EVALUATION OF EFFECTIVENESS PARAMETERS ON GAS DEHYDRATION PLANT (SIMULATION)

TAN FONG LING

BACHELOR OF CHEMICAL ENGINEERING (GAS TECHNOLOGY) UNIVERSITI MALAYSIA PAHANG

©TAN FONG LING (2014)

	Universiti Malavsia
UMP	PAHANG Engineering • Technology • Creativity

Thesis Access Form

No Location

Author: TAN FONG LING

Title : Evaluation of Effectiveness Parameters on Gas Dehydration Plant (Simulation)

Status of access OPEN / RESTRICTED / CONFIDENTIAL

Moratorium period: ______ years, ending _____ / 200____

Conditions of access proved by (CAPITALS): ASSOCIATE PROF. DR. ABDURAHMAN H. NOUR

Supervisor (Signature).....

Faculty: Faculty of Chemical and Natural Resources Engineering

Author's Declaration: *I agree the following conditions:*

OPEN access work shall be made available (in the University and externally) and reproduced as necessary at the discretion of the University Librarian or Head of Department. It may also be copied by the British Library in microfilm or other form for supply to requesting libraries or individuals, subject to an indication of intended use for non-publishing purposes in the following form, placed on the copy and on any covering document or label.

The statement itself shall apply to ALL copies:

This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

Restricted/confidential work: All access and any photocopying shall be strictly subject to written permission from the University Head of Department and any external sponsor, if any.

users declaration: for signature during any Moratorium period (Not Open work): I undertake to uphold the above conditions:

Date	Name (CAPITALS)	Signature	Address

EVALUATION OF EFFECTIVENESS PARAMETERS ON GAS DEHYDRATION PLANT (SIMULATION)

TAN FONG LING

Thesis submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Chemical Engineering (Gas Technology)

Faculty of Chemical & Natural Resources Engineering UNIVERSITI MALAYSIA PAHANG

JANUARY 2014

©TAN FONG LING (2014)

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Chemical Engineering (Gas Technology).

Signature	:
Name of main supervisor	: ASSOCIATE PROFESSOR ABDURAHMAN HAMID NOUR
Position	:
Date	: JANUARY 2014

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature : Name : TAN FONG LING ID Number : KC10039 Date : JANUARY 2014

Dedication

To my supervisor, my family members, my friends, and all faculty members for all your care, support and believe in me.

ACKNOWLEDGEMENT

I would like to express my sincere gratitude and appreciation to my supervisor, Associate Professor Dr. Abdurahman Hamid Nour for his invaluable guidance, empowering support and profound advice throughout this research project.

My heartfelt gratitude also goes to Centre of Graduate Studies from University Malaysia Pahang who was respondents for this study, for their full support and cooperation to make this study possible.

I would like to express my appreciation to all my friends and family for the endless support and love on me.

ABSTRACT

The transportation of natural gas through pipeline is an important aspect in the world. However the combination of hydrocarbon and water under suitable condition form hydrates in pipeline. These hydrates will cause blockage of pipeline. Gas dehydration is the method used to remove water from the hydrocarbon for the smooth transfer of natural gas in pipeline around the world. This research describes the effectiveness parameters on gas dehydration plant. The parameters studies are gas flow rate, absorber pressure and number of equilibrium stages of an absorber in liquid triethylene glycol (TEG) dehydration units. ASPEN HYSYS is used for steady state simulation, design, performance monitoring and optimization of oil and gas production, gas processing and petroleum refining industries. Peng-Robinson equation of state and MESH equation are chosen in the system. In conclusion, the results showed that increasing gas flow rate decreases the dehydration efficiency. While, dehydration efficiency decreases with increasing of operating pressure. Increasing of equilibrium stages increases the dehydration efficiency.

ABSTRAK

Penghantaran gas asli melalui saluran paip adalah satu aspek yang penting di dunia . Tetapi kombinasi hidrokarbon dan air dalam keadaan yang sesuai menghasilkan hidrat di talian paip. Hidrat ini akan menyebabkan penyumbatan saluran paip . Gas dehidrasi adalah kaedah yang digunakan untuk mengeluarkan air dari hidrokarbon supaya penghantaran gas asli melalui saluran paip menjadi lancar di seluruh dunia. Kajian ini menerangkan keberkesanan parameter untuk kilang dehidrasi gas. Parameter yang dikaji adalah kadar aliran gas , tekanan mesin penyerap dan beberapa peringkat keseimbangan mesin penyerap dalam cecair Trietilena glikol (TEG) unit dehidrasi. ASPEN HYSYS digunakan untuk simulasi keadaan mantap , reka bentuk, pemantauan prestasi dan pengoptimuman pengeluaran minyak dan gas , pemprosesan gas dan industri penapisan petroleum. Persamaan Peng –Robinson dan persamaan MESH diguna untuk simulasi kajian ini. Kesimpulannya , semakin tinggi kadar aliran gas semakin menurun kecekapan dehidrasi . Selain itu, kecekapan dehidrasi berkurangan dengan peningkatan tekanan mesin penyerap. Meningkatkan peringkat keseimbangan meningkatkan kecekapan dehidrasi .

TABLE OF CONTENTS

LIST OF FIGURES

Figure 1-1: Molecule of a hydrate	2
Figure 1-2: Hydrates in a pipe	2
Figure 2-1: General process flow of a glycol dehydration unit (Mohamadbeigy, K., 2007)	6
Figure 2-2: Equibrium water dew point as a function of contactor temperature and TEG concentration wt% (Engineering Data book, 2004b).	7
Figure 2-3: Effect of inlet gas temperature on water removal efficiency (Kazemi, P., and Hamidi, R., 2010).	8
Figure 2-4: Effect of equilibrium stages of absorption column on water removal efficiency (Kazemi, P., and Hamidi, R., 2010)	9
Figure 2-5: Water removal versus number of equilibrium stages in the absorber (Mohamadbeigy, K., 2007)	9
Figure 2-6: Effect of pressure in the contactor on the water content of gas stream (Mohamadbeigy, K., 2007) 10	0
Figure 3-1: Simulation Basis Manager 16	6
Figure 3-2: Fluid Package Basis 16	6
Figure 3-3: Selecting Property Package 17	7
Figure 3-4: Selected Components 17	7
Figure 3-5: PFD 18	8
Figure 3-6: Entering Streams and Data 18	8
Figure 3-7: Entering Feed Compositions 19	9
Figure 3-8: Unit Operations 19	9
Figure 3-9: Absorber	0
Figure 3-10: Heater	0
Figure 3-11: Separator	1
Figure 3-12: Heat Exchanger 22	2
Figure 3-13: Distillation Column 22	2
Figure 3-14: Pump 23	3
Figure 4-1: Simulation result from Aspen HYSYS	5
Figure 4-2: Percentage of Water Removal with Gas Flow Rate and Equilibrium Stages at a constant pressure of an Absorber	7
Figure 4-3: Percentage of Water Removal with Gas Flow Rates and Pressures at 2 Equilibrium Stages of an Absorber	8
Figure 4-4: Percentage of Water Removal with Gas Flow Rates and Pressures at 4 Equilibrium Stages of an Absorber	8

