# ANALYSIS OF FLOW PHENOMENA IN STENTED CEREBRAL ANEURYSMS

SHAMSUL ALIFF BIN MOHD

BACHELOR OF ENGINEERING UNIVERSITI MALAYSIA PAHANG

## ANALYSIS OF FLOW PHENOMENA IN STENTED CEREBRAL ANEURYSMS

i,

SHAMSUL ALIFF BIN MOHD

Thesis submitted in fulfilment of the requirements

for the award of the degree of

Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI MALAYSIA PAHANG

NOVEMBER 2009

......

#### SUPERVISOR'S DECLARATION

We hereby declare that we have checked this project and in our opinion this project is satisfactory in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering.

.....

Name of Supervisor: Position: Date:

## **STUDENT'S DECLARATION**

I hereby declare that the work in this project is my own except for quotations and summaries which have been duly acknowledged. The project has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature: Name: SHAMSUL ALIFF BIN MOHD ID Number: MA06089 Date: 25/11/2009 Dedicated to my beloved family

#### ACKNOWLEDGEMENTS

First of all I would like to express my fully gratitude and praise 'Alhamdulillah' to Allah the Almighty for completion of my final year project.

I would like to express my gratitude and appreciation to my final year project supervisor, Mr Mohamad Mazwan bin Mahat for his irreplaceable encouragement and guidance to finish this project. A person of innumerable skills, he has eased the way through a demanding project during a busy time in my life.

I also like to express my admiration to my lovely family, my labmates, mechanical's lab staff, my friend and many other personnel I have spoken with about this project. Thanks to all of them for sharing their helpfulness, ideas and kindness.

Last but not least, I want to take these favourable moments to express gratefulness to all of them again which are very much appreciated as friends and mentors. Without them, this project will not be finish.

#### ABSTRACT

Investigation on the changes of flow phenomena in saccular aneurysms at the Cerebral had been studied. Due to the aneurysms, the stent placement was done to prevent the rupture of aneurysms. The velocity profile and pressure distribution after and before installing the stent had been identified at the different locations of aneurysms. For each location, there is three cases with the different size of aneurysms that are 3.5 mm, 4.5 mm and 5.5 mm in radius. To identify the changes in local hemodynamic due to stent implantation, stented and non stented aneurysm models using selected stent were taken into considerations. The simulation of the model was studied under incompressible, non-Newtonian, viscous, non pulsatile condition in which we investigated computationally in a three-dimensional configuration using a Computational Fluid Dynamics (CFD) program. The minimum velocity had obtained after stents placement. In the first model, the minimum velocity obtained for non stented is 0.374 m/s for case 1, 0.421 m/s for case 2 and 0.36 m/s for case 3. After stenting implementation, the higher minimum velocity were increased for all cases. For case 1 is 0.416 m/s, case 2 is 0.443 m/s and case 3 is 0.404 m/s. In the second model, the minimum velocity for nonstented aneurysms is 0.487 m/s for case 1, 0.424 m/s and 0.343 m/s for case 3. After stenting, the velocity also increased. For case 1 is 0.495 m/s, case is 0.454 m/s and case 3 is 0.382 m/s. The different locations of aneurism, will give the different result of velocity profile and pressure distribution. In the first model, the peak pressure for nonstented aneurysms is 453 Pa and for stented is 422 Pa. While, in second model, for nonstented aneurysms, the peak pressure is 455 Pa and 432 Pa for stented aneurysms. Finally, the correlations obtained from this numerical result could be used to investigate the pressure distribution around the diseased segment.

