

RE IN PROGRAM 863

•mainly meant to narrow the gap in technology between the developed world and China, which still lags behind in technological innovation, although progress is being made.

- focuses on biotechnology, space, information, laser, automation, energy, and new materials.
- The use of rare earth elements can be found in each one of the areas in which Program 863 focuses.

FATHER OF CHINESE RARE EARTH CHEMISTRY

• Professor Xu Guangxian

 in 2009, at the age of 89, won the 5 million yuan (\$730,000)
 State Supreme Science and Technology Prize, China's = Nobel Prize.

10

ARE NOT REALLY RARE ;

WIDELY SPREAD THROUGH OUT THE EARTH'S CRUST IN SMALL CONCENTRATIONS;

CANNOT BE MINED ECONOMICALLY.

	LIGHT RARE EARTH AND USAGES								
Z	ELEMENT	SYMBOL	USE						
21	Scandium	Sc	Aerospace framework, high-intensity street lamps, high performance equipment						
39	Yttrium	Y	TV sets, <u>cancer treatment drugs</u> , enhances strength of alloys						
57	Lanthanum	La	Camera lenses, battery-electrodes, hydrogen storage						
58	Cerium	Се	Catalytic converters, colored glass, steel production						
59	Praseodymium	Pr	Super-strong magnets, welding goggles, lasers						
60	Neodymium	Nd	Extremely strong permanent magnets, microphones, electric motors of <u>hybrid</u> automobiles, laser						
61	Promethium	Pm	Not usually found in Nature						
62	Samarium	Sm	Cancer treatment, nuclear reactor control rods, X- ray lasers Ref :Namibia rare earths inc.						

	HEAVY RA	RE E	ARTH AND USAGES
63	Europium	Eu	Color TV screens, fluorescent glass, genetic screening tests
64	Gadolinium	Gd	Shielding in nuclear reactors, nuclear marine propulsion, increases durability of alloys
65	Terbium	Tb	TV sets, fuel cells, sonar systems
66	Dysprosium	Dy	Commercial lighting, hard disk devices, transducers
67	Holmium	Но	Lasers, glass coloring, High-strength magnets
68	Erbium	Er	Glass colorant, signal amplification for fiber optic cables, metallurgical uses
69	Thulium	Tm	High efficiency lasers, portable x-ray machines, high temperature superconductor
70	Ytterbium	Yb	Improves stainless steel, lasers, ground monitoring devices
71	Lutetium	Lu	Refining petroleum, LED light bulbs, integrated circuit manufacturing

Magnets will be the growth driver for Rare Earths demand to 2014. Polishing powder demand has dropped due to activities to improve productivity

DEMAND FORECAST BY APPLICATION

0040 Demond hu Annlinetian								
2010 Demand by Application								
Application	Demand (%)	Demand (t)						
Magnets	25%	31,500						
 Battery Alloy 	15%	18,600						
Metallurgy ex batt	9%	11,700						
 Auto catalysts 	7%	9,000						
• FCC	17%	21,300						
Polishing Powder	11%	14,000						
Glass Additives	6%	7,800						
Phosphors	6%	7.900						
Others	4%	5,700						
Total	100%	127,500						

Application	Growth (%)	Demand (t)
Magnets	12%	49,600
 Battery Alloy 	15%	32,500
Metallurgy ex batt	2%	12,700
 Auto catalysts 	8%	12,200
• FCC	4%	24,900
Polishing Powder	10%	20,600
Glass Additives	0%	7,800
Phosphors	8%	10.800
Others	8%	6,100
Total	8%	177,200

World Mine Production	n and Reserves (2012 Estimates)
Country	Production (Metric Ton)	Reserves (Metric Ton)
United States	7,000	13,000,000
Australia	4,000	1,600,000
Brazil	300	36,000
China	95,000	55,000,000
India	2,800	3,100,000
Malaysia	350	30,000
Other countries	not available	41,000,000
World total (rounded)	110,000	110,000,000
	Ref :Hobart	King, Geology.com