Figure 4-5: Percentage of Water Removal with Gas Flow Rates and Pressures at 6	
Equilibrium Stages of an Absorber	29

LIST OF TABLES

Table 2-1: Properties for MEG, DEG, TEG, TREG and water. (Christensen, L,. 2009) 5
Table 3-1: Simulator input data from Azaloye gas field in Iran (Kasiri, N., andHormozdi, Sh., 2005).15
Table 4-1: Percentage of Water Removal with Gas Flow Rate and Equilibrium Stages at a constant pressure of an Absorber
Table 4-2: Percentage of Water Removal with Gas Flow Rates and Pressures at 2Equilibrium Stages of an Absorber
Table 4-3: Percentage of Water Removal with Gas Flow Rates and Pressures at 4Equilibrium Stages of an Absorber
Table 4-4: Percentage of Water Removal with Gas Flow Rates and Pressures at 6Equilibrium Stages of an Absorber

LIST OF ABBREVIATIONS

L	Liquid molar flow rate
Х	Mole fraction in liquid phase
F	Feed molar flow rate
l	Liquid phase
Κ	Equilibrium constant
H _i	Fractional molar enthalpy of component <i>i</i> in liquid phase
${\rm H_i}^+$	Fractional molar enthalpy of component <i>i</i> in ideal gas state
φ_i^v	Fugacity coefficient of gas phase
γ_i	Activity coefficient
Р	Pressure
V	Molar volume
Т	Temperature
R	Universal gas constant (8.314 J.K ⁻¹ .mol ⁻¹)
T _c	Critical temperature
Pc	Critical pressure
α	Alpha function (function of reduced temperature)

LIST OF ABBREVIATIONS

CO_2	Carbon dioxide
EOS	Equation of State
H ₂ O	Water
H_2S	Hydrogen sulfide
MEG	Monoethylene Glycol
DEG	Diethylene Glycol
TEG	Triethylene Glycol
TREG	Tetraethylene Glycol
SI	International System of unit
PFD	Process Flow Diagram
BTEX	Emission of Aromatic, e.g. Benzene, toluene, ethylbenzene, xylenes
VOC	Volatile Organic Compounds

CHAPTER 1

INTRODUCTION

1.1 Motivation and statement of problem

The combination of hydrocarbon and water under appropriate condition crystallize to form solid called hydrates in pipeline. It causes problem in the transfer of hydrocarbon gases in the piping system. These hydrates block the piping system from flowing smoothly and cause imbalance pressure in the pipe. Hydrates form at high pressure and temperature far above water freezing point. Gas hydrate has a cage like structure containing a molecule from the hydrocarbon. This cage is formed by water through hydrogen bonding (Christensen, L, 2009). Besides that, when water have contact with acid gas from the natural gas, corrosion of pipeline will occur. Hence, water must be remove from hydrocarbon gases in the piping system. In order to do that, Gas Dehydration is a common process used to remove water (H_2O) from natural gas hydrocarbons.

Figure 1-1: Molecule of a hydrate

Figure 1-2: Hydrates in a pipe

This study focused on studying the effectiveness parameters on absorber of a gas dehydration plant. The parameters were gas flow rate, absorber pressure, absorber temperature and number of equilibrium stages of an absorber in liquid triethylene glycol (TEG) dehydration units.

According to Mohamadbeigy K. (2007) study, he studied the effective parameters of glycol flow rate, reboiler condition and number of equilibrium stages of absorber. The number of equilibrium stages, glycol flow rate and lean glycol are interrelated. The higher the number of equilibrium stages the lower the glycol flow rate or lean glycol

concentration is needed. From his study result, he found out that increasing the equilibrium stages allows the gas to reach equilibrium with the lean glycol at lower glycol flow rate. Besides that, the reboiler temperature influences the overhead water content by changing the purity of the lean glycol.

As for Kazemi P. and Hamidi R. (2010) research, they divided the gas dehydration process to two parts, gas dehydration and solvent regeneration. The parameters they study was number of equilibrium stages, reboiler temperature, stripping gas, temperature of inlet gas to absorption column CO_2 and H_2S content of inlet gas and TEG flow rate. They found the same result as Mohamadbeigy K. (2007), which the reboiler temperature affect water content of inlet gas with modifying of regenerated TEG. Furthermore, increasing the equilibrium stages lead to equilibrium the water content of wet gas and inlet TEG to the absorber at low TEG flow rates. Besides that, the used of scrubber to remove liquid decreases the amount of water that has to remove in the absorber. This action decreases the column size and even decrease the TEG needed in the process.

The previous researchers were more focused on the overall effectiveness parameters of the gas dehydration plant. As this study is more focus on the effectiveness parameters in absorption column. This study is done to get the most efficient absorber parameters and with these parameters we can generalize the whole dehydration plant.

1.2 Objectives

The objective of this research is to evaluate the effectiveness parameters on natural gas dehydration plant using Aspen HYSYS.

1.3 Scope of this research

The scope of this study was to identify the effectiveness parameters such as gas flow rate, absorber pressure, absorber temperature and number of equilibrium stages of an absorber in liquid triethylene glycol dehydration units.

In the HYSYS glycol package, the temperatures, pressures and gas compositions normally come across in a glycol plant. This applies for contactor for temperatures from 15 to 50 % and pressures between 10 and 100 bars (Christensen, L, 2009).

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

This paper presents the experimental studies of natural gas dehydration using absorption method. TEG as the absorbent used in gas dehydration. There were many previous studies done by other researcher. The commonly parameters they study were theoretical stages of absorber, glycol circulation rate and regeneration condition. Glycol was more of their focus. As for this study was focus on the overall efficiency of the absorber parameters. Hence, more study on absorber parameters were taken out and discuss in subchapter below.

2.2 Introduction of Dehydration

Eventually, there are four methods used in gas dehydration process. The methods are absorption, adsorption, membrane processes and refrigeration. In absorption, it uses a liquid with high affinity for water to absorb water. The glycol is the commonly used liquid in absorption. As for adsorption, it uses adsorbents like silica gel to adsorb water. Next, membrane processes using membrane to separate water when the gas passes the membrane. Lastly, refrigeration cools the gas and makes the water condense. Then the condense water is remove in a separator (Christensen, L, 2009).

The comparison of these four methods, the best and most commonly used in gas dehydration plant is absorption method. In membrane processes, it require higher amount of cost and it less efficient compare to absorption and adsorption methods. While for refrigeration, although it operate at low cost but it is not efficient. As for absorption and adsorption methods, these two are the most efficient method in gas dehydration plants. However, absorption is chosen because it is more economical and less energy is required to operate it (Kidnay, A., and William, R., 2006; Christensen, L,. 2009).

As I mention earlier, glycols are commonly used absorbents in dehydration plants. This is because it has high affinity for water. This can increase the absorption efficiency. The most generally used glycol in dehydration plants is triethylene glycol (TEG). It has higher boiling point and lower vapor pressure compare to monoethylene glycol (MEG) and diethylene glycol (DEG). Besides that, it is more economical when compare to tetraethylene glycol (TREG). The higher polymers than TREG have higher viscosities which are usually not used for dehydration (Christensen, L, 2009).