#### ABSTRAK

Kajian mengenai fenomena aliran darah di dalam aneurism sakular pada bahagian Cerebral telah dijalankan. Disebabkan adanya aneurism, stent telah diletakkan untuk menghalang aneurism daripada pecah. Profil halaju dan taburan tekanan dikenalpasti sebelum dan selepas meletakkan stent pada aneurism di lokasi yang berbeza. Untuk setiap lokasi, terdapat tiga kes dengan saiz aneurism yang berbeza iaitu 3.5 mm, 4.5 mm dan 5.5 mm dalam radius. Untuk mengenalpasti perubahan hemodinamik darah disebabkan oleh implant stent, model aneurism tanpa dan bersama stent yang telah dipilih di ambil kira. Simulasi model dikaji dengan parameter aliran mampat, non-Newtonian, bendalir likat dan keadaan tiada denyut menggunakan program dinamik bendalir tiga dimensi (CFD). Aneurism pada berlainan lokasi, akan memberikan profil halaju dan taburan tekanan yang berbeza. Halaju minimum telah diperolehi, selepas implant stent. Dalam model pertama, halaju minimum telah diperolehi untuk tanpa stent ialah 0.374 m/s untuk kes 1, 0.421 m/s untuk kes 2 dan 0.36 untuk kes ketiga. Selepas stent diletakkan, halaju minimum telah meningkat bagi semua kes. Untuk kes 1, halajunya ialah 0.416 m/s, kes 2 ialah 0.443 m/s dan kes 3 ialah 0.404 m/s. Dalam model kedua, untuk model tanpa stent, halajunya ialah0.487 m/s untuk kes 1, 0.424 m/s untuk kes 2 dan 0.343 m/s untuk kes ke 3. Selepas stent diletakkan, halaju minimumnya turut bertambah. Untuk kes 1, halajunya ialah 0.495 m/s, kes 2 ialah 0.454 m/s dan kes 3 ialah 0.382 m/s. Aneurism pada lokasi yang berbeza akan memberikan nilai halaju dan taburan tekanan yang berbeza. Dalam model pertama, tekanan yang diperolehi ialah 453 Pa untuk tanpa stent dan 422 Pa untuk dengan stent. Manakala untuk model kedua, tekanan yang diperolehi ialah 455 Pa untuk tanpa stent dan 432 untuk dengan stent. Perkaitan yang telah diperolehi dari kajian ini boleh dimanfaatkan untuk lanjutan taburan tekanan disekitar aneurism.

# **TABLE OF CONTENTS**

|                          | Page |
|--------------------------|------|
| SUPERVISOR'S DECLARATION | ii   |
| STUDENT'S DECLARATION    | iii  |
| DEDICATION               | iv   |
| ACKNOWLEDGEMENTS         | v    |
| ABSTRACT                 | vi   |
| ABSTRAK                  | vii  |
| TABLE OF CONTENTS        | viii |
| LIST OF TABLES           | Х    |
| LIST OF FIGURES          | xi   |
| LIST OF SYMBOLS          | xiii |
| LIST OF ABBREVIATIONS    | XV   |
|                          |      |

# CHAPTER 1 INTRODUCTION

| 1.1 | Aneurysms                                                                                              | 1             |
|-----|--------------------------------------------------------------------------------------------------------|---------------|
|     | 1.1.1 Causes                                                                                           | 2             |
|     | 1.1.2 Symptoms                                                                                         | 3             |
|     | 1.1.4 Diagnosis of Aneurysms                                                                           | 4             |
|     | 1.1.4 Treatments                                                                                       | 4             |
| 1.2 | Stent                                                                                                  | 7             |
| 1.3 | Cerebral Aneurysms                                                                                     |               |
|     | <ul><li>1.1.5 Cerebral Aneurysms</li><li>1.1.6 Treatments</li><li>1.1.7 Process of Treatment</li></ul> | 8<br>11<br>12 |
| 1.4 | Objectives                                                                                             | 13            |
| 1.5 | Scopes                                                                                                 | 13            |

# CHAPTER 2 FLOW BEHAVIOR IN ANEURYSM

| 2.1 | Flow behavior in aneurysm                                              |          |
|-----|------------------------------------------------------------------------|----------|
| 2.2 | Flow behavior in Cerebral Aneurysm                                     | 17       |
| 2.3 | Hemodynamic of Cerebral Aneurysms                                      | 19       |
|     | <ul><li>2.3.1 Wall Shear Stress</li><li>2.3.2 Pulsatile Flow</li></ul> | 19<br>20 |
| 2.4 | Flow in stented Cerebral Aneurysms                                     | 22       |
| 2.5 | Closure                                                                | 25       |

# CHAPTER 3 METHODOLOGY

| 3.1 | Geometry of model                                                                         | 26       |
|-----|-------------------------------------------------------------------------------------------|----------|
| 3.2 | Governing equation of blood flow                                                          |          |
| 3.3 | Assumption and parameter                                                                  | 30       |
| 3.4 | Boundary condition                                                                        | 31       |
|     | <ul><li>3.4.1 Initial Velocity</li><li>3.4.2 Peak Pressure systole and diastole</li></ul> | 31<br>32 |
|     |                                                                                           |          |

| 4.1 | Results          | 34 |
|-----|------------------|----|
| 4.2 | Velocity Profile | 35 |
| 4.3 | Pressure         | 45 |

# CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

| 5.1   | Conclusion      | 54 |
|-------|-----------------|----|
| 5.2   | Recommendations | 55 |
|       |                 |    |
| REFER | RENCES          | 56 |
| APPEN | NDICES          | 60 |

| APPENDICES |  |  |
|------------|--|--|
|------------|--|--|

# LIST OF FIGURES

| Figure | e No Title                                                              | Page |
|--------|-------------------------------------------------------------------------|------|
| 1.1    | Type of Aneurysms                                                       | 2    |
| 1.2    | Stenting procedure                                                      | 5    |
| 1.3    | Rupture of Aneurysms                                                    | 6    |
| 1.4    | Graft Stent                                                             | 7    |
| 1.5    | Circle of Willis                                                        | 9    |
| 1.6    | Type of Cerebral Aneurysms                                              | 10   |
| 2.1    | Flow in Cerebral Aneurysms                                              | 16   |
| 2.2    | Location of Aneurysms in Circle of Willis                               | 17   |
| 2.3    | Velocity vector field and maximum systole of pulsatile flo w simulation | 21   |
| 2.4    | Flow in Stented and non-stented                                         | 22   |
| 2.5    | Velocity reduction in aneurysm area                                     | 24   |
| 3.1    | The geometry model of aneurysm                                          | 26   |
| 3.2    | The geometry model of stent                                             | 27   |
| 3.3    | The first model of Cerebral Aneurysms                                   | 28   |
| 3.4    | The second model of Cerebral Aneurysms                                  | 28   |
| 3.5    | Initial condition. Graph Velocity versus Length.                        | 31   |
| 3.6    | Inlet Velocity                                                          | 31   |
| 3.7    | Vortex Formation by K.M Kanafer                                         | 32   |
| 3.8    | Pressure Output                                                         | 33   |

| 4.1  | Velocity Profile for non-stented aneurysms for First Model      | 35 |
|------|-----------------------------------------------------------------|----|
| 4.2  | Velocity Profile for Stented aneurysms for First Model          | 36 |
| 4.3  | Velocity Profile for non-stented aneurysms for Second Model     | 37 |
| 4.4  | Velocity Profile for stented aneurysms for Second Model         | 37 |
| 4.5  | Velocity Streamlines for non-stented Aneurysms of First Model   | 40 |
| 4.6  | Velocity Streamlines for Stented Aneurysms of First Model       | 41 |
| 4.7  | Velocity Streamlines for non-stented Aneurysms of Second Model  | 43 |
| 4.8  | Velocity Streamlines for stented Aneurysms of Second Model      | 44 |
| 4.9  | Pressure for Stented and non-stented aneurysms for First Model  | 46 |
| 4.10 | Pressure for Stented and non-stented aneurysms for second Model | 46 |
| 4.11 | Pressure for non-stented Aneurysms of First Model               | 49 |
| 4.12 | Pressure for Stented Aneurysms of First Model                   | 50 |
| 4.13 | Pressure for non-stented Aneurysms of Second Model              | 52 |
| 4.14 | Pressure for Stented Aneurysms of Second Model                  | 53 |

# LIST OF TABLE

| Table No. | Title                                                                    | Page |
|-----------|--------------------------------------------------------------------------|------|
| 1.1       | Process of Treatment                                                     | 12   |
| 3.1       | Parameters used in Simulation.                                           | 30   |
| 4.1       | Minimum velocity for non-stented and Stented Aneurysms for First Model.  | 36   |
| 4.2       | Minimum Velocity for non-stented and Stented Aneurysms for Second Model. | 38   |
| 4.3       | Peak Pressure of non-stented and Stented Aneurysms for First Model.      | 47   |
| 4.4       | Peak Pressure of non-stented and Stented Aneurysms for Second Model.     | 47   |

# LIST OF ABBREVIATIONS

- WSS Wall Shear Stresss
- FVM Navier-Stokes Finite-Volume
- CFD Computational Fluid Dynamics
- ICA Intracranial aneurysm
- DSA Medical substraction angiography
- GTA Computer tomographic angiography
- MRA Magnetic resonance angiography
- CT Computer-assisted tomographic
- PTV Particle-tracking velocimetry

# LIST OF SYMBOLS

| u <sub>i</sub>   | velocity in the i-th direction        |
|------------------|---------------------------------------|
| Р                | pressure                              |
| $\mathbf{f}_{i}$ | body force                            |
|                  | density                               |
| $\mu_i$          | viscosity                             |
| ij               | Kronocker delta                       |
| А                | area                                  |
| a                | acceleration vector                   |
| В                | body force vector per unit volume     |
| Е                | total energy                          |
| Κ                | thermal conductivity of working fliud |
| L                | length                                |
| m                | mass                                  |
| Re               | Reynolds number                       |
| Р                | pressure                              |
| Q                | volume flow rate                      |
| Т                | temperature                           |
| t                | time                                  |
| U                | internal energy for system            |

xiv

# **CHAPTER 1**

#### **INTRODUCTION**

#### 1.1 ANEURYSMS

Aneurysms is a localized, blood-filled dilation (balloon-like bulge) of a blood vessel caused by disease or weakening of the vessel wall. Aneurysms most occur in arteries at the base of the brain (the circle of Willis) and in the aorta (the main artery coming out of the heart, a so-called aortic aneurysm). A sign of an arterial aneurysm is a pulsating swelling that produces a blowing murmur on auscultation (the act of listening for sounds in the body) with a stethoscope.

