and deterioration;

b) to give a product the sales appeal;

c) to ensure that the product identity is easily recognizable;

d) to give information about the product

e) to optimize distribution and storage costs;

f) to provide consumers with the convenience and safety.

Food packaging preserves and protects all types of foods and their raw materials (Tharanathan, 2003) with which their traceability, convenience, and tamper indication are secondary functions recognizably of increasing importance (Marsh and Bugusu, 2007). These protective films and suitable packaging by the food industry have become an ongoing topic of monumental interest because of their packaging potentiality attributed to the ability in increasing the shelf life of many food products (Sorrentino et al., 2007). By means of the correct selection of materials and packaging technologies, it is able to keep the product’s quality and freshness during the time required for its commercialization and most importantly, its consumption (Stewart et al., 2002).
In recent years, bio-based, materials such as carbohydrates and proteins have, gradually if not extensively, been tested and experimented to develop biodegradable films which had been proven to have more and more versatile properties (Perez-Mateos et al., 2009). Also, natural fibers present important advantages such as low density, appropriate stiffness and mechanical properties and high disposability and renewability. Moreover, they are recyclable and biodegradable. There has been lot of research on use of natural fibres in reinforcements (Mukhopadhyay et al., 2008). Natural fibres are getting the attention as a reinforcing agent in both thermoplastic and thermoset matrices (Pothan et al., 2006). This has indefinitely set off the diverse utilization of food packaging films made of bio-based materials.

1.2 Identification of problems

Global production of packaging materials is estimated at more than 180 million tons per year, spurred by the fact that both growth and demand are increasing annually. Within the plastic packaging market, food packaging is the largest growing sector (Cutter, 2006). For the last 20 years, petrochemical polymers, commonly called “plastics,” have been booming and are by far the most widely used polymers for packaging due in part to their high performance, low cost (Callegarin et al., 1997), availability in large quantities at low cost and favorable functionality characteristics, such as good tensile and tear strength, good barrier properties to oxygen and heat-sealing capabilities (Alves et al., 2006).

Indefinitely, plastics have indeed gained a unique position in food packaging technology for a number of quite different reasons including (Psomidaou et al., 1997):

a) higher strength, elongation and barrier properties against waterborne organisms responsible for food spoilage,

b) lower cost and higher energy effectiveness,

c) lightness and water resistance.
They are also incredibly durable and inert even in the presence of microorganisms, leading to a sustainable long-term performance (Mali et al., 2002; Arvanitoyannis et al., 1998). Until as recent as today, the largest part of all materials used in the packaging industries is derived from fossil fuels and practically non-biodegradable (Sorrentino et al., 2007; Ban et al., 2006). These traditional packaging materials also encourage the migration of harmful additives (Lopez-Rubio et al., 2006) into food products.

As the amount of plastic waste increases every year, the exact time needed for its biodegradation is unknown (Reis et al., 2008). Approximately 40 million metric tons of such films are consumed annually on a global basis (Ban et al., 2006). The world is also running out of landfill space as degradation of plastics requires a long time and most of them end up overburdening on landfill (Xu et al., 2005).

Waste is not confined only to plastic materials. According to Abdul Khalil et al. (2006), Malaysia has a large area of plantation of oil palm (3.87 million hectares), coir (147 thousand hectares), banana (34 thousand hectares), and pineapple (15 thousand hectares). Large quantities of cellulosic and non-cellulosic raw material are generated during harvesting (Abdul Khalil et al., 2006). The explosive expansion of these plantations in Malaysia has generated enormous amounts of plant wastes, creating problems in replanting operations and tremendous environmental concerns.

Packaging materials, especially for food products or produce, like any other short-term storage packaging materials, therefore represent a serious global environmental problem (Kirwan and Strawbridge, 2003) if no concerted actions are adopted to address and prevent it.

1.3 Significance of study

A big effort to extend the shelf life and enhance food quality while reducing packaging waste has encouraged the exploration of new bio-based packaging
materials, such as edible and biodegradable films from renewable resources (Tharanathan, 2003) for the goal of food packaging is to contain food in a cost-effective way that satisfies industry requirements and consumer desires, maintains food safety, and minimizes environmental impact (Marsh and Bugusu, 2007). Since the depletion of oil, societal and environmental pressures continue to prompt efforts to develop renewable, cost-effective, and environmentally friendly materials for the manufacture of a number of products, including these films (Ban et al., 2006).

Hence, at present, one of the major trends in the food packaging field is the development and use of polymeric materials of biodegradable and/or edible nature that decompose naturally causing no environmental problems when discarded as waste and can also be considered an alternative to traditional plastics obtained from petrochemical industry (Muratore et al., 2005). This notable growth of interest in developing packaging materials based on biopolymers has been witnessed as early as the last decade (Mendieta-Taboada et al., 2008).