	MEG	DEG	TEG	TREG	Water
Formula	$C_2H_6O_2$	$C_4H_{10}O_3$	$C_6H_{14}O_4$	$C_8H_{18}O_5$	H ₂ O
Molar mass (kg/kmol)	62.07	106.12	150.17	194.23	18.015
Normal boiling point ($^{\circ}$ C)	197.1	245.3	288.0	329.7	100.0
Vapor pressure @ 25 °C (Pa)	12.24	0.27	0.05	0.007	3170
Density @ 25 $^{\circ}$ C (kg/m ³)	1110	1115	1122	1122	55.56
Viscosity @ 25 °C (cP)	17.71	30.21	36.73	42.71	0.894
Viscosity @ 60 °C (cP)	5.22	7.87	9.89	10.63	0.469
Maximum recommended	163	177	204	224	-
regeneration temperature ($^{\circ}$ C)					
Onset of decomposition ($^{\circ}$ C)	-	240	240	240	-

Table 2-1: Properties for MEG, DEG, TEG, TREG and water. (Christensen, L, 2009)

There are several equipment is commonly used in a gas dehydration plant. There are absorber, boiler, flash separator, heat exchanger, regenerator, stripper and pump. Generally glycol dehydration is a continuous process. The used glycol is recycled to use back as absorbent. The general process flow is shown at Figure 2-1 below. The wet gas

and glycol flow counter currently through the absorber. Wet gas enters from the bottom while glycol enters from the top of the absorber. Glycol will absorb water from the wet gas when they in contact in the absorber. Dry gas will exit at the top of the absorber and it is use to cool the incoming lean glycol while rich glycol exits at the bottom of the absorber. This rich glycol flows to a flash separator to separate the hydrocarbon gases which remain in it. Next, it flows towards regenerator or stripper to get rid of the water in the rich glycol stream. Finally the lean glycol is recycled back to the absorber.

Figure 2-1: General process flow of a glycol dehydration unit (Mohamadbeigy, K., 2007).

2.3 Previous work on Absorption of Gas Dehydration

According to Engineering Data Book (2004b), gas hydrate will form at higher temperature than sub cooled water. Hence at lower temperature, the true equilibrium condensed phase is gas hydrate. This is also means the hydrate formation will occur at 15 to 20 F (8 to 10 C) higher than the dew point seen from Figure 2-2 below. Moreover, Engineering Data Book (2004b) mention the actual error depends on temperature, gas composition and pressure but pressure effect is not much. Figure 2-2 below from Engineering Data Book (2004b) shows that dehydration increase with lower absorption temperature. The range of typical operating absorber inlet temperature is 16 to 38 °C and operating pressure is below 140bar (Engineering Data Book, 2004b). It also mentions

that lower temperature improves absorption efficiency but will cause hydrate formation at high pressure.

Refer to both Engineering Data Book (2004b) and Manning F. and Thompson R. (1991), absorber temperature can be as high as 66 $\$ but above 38 $\$ will cause unacceptably vaporization losses for glycol solutions while temperature lower than 10 $\$ will cause high viscosity on glycol solution and reduce column efficiency. In order to reduce the hydrocarbon condensation into the glycol, the glycol inlet temperature in absorber must be 3 to 11 $\$ higher than the inlet gas temperature (Manning, F., and Thompson, R., 1991; Kidnay, A., and William, R., 2006).

Figure 2-2: Equilibrium water dew point as a function of contactor temperature and TEG concentration wt% (Engineering Data book, 2004b).

Kazemi P. and Hamidi R. (2010) found that inlet gas temperature is important parameter which will affect the TEG flow rate and decrease gas density. This cause inlet gas has higher volumetric flow rate. They said all these happen because higher temperature of inlet gas increases its water content exponentially. This can be seen from Figure 2-3 below (Kazemi, P., and Hamidi, R., 2010).

Figure 2-3: Effect of inlet gas temperature on water removal efficiency (Kazemi, P., and Hamidi, R., 2010).

Other than that, Kazemi P. and Hamidi R. (2010) researched that higher equilibrium stages result to equilibrium the water content of wet gas and inlet TEG to the absorption column at low TEG flow rate. Figure 2-4 below was the result taken from Kazemi P. and Hamidi R. (2010) study. It showed that for three and four equilibrium stages, the TEG flow rates were 20 (kg TEG/ kg (water absorbed)) and 18 (kg TEG/ kg (water absorbed)) respectively. As for two equilibrium stages, it need higher TEG flow rate to reach equilibrium.

Figure 2-4: Effect of equilibrium stages of absorption column on water removal efficiency (Kazemi, P., and Hamidi, R., 2010).

Mohamadbeigy K. (2007) have a same result as Kazemi P. and Hamidi R. (2010) study on effect of the number of equilibrium absorber stages on residual water content. The result was higher number of equilibrium stages in absorber allows the gas to reach equilibrium at lower TEG flow rate. In another words, higher TEG flow rate is prefer when only one ideal stage is used. The result can be seen from Figure 2-5 below (Mohamadbeigy, K., 2007). Higher flow rate is preferred because it increases the contact between the inlet gas and TEG.

Figure 2-5: Water removal versus number of equilibrium stages in the absorber (Mohamadbeigy, K., 2007).

According to Mohamadbeigy K. (2007), percentage of water removal of the inlet gas decreases with increasing pressure of the absorber and higher number of equilibrium

stages in absorber have higher percentage of water removal. This is done at constant temperature with variable number of equilibrium stages in absorber. The result can be seen from Figure 2-6 below (Mohamadbeigy, K., 2007). Furthermore, he mentions that absorber required less wall thickness to contain the pressure as the absorber operate at low pressure condition. Hence, it can save cost by adjusting the operating condition and contactor thickness.

Figure 2-6: Effect of pressure in the contactor on the water content of gas stream (Mohamadbeigy, K., 2007).

2.4 Summary

This paper presents studies of gas dehydration which were more focus on the parameters of the absorber. For instance, theoretical stages in absorber, natural gas flow rate, absorber temperature and pressure. The results of the study by most researchers were similar by means of concept wise. The difference was only the level of efficiency of the percentage of water removal. One of the results was the higher the number of equilibrium stages and flow rate of inlet gas, the higher is the water removal efficiency. Besides that, the overall water removal efficiency will decrease with the increase of the absorber pressure.

CHAPTER 3

MATERIALS AND METHODS

3.1 Overview

This paper presents the process simulation, absorption model and input data used for this research. The simulation was Aspen HYSYS. Aspen HYSYS was chooses because it contain all the dehydration unit natural gases needed for this study. Plus, it was in hand in handling system which comprises hydrocarbon and water over a wider range of temperature and pressure. There were two type of absorption model used. They were Peng-Robinson equation of state and MESH equation.

3.2 Process Simulation

Aspen HYSYS will be the program simulation used for this research. The version of HYSYS used for the process simulations in this report is Aspen HYSYS 2006.5. HYSYS is mainly use for steady state simulation, design, gas processing, petroleum refining industries, performance monitoring and optimization of oil and gas production. Hence, it is suitable to use for this research which deal with gas dehydration (HYSYS User Guide, 2005).

It is very important in selecting the right Fluid Package in HYSYS. As all the necessary information related to pure component flash and physical property calculations of the components is right within the selected Fluid Package (HYSYS User Guide, 2005).