There are four main locations where aneurysms always happen that are Cerebral Aneurysms or Brain, Aorta Aneurysms, Abdominal Aneurysms and Thoraic Aortic Aneurysms. As the size of an aneurysm increases, there is an increased risk of rupture, which can result in severe hemorrhage or other complications including sudden death. Severe bleeding can occur if the aneurysms break or rupture. Not all aneurysms are lifethreatening. But if the bulging stretches the artery too far, this vessel may burst, causing a person to bleed to death. An aneurysm that bleeds into the brain can lead to stroke or death. Aneurysms usually appear in either fusiform or saccular.

A fusiform aneurysms is spindle shaped without a neck. While, the second type of aneurysms is saccular. The saccular aneurysms are the most frequent cerebral aneurysms showing a berrylike outpouchings of the vessel wall: they often develop at the curved side of the vessels or at the apex of bifurcations.

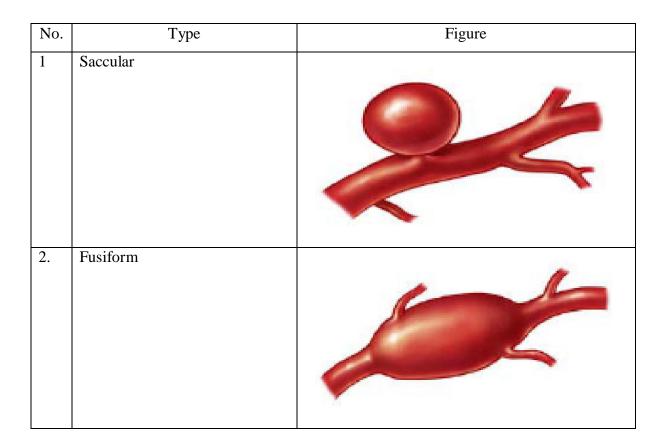



Figure 1.1: Types of Aneurysms

(Source: http://emedicine.medscape.com/article/252142-overview)

# 1.1.1 Causes

There is not very clear why there is some people get aneurysms. Some ideas said that, a person can be born with a defect or weak area in one of the artery layers. Besides that, trauma can weaken or damage the artery wall. There are many factors that cause the aneurysms. Generally, the causes of aneurysms are due to atherosclerosis, atheroma, congential defects, heart attacks, smoking, obesity, hypertension, trauma and others. However, atherosclerosis is the most common cause of aneurysms which about 80%. The following increase the risk of aneurysms;

- Atherosclerosis (a build-up of fatty plaque in the arteries).
- High blood pressure.
- Smoking.

- Deep wounds, injuries, or infections of the blood vessels.
- A congenital abnormality (a condition that you are born with).
- Inherited diseases. An inherited disease such as Marfan syndrome, which affects the body's connective tissue, causes people to have long bones and very flexible joints. People with this syndrome often have aneurysms.

#### 1.1.2 Symptoms

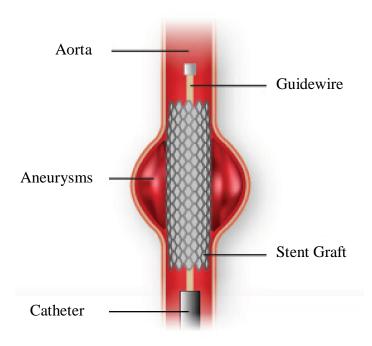
Symptoms will depend upon the location of the aneurysm. Common sites that aneurysms occurred include the abdominal aortic artery, the intracranial muscles (supplying blood to the brain), and the aorta (supplying blood to the chest area). Many aneurysms are present without symptoms and are discovered by feeling or on x-ray films during a routine examination.

When symptoms occur, they include a pulsing sensation, and there may be pain if the aneurysm is pressing on internal organs. If the aneurysm is in the chest area, for example, there may be pain in the upper back, difficulty in swallowing, coughing or hoarseness. A ruptured aneurysm usually produces sudden and severe pain, and depending on the location and amount of bleeding, shock, loss of consciousness and death. Emergency surgery is necessary to stop the bleeding.