<table>
<thead>
<tr>
<th>Biological Degradation</th>
<th>- Fungi, Bacteria, Insects, Termites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzymatic Reaction</td>
<td>- Oxidation, Hydrolysis, Reduction</td>
</tr>
<tr>
<td>Chemical Reactions</td>
<td>- Oxidation, Hydrolysis, Reduction</td>
</tr>
<tr>
<td>Mechanical</td>
<td>- Chewing</td>
</tr>
<tr>
<td>Thermal Degradation</td>
<td>- Lightning, Sun, Man</td>
</tr>
<tr>
<td>Pyrolysis Reactions</td>
<td>- Dehydration, Hydrolysis, Oxidation</td>
</tr>
<tr>
<td>Water Degradation</td>
<td>- Rain, Sea, Ice, Due</td>
</tr>
<tr>
<td>Water Interactions</td>
<td>- Swelling, Shrinking, Freezing, Cracking, Cyclic Wetting and Drying</td>
</tr>
<tr>
<td>Weather Degradation</td>
<td>- Ultraviolet radiation, Water, Heat, Wind</td>
</tr>
<tr>
<td>Chemical Reactions</td>
<td>- Oxidation, Hydrolysis</td>
</tr>
<tr>
<td>Mechanical</td>
<td>- Erosion</td>
</tr>
<tr>
<td>Chemical Degradation</td>
<td>- Acids, Bases, Salts, Metals</td>
</tr>
<tr>
<td>Chemical Reactions</td>
<td>- Oxidation, Reduction, Dehydration, Hydrolysis</td>
</tr>
<tr>
<td>Mechanical Degradation</td>
<td>- Dust, Wind, Hail, Snow, Sand</td>
</tr>
<tr>
<td></td>
<td>- Stress, Cracks, Fracture, Abrasion</td>
</tr>
</tbody>
</table>

Figure 1.1: Degradation reactions which occur when bio-based resources are exposed to nature (Rowell, 1998).

The search for biologically active compounds from natural sources has taken the center stage in recent years for their low or absent toxicity, their complete biodegradability, their availability from renewable sources, and, their low-cost if
compared with those compounds obtained by total chemical synthesis (Tringali, 2001). Also, the abundance of natural fibres combined with the ease of their processability is an attractive feature (Pothan et al., 2006). The incorporation of these plant fibers which are mostly residues of agriculture and agro-industries, allows a valorization of these wastes and a limitation of environmental damages. It had been demonstrated that natural fibers can reinforce concrete and exhibit the same performance behavior as that of conventional fiber reinforced concrete produced from steel and other inorganic/synthetic fibers (Bilba et al., 2007).

Starch is the commonly used agricultural raw material, since it is a renewable source (Zhai et al., 2004). In the food packaging sector, starch-based material has received great attention owing to its biodegradability, wide availability and low cost (Avella et al., 2005). Starch owes much of its functionality to the two major high-molecular-weight carbohydrate components, amylose and amylpectin, as well as to the physical organization of these macromolecules into the granular structure (Romero-Bastida et al., 2005).

Chitosan is recognized for its antimicrobial activity and film-forming properties (Sebastien et al., 2006) besides its biocide effects (Fernandez et al., 2008). In addition, chitosan also possesses useful properties such as biodegradability, biocompatibility (Sashiwa et al., 2003), and non-toxicity leading to extensively use over a wide range of applications (Bangyekan et al., 2006).

The scope of films made with starch combined with other polysaccharides was widened to include chitosan for several reasons. First, chitosan is a biopolymer, obtained by N-deacetylation of chitin, which is the second most abundant polysaccharide on the earth after cellulose (Bangyekan et al., 2006). It is commercially available from a stable renewable source, that is, shellfish waste (shrimp and crab shells) of the sea-food industry. Second, chitosan forms good films and membranes (Vandamme et al., 2002). Since the use of synthetic polymers is dependent on the use of crude oil, nature has been touted as another possible resource for structural polymers (Jansson and Thuvander, 2004).
1.4 **Objectives**

The objectives of this study are:

a) To fabricate different types of biodegradable composite films from banana stem fiber.

b) To characterize different types of biodegradable composite films from banana stem fiber.

1.5 **Scopes of study**

The scopes of this study are:

a) Film preparation:
 i. Banana stem fiber-chitosan film
 ii. Cassava starch-chitosan film
 iii. Banana stem fiber-cassava starch-chitosan film

b) Film characterization:
 i. Morphological properties using AFM (Atomic Force Microscopy)
 ii. Physical properties tests using FTIR (Fourier Transform Infrared) spectroscopy, TGA (Thermal Gravimetric Analysis), and DSC (Differential Scanning Calorimetry)