There is a Fluid Package which contains all the dehydration unit natural gases wanted for this research. Furthermore, Peng-Robinson equation of state is chosen as an ideal model for process calculation. This is because it is suitable in handling system which comprises hydrocarbon and water over a wide range of temperature and pressure.

In HYSYS User Guide (2005), it mentions that material streams are used to show the travelling of material between different units of operations. It is essential to define the main properties and composition in each material stream. Some of the main properties are pressure, temperature, composition and molar flow rate. These properties are the main parameters for this study. As for the energy streams, it is use to show the energy travelling between different units of operations. Specify dynamic information can be view through the energy stream. Heat flow is the main parameter for energy stream (HYSYS User Guide, 2005).

Besides that, HYSYS simulation program have all the unit operators used in a gas dehydration plant. There are absorber, flash drum, separator, heat exchanger and pump. Each of these unit operators can be set to the operation condition as the gas dehydration plant.

3.3 Absorption Model

In this study, Peng-Robinson equation of state is used to represent the thermodynamic behavior of the TEG water system (Polak, L., 2009). This model is based on a cubic equation of state. This model is selected because it has a good phase equilibrium estimates over a variations of temperature and pressure. This is essential in terms of modeling the multicomponent system in a natural gas dehydrations plants as it is necessary to account for the existence of gases in the absorption column (Peng, D., Y., Robinson, D., B., 1976).

The Peng-Robinson equation is commonly used for hydrocarbons and related components over variations of temperature and pressure. According to Polak, L., (2009), Peng-Robinson is precise for calculating enthalpy and entropy departures, liquid densities, vapor densities and vapor-liquid equilibrium in natural gas processing and others petroleum related operations. Plus it is accurate in the critical region.

The Peng-Robinson equation is as below:

$$P = \frac{RT}{(V-b)} - \frac{a. \propto}{V(V+b) + b(V-b)}$$
(3.1)

Where,

$$a = 0.45724 \frac{R^2 T_c^2}{P_c},$$

$$b = 0.07780 \frac{RT_c}{P_c},$$

$$P = \text{pressure},$$

$$V = \text{molar volume},$$

$$T = \text{temperature},$$

$$R = \text{universal gas constant (8.314 \text{ J.K}^{-1}.\text{mol}^{-1}),$$

$$T_c = \text{critical temperature}, P_c = \text{critical pressure},$$

$$P_c = \text{critical pressure},$$

$$\alpha = alpha \ function, function \ of \ reduced \ temperature \ T_r = \frac{T}{T_c}$$
$$= [1 + (0.37464 + 1.54226\omega - 0.26992\omega^2)(1 - (\frac{T}{T_c})^{0.5})]^2$$
(3.2)

$$\omega = -\log\left(\frac{P}{P_c}\right) - 1 \tag{3.3}$$

Another model is the MESH equations. It contains of four sets of equations. There are mass balances, equilibrium relations, sum of mole fractions of each phase and heat balance. Mesh is used to describe tray columns treatment (Kasiri, N., and Hormozdi, Sh., 2005). Material balance of component i on tray j, for liquid phase is as follows (Seader, J.D., and Henley, E.J., 1998):

$$L_{j}x_{i,j} - L_{j+1}x_{j+1} - F^{l}_{i,j} = 0$$
(3.4)

Where,

L = liquid molar flow rate, x = mole fraction in liquid phase, F = feed molar flow rate, The superscript l = liquid phase

Equilibrium relation for component *i* at tray *j* is as below:

$$K_{i,j} = y_{i,j} / x_{i,j}$$
(3.5)

Where,

K = equilibrium constant

Sum of mole fraction of each phase is as follows:

$$\sum_{i=1}^{N} y_{i,j} = 1, \sum_{i=1}^{N} x_{i,j} = 1$$
(3.6)

Energy balance equation is shown as follows:

$$L_{j+1}H_{Lj+1} + V_{j-1}H_{Vj-1} + F_jH_{Fj} - L_jH_{Lj} - V_jH_{Vj} - Q_j = 0$$
(3.7)

Kasiri, N., and Hormozdi, Sh., (2005), mention that the real enthalpy of components is calculated by combination of ideal gas enthalpy and residual enthalpy of gases and liquids. Ideal gas enthalpy is calculated by:

$$H^{ig}{}_{i} = a' + b'T + c'T^{2} + d'T^{3} + e'T^{4} + f'T^{5}$$
(3.8)

Where, a', b', c', d', e' and f' could be found in literature (Prausnitz, J., et al., 1999).

The general form of gas and liquid residual enthalpy are as below:

$$\frac{H-H^{ig}}{RT} = \frac{1}{RT} \int_{0}^{P} \left[\forall -T(\frac{\partial \forall}{\partial T})_{P} \right] dP$$
(3.9)

$$\left(\frac{\partial Lnf_i^l}{\partial T}\right)_{P,x} = -\frac{\overline{H}_i - H_i^+}{RT^2}$$
(3.10)

Where,

 \overline{H}_i and H_i^+ = fractional molar enthalpy of component *i* in liquid phase and ideal gas state respectively.

Wilson activity model is used for estimate of liquid phase treatment. The following equation could be applied to evaluate fugacity coefficient of gas phase (φ_i^v) from Peng-Robinson equation of state and activity coefficient (γ_i) from Wilson activity model (Kasiri, N., and Hormozdi, Sh., 2005) :

3.4 Input Data

The input data used for this study is from Azaloye gas field in Iran.

Wet Gas				
Components mole fraction				
Water	0.001420			
CO_2	0.013200			
H_2S	0.000001			
N_2	0.035200			
CH_4	0.853000			
C_2H_6	0.055400			
C_3H_8	0.023500			
i-C ₄ H ₁₀	0.004600			
$n-C_4H_{10}$	0.006690			
i-C ₅ H ₁₂	0.001890			
$n-C_5H_{12}$	0.001762			
C_6^+	0.003920			
Benzene	0.000045			
Toluene	0.000030			
Flow rate (kmol/hr)	2403.00			
Pressure (bar)	73.20			
Temperature (°C)	40.00			
Lean TEG				
Components mole fraction				
TEG	1.00			
Flow rate (kmol/hr)	104.46			
Pressure (bar)	71.20			
Temperature (° C)	45.00			

Table 3-1: Simulator input data from Azaloye gas field in Iran (Kasiri, N., and Hormozdi, Sh., 2005).

3.5 Simulation Procedure

First, start a new case by selecting the New Case icon. Then Simulation Basis Manager appeared as Figure 3-1.

4 Simulation Basis Manager			
Component Lists C HYSYS Data Agdd Delete	tion Jabanks Ities		
Сору	Import		
⊻iew	Export		
<u>R</u> efresh	Re-imp <u>o</u> rt		
Components Fluid Pkgs Hypotheticals	Oil Manager Reactions	Component Maps U	ser Properties
	Extend Simulation Basis Ma	nager	Enter Simulation Environment

Figure 3-1: Simulation Basis Manager

Next, select the 'Fluid Pkgs' tab and create a fluid package by clicking add. Then fluid package basis appeared as Figure 3-2.