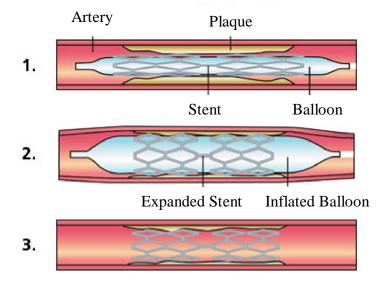
In some cases, the aneurysm may leak blood, causing pain without the rapid deterioration characteristic of a rupture. Also, clots often form in the aneurysm, creating danger of embolisms in distant organs. In some cases, the aneurysm may dissect into the wall of an artery, blocking some of the branches. Dissecting aneurysms usually occur in the aortic arch (near its origin, as it leaves the heart) or start in the descending thoracic portion of the aorta after it gives off the branches to the head and arms. Symptoms vary according to the part of the body that is being deprived of blood; they are usually sudden, severe and require emergency treatment.

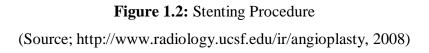
#### **1.1.3 Diagnosis of Aneurysms**

There were many tests use, in order to diagnose Aneurysms. The first one is Angiogram. Angiogram is an x-ray examination of the arteries, veins or heart chambers, obtained by injecting a radiopaque (contrasting dye) into the bloodstream to make these structures more visible. Next is, Magnetic resonance imaging (MRI). A diagnostic technique that uses the response of atoms to a strong magnetic field to produce crosssectional images of soft tissues, such as veins and arteries. The third one is called Spinal tap. Spinal tap is a puncture of the spinal cavity with a needle to extract the spinal fluid for diagnostic purposes.


The fourth is Ultrasound. In ultrasound, there is use of high-frequency sound waves to produce an image or photograph of an organ or tissues. Next is called Echocardiography. Echocardiography is a diagnostic procedure that uses ultrasound waves to visualize structures within the heart. And the last one is called X-ray. X-ray is a photograph obtained by bombarding a target in a vacuum tube with high-velocity electrons, enabling them to penetrate solid matter and act on photographic film.

#### **1.1.4** Treatments


Treatment depends on the size and location of the aneurysm and your overall health. Aneurysms in the upper chest (the ascending aorta) are usually operated on right away. Drugs may be prescribed to lower blood pressure and reduce the risk of rupture. Abdominal aneurysms that are large or increasing in size should be treated surgically. Enlarging thoracic aneurysms should be considered for surgery. A dissecting or ruptured aneurysm requires emergency surgery.


Cardiologists at the Texas Heart Institute were among the first to use a nonsurgical technique to treat high-risk patients with abdominal aortic aneurysms. This technique is useful for patients who cannot have surgery because their overall health would make it too dangerous. The procedure uses a catheter to insert a device called a stent graft. The stent graft is placed within the artery at the site of the aneurysm. The blood flows through the

stent graft, decreasing the pressure on the wall of the weakened artery. This decrease in pressure can prevent the aneurysm from bursting.









Benefits of the procedure include no general anesthesia (you are awake for the procedure), a shorter hospital stay (about 24 hours), a faster recovery, and no large scars. Figure 1.3 shows the rupture of aneurysms.