SAMPLE OF RARE EARTH PRICES							
Oxide	January 2010	January 2011	July 2011	June 2013	% Change 20 mo	% Change 3 yr	
	(US\$/kg)	(US\$/kg)	(US\$/kg)	(US\$/kg)	(July '11 - June '13)	(Jan '10 - June '13	
Lanthanum	6	61	154	7	-95%	17%	
Cerium	4	64	157	7	-96%	75%	
Praseodimium	23	92	247	74	-70%	222%	
Neodymium	24	93	328	57	-83%	138%	
Samarium	5	49	127	11	-91%	120%	
Europium	480	630	5560	883	-84%	84%	
Terbium	350	618	4260	740	-83%	111%	
Dysprosium	121	325	2591	475	-82%	293%	
Yttrium	10	75	180	21	-88%	110%	
			es: Technolog for 99% REO F		arch derived fr	om metal-	

 RIA assumes the WORST CASE SCENAR receptors. Actual occupational external dose expose mSv/y and MUCH LESS than the 20 mSv/y 	ures were LES	5 than the Co	nstraint Limit of	
	*RIA	ACTUAL	RELATIVE	
SCENARIO	mSv y ⁻¹	mSv y ⁻¹	READINGS	
Truck driver (Kuantan Port to LAMP: external radiation from Lanthanide concentrate (LC) : External radiation, 280 hr/y)	0.06	0.06	Equal (Background)	
Workers handling LC stockpile in concentrate building: External radiation, 730 hr/y	2.19	0.77	2.8 x less	
Truck driver handling WLP from filter press to RSF: external 576 hr/y	1.48	0.58	2.55 x less	
Process Operator at WLP filter press: External radiation, 1332 hr	4.02	1.14	3.52x less	
FEL workers at WLP RSF :576 hr/y	2.96	1.45	2.04x less	

oE Standard B					
evels (Mean) of Some	e Critical Para	ameters, Mag	y – July 2	013	
Parameters	Unit	Std B	Мау	Jun	July
рН	-	5.5 - 9.0	7.57	7.55	7.58
ron	mg/L	5	1.67	0.27	0.21
BOD ₅ at 20°C	mg/L	50	ND	ND	ND
COD	mg/L	200	36.7	37.7	33.6
Suspended Solid	mg/L	100	5.7	11.2	7.0
Cyanide	mg/L	0.10	ND	ND	ND
Manganese	mg/L	1	0.07	0.19	0.14
Zinc	mg/L	2	0.10	0.08	0.04
Fluoride	mg/L	5	0.95	0.90	1.03
Barium	mg/L	4	ND	ND	ND

Plant air e	Unit	On – 100% CAR 1978* Emission	6 compliant		Results			
T urumeters	Unit	Standards	WGTS Stack	May	June	July		
Total Suspended Particulates	mg/Nm ³	400	100	42.4	55.3	34.1		
Sulphuric Acid Mist or Sulphur Trioxide or Both	mg/Nm ³	200	50	ND	ND	1.58		
Sulphur Dioxide	mg/Nm ³	-	500	14.9	25.2	24.4		
Hydrogen Fluoride	mg/Nm ³	100	50	ND	ND	0.08		
)	•	23	-	Ļ	CORPORATION		

RECOMMENDED STRATEGIES

Incentivise investments in the downstream manufacturing of rare-earth based products

Build the key competence in human capital for the entire value chain of the rare earths business

RECOMMENDED STRATEGIES

Strengthen the legal and regulatory framework to enable the effective functioning of the rare earths business

Undertake coordinated, comprehensive and continual public awareness program & community engagement

45

46

IMPACT ON TECHNOLOGY DEVELOPMENT AND ADVANCEMENT

Mining industry;

Processing - midstream (separation and refining);

Downstream Application - Catalyst, Magnet, Automotive;

Safety, Health and Environment.

MALAYSIAN RARE EARTH R&D GROUP

UNIVERSITIES

• UMP, UTEM, UTP, UKM

RESEARCH AREA

• Mining Engineering, Material Science & Engineering, Metallurgy, Processing, Environmental & Safety, Nuclear Fuel Technology, Automotive.

REFERENCES

- 1. Report Parliament Select Committee on Lynas Advanced Materials Plant (LAMP); Dewan Rakyat, Ke 12, Penggal ke 5, 2012.
- 2. Proceedings International Symposium on Rare Earth; Akademi Sains Malaysia & National Professors' Council, 2012.
- 3. ASM Report on Rare Earth Industries : Moving Malaysia's Green Economy Forward, August 2011.
- 4. Malaysian Parliament Hansard, 2012.
- 5. LYNAS Investor Presentation; May 2011.
- 6. www.techmetalsreseach.com; 2013