🖕 Fluid Package: Basis-1	
HYSYS Aspen Properties COMThermo Property Package Selection Amine Pkg Antoine ASME Steam Braun K10 BWRS Chao Seader Chien Null Esso Tabular Esso Tabular Esso Tabular	
Extended NHTL GCEOS General NRTL Glycol Package Grayson Streed	
Component List Selection Component List - 1 View	
Set Up Parameters Binary Coeffs StabTest Phase Order Rxns Tabular Notes	,I
Delete Name Basis-1 Property Pkg None>	

Figure 3-2: Fluid Package Basis

On the set up tab from the fluid package basis, leave it as a HYSYS fluid package then scroll down the Property Package Selection list and select the Peng-Robinson Equation of State (EOS) model. This is showed in Figure 3-3. The name was changed from the default Basis-1 to Gas Dehydration Plant.

👙 Fluid Package: Gas Dehydration Plant	
 HYSYS Aspen Properties COMThermo Property Package Selection GCEOS Glycol Package Kabadi-Danner Lee-Kesler-Plocker MBWR Peng-Robinson PR-Twu PR-Twu PR-Twu PRSV Sour PR Sour SRK SRK SRK-Twu Twu-Sim-Tassone Zudkevitch-Joffee 	
Component List Selection	
Set Up Parameters Binary Coeffs StabTest Phase Order Rxns Tabular Notes Delete Name Gas Dehydration Property Pkg Peng-Robinson Ed	lit Properties

Figure 3-3: Selecting Property Package

Click the View button in the Component List Selection section to add components to the Component List. Figure 3-4 showed the component added to the component list.

4 HYSYS Component List \	View: Component List - 1				
Add Component	Selected Components		-Components Avai	lable in the Component Library—	
Components	Methane Ethane Propane		<u>M</u> atch		View Filters
Hypothetical	i-Butane		O Sim Name	Full Name / Synonym	C Formula
	n-Butane i-Pentane		n-Heptane	C7	C7H16
	n-Pentane	< <u>A</u> dd Pure	n-Octane	C8	C8H18
	n-Hexane		n-Decane	C10	C10H22
	Toluene	<- <u>S</u> ubstitute->	n-C11	C11	C11H24
	Nitrogen		n-C12	C12	C12H26
	H2S	Remove>	n-C13	C14	C14H30
	H20		n-C15	C15	C15H32
	TEGlycol	Sort List	n-C16	C16	C16H34
			n-C17	C18	C18H38
			n-C19	C19	C19H40
		View Component	n-C20	C20	C20H42
			1 n-U21	L'21	C21H44
]		Show Synony	yms 📃 Cluster	
Selected Component	t by Type				
Delete		Name Compor	ent List - 1		

Figure 3-4: Selected Components

Next, close the component list and close the fluid package to return to simulation basis manager. Then enter simulation environment. A PFD appeared as showed in Figure 3-5. Save the case.

Figure 3-5: PFD

Following, click the workbook icon to add streams and streams data. Data required to add in for feed streams are temperature, pressure, molar flow rate and composition. This is showed in Figure 3-6 and Figure 3-7. Other necessary streams and its data are also added at here.

Name		wet gas		teg in	dry gas	rich teg
Vapour Fraction		0.9999		0.0000	<empty></empty>	<empty></empty>
Temperature [C]		40.00		45.00	<empty></empty>	<empty></empty>
Pressure [kPa]		7320		7120	<empty></empty>	<empty></empty>
Molar Flow [kgmole/h]		2403		104.5	<empty></empty>	<empty></empty>
Mass Flow [kg/h]	4.6	21e+004	1.569	e+004	<empty></empty>	<empty></empty>
Liquid Volume Flow [m3/h]		135.6		13.90	<empty></empty>	<empty></empty>
Heat Flow [kJ/h]	-1.9	26e+008	-8.264	e+007	<empty></empty>	<empty></empty>
Material Streams Co	ompositions	Energy	Streams	Unit Op:	s	

Figure 3-6: Entering Streams and Data

Name	wet gas	teg in	dry gas	rich teg			
Comp Mole Frac (Methane)	0.8524	0.0000	<empty></empty>	<empty></empty>			
Comp Mole Frac (Ethane)	0.0554	0.0000	<empty></empty>	<empty></empty>			
Comp Mole Frac (Propane)	0.0235	0.0000	<empty></empty>	<empty></empty>			
Comp Mole Frac (i-Butane)	0.0046	0.0000	<empty></empty>	<empty></empty>			
Comp Mole Frac (n-Butane)	0.0067	0.0000	<empty></empty>	<empty></empty>			
Comp Mole Frac (i-Pentane)	0.0019	0.0000	<empty></empty>	<empty></empty>			
Comp Mole Frac (n-Pentane)	0.0018	0.0000	<empty></empty>	<empty></empty>			
Comp Mole Frac (n-Hexane)	0.0039	0.0000	<empty></empty>	<empty></empty>			
Comp Mole Frac (Benzene)	0.0000	0.0000	<empty></empty>	<empty></empty>			
Comp Mole Frac (Toluene)	0.0000	0.0000	<empty></empty>	<empty></empty>			
Comp Mole Frac (Nitrogen)	0.0352	0.0000	<empty></empty>	<empty></empty>			
Comp Mole Frac (H2S)	0.0000	0.0000	<empty></empty>	<empty></empty>			
Comp Mole Frac (CO2)	0.0132	0.0000	<empty></empty>	<empty></empty>			
Comp Mole Frac (H2O)	0.0014	0.0000	<empty></empty>	<empty></empty>			
Comp Mole Frac (TEGlycol)	0.0000	1.0000	<empty></empty>	<empty></empty>			
Material Streams Compo	ositions Energy	Streams Unit O	ps				

Figure 3-7: Entering Feed Compositions

After that, press 'unit ops' tab in the workbook to add in necessary unit operations units. This is showed in Figure 3-8.

🋥 Workbook - Case (Main)		
Name Object Type	Image: Second Secon	able Unit Operations ase Separator ipper Crude ipper Crude ipper Crude ipper St ooler an Hydraulics Sub-Flow house Filter ince k Oil Translator lean And lean CountUp lean Latch lean Latch lean OffDly lean OffDly lean OffDly lean Off
Material Streams Compositions Ene	rgy Streams_Unit Ops	

Figure 3-8: Unit Operations

The first unit to be added in the PFD is an absorber. Choose the inlet and outlet stream of the absorber. The streams detail is according to the streams added in the material

streams earlier. Then, enter the number of stages and pressures. Lastly press the run button. This is showed in Figure 3-9.

嘴 Column: T-100 /	COL1 Fluid Pkg: Gas Dehydration Pl	ant / Peng-Robinson	
Design	Column Name T-100	Sub-Flowsheet Tag COL1	
Connections			0⊻hd Vapour Outlet
Monitor			dry gas 📃 💌
Specs Specs Summary Subcooling Notes	Top Stage Inlet teg in Optional Inlet Streams Stream Inlet Stage Stream >> Bottom Stage Inlet wet gas	1 2 Num of Stages n = 2 n-1 P1 7120 kPa Pn 7320 kPa	Cptional Side Dr <u>a</u> ws Stream Type Draw Stage J << Stream >> ■
Design Parame	Stage Numbering Top Down O Bottom Up Edit Trays sters Side Ops Rating Worksheet	Performance Flowsheet F	Bottoms Liguid Outlet rich teg Reactions Dynamics
Delete	Colu <u>m</u> n Environment R <u>u</u> n	<u>R</u> eset Conve	erged 🔽 Vpdate Outlets 🥅 Ignored

Figure 3-9: Absorber

Next, add a re-boiler and select the inlet, outlet and energy streams. This is showed in Figure 3-10.