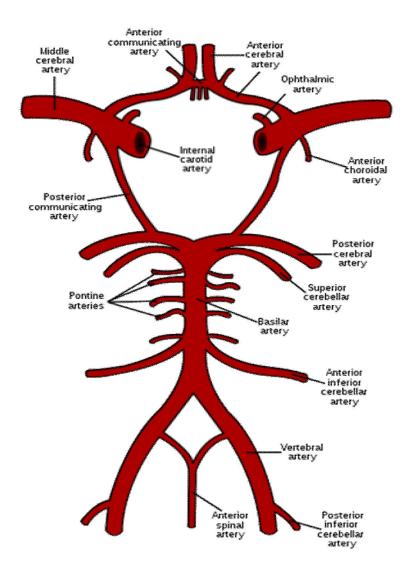
Figure 1.3: Rupture of aneurysms

#### 1.2 STENT

A stent can be defined as any medical device that supports tissue, but most commonly, a stent refers to a specific medical device that is placed into an artery. Besides that, a stent can be defined as a small mesh tube that's used to treat narrowed or weakened arteries in the body. It is a man-made 'tube' inserted into a natural passage/conduit in the body to prevent, or counteract, a disease-induced, localized flow constriction. Stents are usually made of metal mesh, but sometimes they're made of fabric. Fabric stents, also called stent grafts, are used in larger arteries. Stent should modify the blood circulation in aneurysms but not stop it. An arterial stent is a mesh-like tube, often made of metal that can expand once it is inserted into an artery. The most frequent placement of stents is in coronary arteries, which are typically blocked by plaque built up inside. A stent is inserted into an artery during angioplasty and typically inflated with a balloon catheter. The procedure begins at either the femoral artery in the groin, or the axillaries artery in the armpit and the stent is guided to the proper artery. The stent acts as a kind of scaffolding for the artery during any surgical repair or procedure. Usually, the stent is left in the artery permanently. The stent supports the narrowed or blocked artery, keeping it open for blood to flow more freely.



Figure 1.4 Graft Stent Stent(Source: http://www.health-news-blog.com, 2009)


Drug –eluting stents sometimes referred to as a "coated" or "medicated" stent, a drugeluting stent is a normal metal stent that has been coated with a pharmacologic agent (drug) that is known to interfere with the process of restenosis (reblocking). Restenosis has a number of causes; it is a very complex process and the solution to its prevention is equally complex. However, in the data gathered so far, the drug-eluting stent has been extremely successful in reducing restenosis from the 20-30% range to single digits. There are three major components to a drug-eluting stent. The first one is type of stent that will carry the drug coating. Secondly is the method by which the drug is delivered (eluted) by the coating to the arterial wall (polymeric or other). Lastly, is depending on the drug itself.

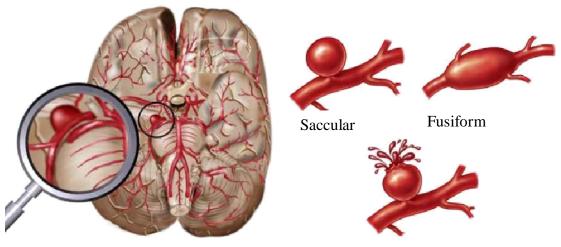
A stent graft is a tubular device, which is composed of special fabric supported by a rigid structure, usually metal. The rigid structure is called a stent. An average **stent** on its own has no covering, and therefore is usually just a metal mesh. Although there are many types of stent, these stents are used mainly for vascular intervention.

## **1.3 CEREBRAL ANEURYSMS**

#### **1.3.1** Cerebral Aneurysms

A cerebral aneurysm is a bulge in the wall of an artery in the brain. It occurs when there is a weakness in the artery's wall. The bulge may slowly enlarge over time. It can rupture or burst and bleed. Cerebral aneurysms are occurring near arterial bifurcations in the circle of Willis as shown in figure 1.6 below;




#### Figure 1.5: Circle of Willis

(Source; http://www.stroke-recovery-advocate.com/brain-blood-supply.html)

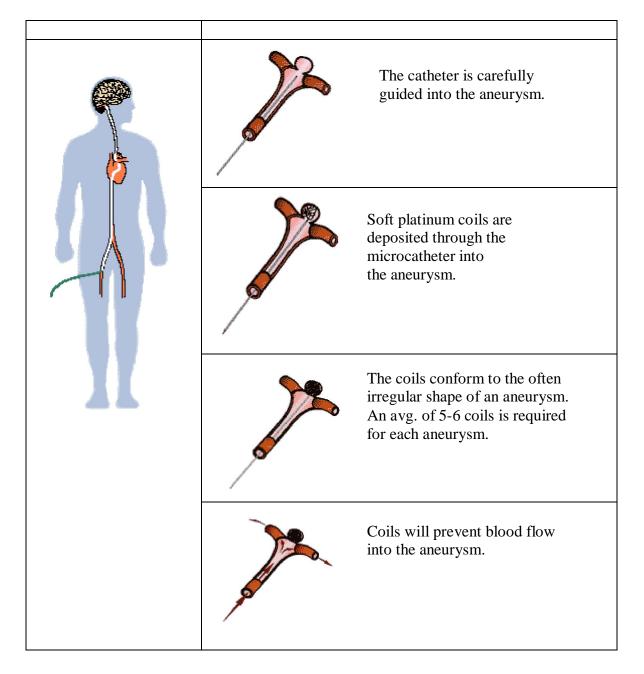
Cerebral aneurysms are frequently observed in the outer wall of curved vessels. They are found in the internal carotid artery, near the apex of bifurcated vessels including the anterior communicating artery (ACA), anterior cerebral artery and the middle cerebral artery (MCA). Cerebral aneurysms disease has been reported to affect around 1-5% of the population. Although many cases of this disease are unruptured, the catastrophic consequences of subarachnoid hemorrhage (SAH) following rupture of cerebral aneurysms make optimal treatment of patients. Rupture of a cerebral aneurysm can