🗯 E-100		
Design	Name E-100	
Connections		
Parameters User Variables	Inlet Energy rich teg	
Notes	Outlet Fluid Package Gas Dehydration Plant]
Design Rating	Worksheet Performance Dynamics	
Delete	OK	🔲 Ignored

Figure 3-10: Heater

Then, a separator is added. Choose the inlet and outlets streams. Under the design category, press parameters to fill in the 'delta P' section. 'Delta P' is the pressure differences in the separator. The separator is shown in Figure 3-11.

Figure 3-11: Separator

A heat exchanger is added using the same method. Choose the inlets and outlets streams accordingly. Under the design category, press parameters to fill in the 'delta P' section. 'Delta P' is the pressure differences in the heat exchanger in shell and tube side. The heat exchanger is show in Figure 3-12.

₽ E-101		
Design Connections	<u>T</u> ube Side Inlet <u>N</u> ame E-101	Shell Side Inlet
Parameters Specs User Variables Notes	Tube Side Shell Side Shellside Flowsheet Case (Main)	
	Tube Side Outlet Tube Side Fluid Pkg Gas Dehydration Plant	Shell Side Outlet rich teg in Shell Side Fluid P <u>kg</u> Gas Dehydration Plant

Figure 3-12: Heat Exchanger

Next, a distillation column is added. The inlet, outlets and energy stream were filled in as Figure 3-13.

Column: T-101 /	COL2 Fluid Pkg: Gas Dehydration P	lant / Peng-Robinson
Design	Column <u>N</u> ame T-101	Sub-Flowsheet Tag COL2 Condenser
Connections Monitor Specs Specs Summary Subcooling	Condenser Energy Stream	Delta P 0.0000 kPa 0.0000 kPa 0.0000 kPa
Notes	Injet Streams Stream Inlet Stage rich teg in 5_Mair << Stream >>	P cond Optional Side Draws In = 10 P reb Int.0 kPa P reb Int.0 kPa Reboiler Energy Stream
	Stage Numbering Top Down C Bottom Up Edit Trays	n+1 Delta P 0.0000 kPa Bottoms Liguid Outlet lean teg out
Design Param	eters Side Ops Rating Workshee	t Performance Flowsheet Reactions Dynamics
Delete	Colu <u>m</u> n Environment R <u>u</u> n	<u>R</u> eset Converged ↓ ↓ Update Outlets ↓ Ignored

Figure 3-13: Distillation Column

Then, a pump is added. The inlet, outlets and energy stream were filled in as Figure 3-14.

🖅 P-100	
Design	Name P-100
Connections Parameters Curves Links User Variables Notes	Dutlet pump out
Design Rating	Image Image Image Image Image Image

Figure 3-14: Pump

3.6 Summary

This study was simulated from Aspen HYSYS program. The absorption models used were Peng-Robinson equation of state and MESH equations. The input data were taken from Azaloye gas field in Iran. The simulation procedure is done step by step till all the unit operations are converged.

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Overview

The HYSYS simulation was run according to the input data and simulation procedure mention in Chapter 3. The objective of this study is to evaluate the effectiveness parameters on natural gas dehydration plant using Aspen HYSYS. In order to achieve the objective, different value of natural gas flow rate, absorber pressure and equilibrium number of stages were run. The raw data result from the simulation is shown in appendices. The percentages of water removal were calculated using the data get from the simulation and discussed based on the results in this chapter.

4.2 Results

The Figure 4-1 below showed the simulation result of the converged unit operations. There were total six unit operations used in the simulation. There were absorber, heater, flash drum, heat exchanger, distillation column and pump.

Figure 4-1: Simulation result from Aspen HYSYS

The simulation was run with different set of parameters. During each run, wet gas molar flow rate and dry gas molar flow rate were recorded. This data was used to calculate the percentage of water removal using the formula as shown as follow.

 $Percentage of Water Removal (\%) = \frac{Wet Gas Molar Flow - Dry Gas Molar Flow}{Wet Gas Molar Flow} x100\%$ (4.1)

The calculated percentages of water removal were tabulated and graphed as follows.

Cos Flow Pote (1/mol/h)	Percentag	Percentage of Water Removal (%)		
Gas Flow Rate (Killol/II)	2 Stage	4 Stage	6 Stage	
500	88.68	90.68	93.93	
1000	90.77	92.76	94.96	
1500	93.8	94.8	96.78	
2000	95.8	97.8	98.26	
2500	97.84	98.8	99.8	
3000	96.83	97.83	98.72	

Table 4-1: Percentage of Water Removal with Gas Flow Rate and Equilibrium Stages at a constant pressure of an Absorber

Table 4-2: Percentage of Water Removal with Gas Flow Rates and Pressures at 2 Equilibrium Stages of an Absorber

Gas Flow Rate	Percentage of Water Removal (%)						
(kmol/h)	1000 kpa	3000 kpa	5000 kpa	7000 kpa	9000 kpa		
500	88.68	88.68 88.36 88.12 87.		87.92	86.74		
1000	90.77	90.77 90.61 89.49		88.38 87.3			
1500	93.8	92.67	92.67 92.6		90.47		
2000	95.8	94.75	94.65	93.6	93.36 95.64		
2500	97.84	97.76	96.72	96.68			
3000	96.83	95.27	94.73	94.7	93.37		

Table 4-3: Percentage of Water Removal with Gas Flow Rates and Pressures at 4 Equilibrium Stages of an Absorber

Gas Flow Rate	Percentage of Water Removal (%)						
(kmol/h)	1000 kpa	3000 kpa	5000 kpa	7000 kpa	9000 kpa		
500	90.68	90.35	90.02	88.92	87.4		
1000	92.76	92.76 91.72 90.97 90.39		90.39	89.25		
1500	94.8	93.67	93.6	92.53	91.36		
2000	97.8	96.71	95.05	94.27	93.6		
2500	98.8	97.66	97.04	96.67	94.94		
3000	97.83	96.87	96.31	95.48	94.67		

Gas Flow Rate	Percentage of Water Removal (%)						
(kmol/h)	1000 kpa	3000 kpa	5000 kpa	7000 kpa	9000 kpa		
500	93.93	93.22	92.13	90.94			
1000	94.96	94.29	93.96	92.98	92.41		
1500	96.78	96.02	94.56	94.53	93.77		
2000	98.26	97.75	96.5	95.87	94.42		
2500	99.8	99.06	98.7	97.28	95.28		
3000	98.72	98.17	97.64	96.65	94.76		

Table 4-4: Percentage of Water Removal with Gas Flow Rates and Pressures at 6 Equilibrium Stages of an Absorber

Figure 4-2: Percentage of Water Removal with Gas Flow Rate and Equilibrium Stages at a constant pressure of an Absorber

Figure 4-3: Percentage of Water Removal with Gas Flow Rates and Pressures at 2 Equilibrium Stages of an Absorber

Figure 4-4: Percentage of Water Removal with Gas Flow Rates and Pressures at 4 Equilibrium Stages of an Absorber

Figure 4-5: Percentage of Water Removal with Gas Flow Rates and Pressures at 6 Equilibrium Stages of an Absorber

4.3 Discussion

From the above result, the highest average percentage of water removal efficiency is at gas flow rate of 2500 kmol/h with optimum pressure of 1000 kpa at 6 equilibrium stages of the absorber. According to Figure 4-2, the percentage of water removal increases with number of stages. 6 equilibrium stages of the absorber have the overall highest percentage of water removal. Next were 4 equilibrium stages and last were 2 equilibrium stages of the absorber. This is because increase in equilibrium stages increases it contact between inlet gas and TEG. According to Mohamadbeigy K. (2007) and Kazemi, P. and Hamidi, R. (2010), increasing the number of equilibrium stages enable the inlet gas to approach equilibrium with lean glycol at a lower glycol circulation rate. This can be seen from Figure 4-2, where at 6 equilibrium stages, it achieved highest percentage of water removal at the same gas flow rate compare to 4 and 2 equilibrium stages. In another words, when inlet gas have more contact with absorbent, then absorbent can absorb more water from the inlet gas. Hence it increases the percentage of water removal.

Besides that, Figure 4-3, 4-4 and 4-5 show the same trend. Percentage of water removal increases with increases of gas flow rate till it reach the optimum point and decreases. Furthermore from this three figure, it showed that at pressure 1000 kpa, it has the

overall highest percentage of water removal. Follow by pressure at 3000 kpa, 5000 kpa, 7000 kpa and 9000 kpa. This is because higher pressure will cause the gas become denser. When gas density increases, the gas will have less contact with the absorbent. Furthermore, the water content decreases with increasing of pressure, thus less water is removed if the gas is dehydrated at a higher pressure (Mohamadbeigy K., 2007). Hence, percentage of water removal decreases with increase of pressure.

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

It can be concluded that, the highest average percentage of water removal efficiency at gas flow rate of 2500 kmol/h with optimum pressure of 1000 kpa at 6 equilibrium stages of the absorber. Hence, the objective of this study is achieved.

As for the overall result, the higher the equilibrium stages, the higher the water removal efficiency. Furthermore, the results showed that increasing gas flow rate and operating pressure decreases dehydration efficiency. The trend of these results are proved to be the same as Mohamadbeigy, K. (2007) and Kazemi, P., and Hamidi, R. (2010) study.

5.2 Recommendations

The recommendations for this research is consider the effect of high carbon dioxide composition in the feed. High quantities of CO_2 in the feed can accelerate corrosion in the regenerator.

Besides that, consider the emission of aromatic (BTEX) and other volatile organic compounds, VOC's from the regenerator and flash drum. Most plant feed contained small quantities of aromatic hydrocarbons that are quite soluble in TEG, which are

primarily comprised of benzene, toluene, ethylbenzene, or xylenes and will be carried to the flash tank where small fraction is released along with other volatile organic compounds. The remaining VOC's and aromatics will travel to regenerator and removed as volatile gases. This may cause serious environmental impact.

REFRENCES

Arthur, J., and William, R., (2006). Fundamentals of Natural Gas Processing. Taylor & Francis Group.

Christensen, L., (2009). Gas dehydration: Thermodynamic simulation of the water/glycol mixture, Aalborg University Esbjerg.

Engineering Data Book (2004b). 12th ed., Sec. 20, Dehydration, Gas Processors Supply Assocition, Tulsa.

HYSYS 2004.2 User Guide, (2005). Aspen Technology Inc, Ten Canal Park, Cambridge, USA.

Kasiri, N. and Hormozdi, Sh., (2005). Improving Performance of Absorption Tower in Natural Gas Dehydration Process, Computer Aided Process Engineering Lab, Chem.Eng.Dept., Iran University of Sci. & Tech., Narmak, Tehran, Iran.

Kazemi, P. and Hamidi, R., (2010). Sensitivity analysis of a natural gas triethylene glycol dehydration plant in Persian Gulf region, Department of Chemical Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran.

Kidnay, A., & William, R., (2006). Fundamentals of Natural Gas Processing, Taylor & Francis Group.

Manning, F., & Thompson, R., (1991). Oilfield Processing of Petroleum - Vol. 1 Natural Gas (1st ed), Pennwell Publishing Company. Mohamadbeigy, K ,(2007). Studying of The Effectiveness Parameters on Gas Dehydration Plant, Research Institute of Petroleum Industry Tehran, Iran.

Peng, D., Y., Robinson, D., B., (1976). A New Two-Constant Equation of State, Ind. Eng. Chem., Fundam.

Perry, H., and Green, W., (2007). Perry's Chemical Engineers Handbook. McGraw-Hill 8th ed.

Pezhman K. and Roya H., (2011). Sensitivity Analysis of a Natural Gas Triethylene Glycol Dehydration Plant in Persian Gulf Region, Petroleum & Coal.

Polak, L., (2009). Modelling Absorption Drying of Natural Gas, Department of Petroleum Engineering and Applied Geophysics, Trondheim.

Prausnitz, J., Lichtenthaler, R., &, Azevedo, E., (1999). Molecular Thermodynamics of Fluid-Phase Equilibria, Prentice Hall PTR, 3rd edition.

Rojey, A. et, al, (1997). Natural gas - Production, Processing, Transport. Editions Technips.

Seader, J.D., and Henley, E.J., (1998). Separation process principle, John Wiley & Sons.