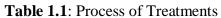
be dangerous for a patient and occurs most commonly between 40 and 60 years of age. When an aneurysm ruptures, blood leaks from the ruptured wall into the subarachnoid space, or the brain itself, potentially causing serious damage. Aneurysm growth and rupture depends on multiple factors: geometrical factors such as aneurysm size and shape or the ratio of the aneurysm dome height to the neck width; biological factors such as decreased concentration of structural proteins of the extracellular matrix in the intracranial arterial wall; and hemodynamic factors, especially wall shear stresses.

Aneurysms come in a variety of shapes and sizes. The most common type is a berry aneurysm (Refer to figure 1.6 below). It is round like a berry and connected to the artery by a stem or neck. There are two general types of aneurysms: fusiform and saccular. A fusiform aneurysm is spindle-shaped without a neck. The saccular aneurysms are the most frequent cerebral aneurysms showing a berrylike outpouchings of the vessel wall: they often develop at the curved side of the vessels or at the apex of bifurcations. A giant aneurysm is like a berry aneurysm, but it is large, 1<sup>1</sup>/<sub>4</sub> inches or 3 centimeters or more in diameter.



Saccular aneurysms rupture


Figure 1.6: Type of Cerebral Aneurysms (Source: 2001 eCureMe.com)


#### **1.3.2** Cerebral Aneurysms Treatments.

One of the first objectives will be to treat the cerebral aneurysm to prevent it from bleeding. There are two ways to prevent or treat the aneurysms. Either surgery or endovascular treatment may be offered to repair the aneurysm. The timing and type of treatment will depend on the location and size of the aneurysm and the patient's medical condition. A stent is a flexible cylindrical tube made of a mesh of stainless steel or alloys. Due to its limited permeability, the stent modifies the blood flow in the aneurysms. Emergency treatment for individuals with a ruptured cerebral aneurysm generally includes restoring deteriorating respiration and reducing intracranial pressure. Surgical clipping was introduced by Walter Dandy of the Johns Hopkins Hospital in 1937. It consists of performing a craniotomy, exposing the aneurysm, and closing the base of the aneurysm with a clip. The surgical technique has been modified and improved over the years. Surgical clipping has a lower rate of aneurysm recurrence after treatment.

For endovascular treatment, was introduced by Guido Guglielmi at UCLA in 1991. It consists of passing a catheter into the femoral artery in the groin, through the aorta, into the brain arteries, and finally into the aneurysm itself. Once the catheter is in the aneurysm, platinum coils are pushed into the aneurysm and released. These coils initiate a clotting or thrombotic reaction within the aneurysm that, if successful, will eliminate the aneurysm. These procedures require a small incision, through which an catheter is inserted. In the case of broad-based aneurysms, a stent may be passed first into the parent artery to serve as a scaffold for the coils ("stent-assisted coiling"), although the long-term studies of patients with intracranial stents have not yet been done.

# **1.3.3** Process of Treatments





#### 1.4 **Objectives**

The first objective of this project is to determine the flow phenomena in the stented cerebral aneurysms. In this project, the selected stent will be used to determine the effect of stenting to the aneurysms. The stent used in the aneurysms to check whether the stent will help to increase the velocity and decrease the pressure of the blood. Blood flow is the greatest influences that lead to the rupture.

The second objective is to analyze the effect of aneurysms location to flow and blood parameters. The cerebral aneurysms is locate at the brain and focus on the saccular shape of aneurysms. In this objective, the project will focused on two different locations of aneurysms to determine whether the location will influence the flow phenomena of the blood.

## 1.5 Project Scope

In order to achieve those objectives, some limitations were decided to range the whole study. Therefore, the main concerned is to analyze selected stents based upon different aneurysms location in COW (Circle of Willis). Furthermore, the Non Pulsatile blood flow will be used.

All the solutions of the problem presented in this study will be based on numerical approach only. The results of these analyses through numerical solutions are expected to explain the pressure distribution and velocity profile of the blood vessel.

## **CHAPTER 2**

#### FLUID FLOW BEHAVIOUR IN ANEURYSMS

#### 2.1 FLOW BEHAVIOUR IN ANEURYSMS

The flow dynamics of cerebral aneurysms have been studied in numerous experimental models and clinical studies to investigate the role of hemodynamic forces in the initiation, growth, and rupture of cerebral aneurysms. Most investigators or researchers in this world are focusing on blood flow and wall stress analysis which develop from clinical data of aneurysms models. There are many causes that make the aneurysms rupture or burst. The ruptures of aneurysms occur mainly due to the diameter, wall thickness and blood pressure inside aneurysms (Yamada et Al., 1994) but actual cause of the rupture not yet fully understood. There have been several research efforts to investigate the flow phenomena inside aneurysms using numerical solution (Gyorgy Paa'l et al, 2007).