APPENDICES

Simulation Workbook

1		Case Name: RUN5-4000KPA,35C,5000M3H,6TS.HSC								
3	aspen Burlington	, MA	Unit Set: NewUser Date/Time: Thu Oct 27 19:17:04 2011							
4	USA									
6 7 8	Workbook:	Case (Mair	1)							
9	ger bars		Material Stream	IS	Fluid Pl	g: All				
10	Name	Wet Gas	Dry Gas	Rich TEG	Reboiled	Flash Gas				
12	Vapour Fraction	0.9990	1.0000	0.0000	0.0000	1.0000				
13	Temperature (C)	35.00	18.75	16.32	50.14	50.14				
14	Pressure (kPa)	8000	4000	4000	4000	4000				
15	Molar Flow (kgmole/h)	8.869e+004	8.855e+004	1142	1142	0.0000				
16	Mass Flow (kg/h)	1./00e+006	1.69/e+006	6.408e+004	5.4080+004	0.0000				
17	Liquid Volume Flow (m3/n)	6 8770±009	-6.8280+009	-4 9780+008	-4 9130+008	0.0000				
19	Name	Flash out	Rich TEG in	Lean TEG.out	Pump.in	Steam				
20	Vapour Fraction	0.0000	0.0000	0.0000	0.0000	0.9997				
21	Temperature (C)	50.14	75.00	106.9	81.54	101.4				
22	Pressure (kPa)	4000	4000	110.0	110.0	110.0				
23	Molar Flow (kgmole/h)	1142	1142	1002	1002	140.0				
24	Mass Flow (kg/h)	6.408e+004	6.408e+004	6.151e+004	6.151e+004	2574				
25	Liquid Volume Flow (m3/h)	58.64	58.64	55.91	55.91	2.732				
26	Heat Flow (kJ/h)	-4.913e+008	-4.864e+008	-4.420e+008	-4.470e+008	-3.264e+007				
27	Name	Pump,out	Hot Dry Gas	Cool TEG	1EG,IN 0.0000					
28	Vapour Fraction	78 58	19.61	60.00	60.00					
30	Pressure (kPa)	2 352e+004	4000	2.352e+004	2.352e+004					
31	Molar Flow (kgmole/h)	1002	8.855e+004	1002	1002					
32	Mass Flow (kg/h)	6.151e+004	1.697e+006	6.151e+004	6.151e+004					
33	Liquid Volume Flow (m3/h)	55.91	4997	55.91	55.91					
34	Heat Flow (kJ/h)	-4.452e+008	-6.824e+009	-4.486e+008	-4.486e+008					
35			Compositions		Fluid Pk	kg: All				
37	Name	Wet Gas	Dry Gas	Rich TEG	Reboiled	Flash Gas				
38	Comp Mole Frac (Methane)	0.8462	0.8475	0.0024	0.0024	0.8115				
39	Comp Mole Frac (Ethane)	0.0565	0.0566	0.0003	0.0003	0.0566				
40	Comp Mole Frac (Propane)	0.0293	0.0293	0.0002	0.0002	0.0273				
41	Comp Mole Frac (i-Butane)	0.0061	0.0061	0.0000	0.0000	0.0042				
42	Comp Mole Frac (n-Butane)	0.0063	0.0063	0.0000	0.0000	0.0044				
43	Comp Mole Frac (I-Pentane)	0.0020	0.0020	0.0000	0.0000	0.0011				
44	Comp Mole Frac (n-Pentane)	0.0015	0.0015	0.0000	0.0000	0.0007				
46	Comp Mole Frac (Nitrogen)	0.0431	0.0431	0.0017	0.0017	0.0771				
47	Comp Mole Frac (CO2)	0.0051	0.0051	0.0007	0.0007	0.0106				
48	Comp Mole Frac (TEGlycol)	0.0000	0.0000	0.2880	0.2880	0.0000				
49	Comp Mole Frac (H2O)	0.0020	0.0005	0.7067	0.7067	0.0053				
50	Name	Flash out	Rich TEG,in	Lean TEG,out	Pump,in	Steam				
51	Comp Mole Frac (Methane)	0.0024	0.0024	0.0000	0.0000	0.0197				
52	Comp Mole Frac (Ethane)	0.0003	0.0003	0.0000	0.0000	0.0026				
53	Comp Mole Frac (Propane)	0.0002	0.0002	0.0000	0.0000	0.0014				
55	Comp Mole Frac (I-Butane)	0.0000	0.0000	0.0000	0.0000	0.0001				
56	Comp Mole Frac (i-Pentane)	0.0000	0.0000	0.0000	0.0000	0.0001				
57	Comp Mole Frac (n-Pentane)	0.0000	0.0000	0.0000	0.0000	0.0000				
58	Comp Mole Frac (n-Hexane)	0.0000	0.0000	0.0000	0.0000	0.0000				
59	Comp Mole Frac (Nitrogen)	0.0017	0.0017	0.0000	0.0000	0.0138				
60	Comp Mole Frac (CO2)	0.0007	0.0007	0.0000	0.0000	0.0061				
61	Comp Mole Frac (TEGlycol)	0.2880	- 0.2880	0.3282	0.3282	0.0003				
62	Comp Mole Frac (H2O)	0.7067	0.7067	0.6718	0.6718	0.9559				
64										
65 66 67 68 69 70										

1	1			Case Name: RUN5-4000KPA,35C,5000M3H,6TS.HSC							
2	UNIV MALAYSIA Burlington, MA				Unit Set: NewUser						
4	USA			Date/Time:	Thu Oct 27 19:17:04 2011						
67	Workbook: Case (Main)) (continue	ed)					
9				Cor	mpositions (conti	inued)			Fluid Pkg: All		
10	Name		Pump,out		Hot Dry Gas	Cool TEG	1	EG,in			
12	Comp Mole Frac (Methane)		0.00	00	0.8475	0.0	000		0.0000		
13	Comp Mole Frac (Ethane)		0.00	00	0.0566	0.0	000		0.0000		
14	Comp Mole Frac (Propane)		0.00	00	0.0293	0.0	000		0.0000		
16	Comp Mole Frac (n-Butane)		0.00	00	0.0063	0.0	000		0.0000		
17	Comp Mole Frac (i-Pentane)		0.00	00	0.0020	0.0	0.0000		0.0000		
18	Comp Mole Frac (n-Pentane)	0.00	00	0.0019 0.0000		000	0.0000			
19	Comp Mole Frac (n-Hexane)	120-1-	0.00	00	0.0015	0.0	000		0.0000		
20	Comp Mole Frac (Nitrogen)		0.00	00	0.0431	0.0	000		0.0000		
21	Comp Mole Frac (CO2)		0.00	00	0.0051	0.0	000		0.0000		
22	Comp Mole Frac (TEGlycol)		0.32	18	0.0005	0.0	718		0.5263		
24	outip more riac (120)		0.07		Energy Office				Eluid Dire		All
25					Energy Stream	S			Fluid PKg:		All
26	Name		Q-100		Q-101	Q-102	007	2-103	800-1006		
27	Heat Flow	(KJ/h)	6.500e+0	06	2.870e+006	1.40001	.455e+007 1		0000+000		
29					Unit Ops						
30	Operation Name	Оре	eration Type		Feeds	Pro	ducts		Ignored	Calc L	evel
31 32	Absorber	Absorber	e Kanadan	Wet	a,in t Gas	Rich TEG	Rich TEG		No		2500
33 34	E-100	Heater		Rich TEG Q-100		Reboiled			No		500.0
35	Flash Drum	Separator	r	Reboiled		Flash out Flash Gas			No		500.0
37	E-101	Heat Exc	at Exchanger		n TEG,out	Pump,in Rich TEG in	Pump,in Rich TEG.in		No	werst?	500.0
39					np,out	Cool TEG	·		N		500.0
40	E-102	Heat Exchanger		Dry Gas		Hot Dry Gas			No	Server.	500.0
41				Rich TEG,in		Steam					
42	T-101	Distillation	n	Q-102		Lean TEG,o	ut		No		2500
44	P-100	Pump	and in the	Pun	Pump,in Pump,out				No		500.0
45	POV 1	Paquala		Q-1	Q-103				No		3500
40	RCY-1	Recycle		000	I IEG	TEG,III			NO		3300
48 49 50											
51											
52											
54											
55											
56											
57											
58											
60											
61											
62											
63											
64											
65											
67											
68											
69											
70			A -	non l	IVEVE Vieroine 7/2	2 0 0 7020)				Dago	2 of 2
1/1	myprotech Ltd.		As	pen r	11010 Version / (2	2.0.0.10201				Fage	2012