The flow dynamics can be visualized by tracking the paths of blood particles as they are released from the inlet boundary of the computational domain. Some blood particles never enter the aneurysm, and some enter the aneurysm at the distal neck. The particles, which enter the aneurysm, leave it at the distal neck or join the inflow and flow chaotically inside the aneurysm sack. Blood vessels and stent-grafts are flexible, interactions between blood flow and wall deformation can involve a wide range of fluid-mechanical phenomena. The flow will affect movement of the walls and wall movements in turn influence the flow field. Hence, simultaneous fluid-structure interactions (FSIs) should be considered when studying the hemodynamics and biomechanics of stented aneurysms. Numerical simulations have been used during the last decade to analyze blood flow phenomena in aneurysms. Unlike experiments, numerical simulations can be relatively inexpensive to

conduct. Computational fluid dynamics (CFD) simulations provide a means of comparing and validating experimental work without the often difficult process of observing a real physiological system.

Previous efforts in numerical simulations of aneurysm flow have shown the presence of many flow phenomena. Bluestein et al. (1996) performed laminar and turbulent simulations of flow in an aneurysm with a steady inlet velocity. Results showed that a recirculation region formed within the aneurysm and promoted thrombosis (the obstruction of blood vessels by local clotting) and rupture conditions.

The recirculation region generated oscillating wall shear stress gradients and high levels of wall shear at the distal end of the aneurysm, which is the most common location of aneurysm rupture. The recirculation region was observed to be considerably larger and stronger in laminar flow conditions than in turbulent flow conditions. It is more physiologically realistic to use an inlet velocity that mimics the pulse cycle by varying in time instead of the steady velocity used in Bluestein's study. Steinman et al. (2002) presented a CFD model of pulsatile flow within an anatomically realistic carotid aneurysm constructed from in vivo imaging of a human subject. Their model successfully reproduced velocity streamlines from an earlier in vivo model of similar geometry and demonstrated regions of elevated wall shear stress.

From the analysis, there was vortex formed in the blood vessel. The vortex occurred due to the pressure imbalance of the blood that leads to the swirl in aneurysms. Vortex formation and complex flow structure existence in blood vessel around the aneurysm becomes a common finding from previous numerical study. The fluid flow pattern inside the aneurysms is complex and depends on the shape and size of the aneurysms geometry. Fluid flow have the greatest influence on aneurysms growth and rupture (Liepsch, 2001; Hoi et.al., 2004)

The high vorticity observed in the aneurysm dome at high arterial vessel, and a low wall shear stress can lead to degeneration of endothelial cells via the apoptotic cell cycle. Hence, as the wall shear stress observed in our model is less than those of the main vessel, the differences between wall shear stresses might be related to the weakening of the aneurysm dome. Interestingly, cerebral aneurysms are often found to rupture at its dome. Thus, low shear stress might offer an explanation as to why aneurysm dome is a common rupture site. The pulsatile flow becomes more unstable as its mean velocity is increased. In a 1995 paper, Mast and Pierce hypothesize that a nonlinear coupling between aneurysm vibration and unstable arterial flow is the cause of narrow-band sounds associated with some intracranial aneurysms. As we can observe from the pulsatile flow videos, arch-shaped streamlines oscillate from the upstream side of the dome opening to the downstream side of the opening during each momentary back flow when the flow changes direction. The frequency of the oscillation seems to be dictated by both the speed of the flow and the size of the dome opening. Another effect of a pulsatile flow is the accompanied oscillatory wall shear stress due to the change of flow direction. This can be observed in the maximum speed pulsatile flow video as particles around the dome area vibrates back and forth. According to Liou et al., oscillatory wall shear stress acting around the already weakened dome region may cause it to grow continuously. The formation of vortex in can be seen in Figure 2.1 below.

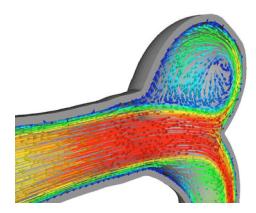



Figure 2.1 Flows in Aneurysms (Source: http://www.tafsm.org/PROJ/CVFSI/CAIBLR/)

### 2.2 Flow behavior in Cerebral Aneurysm

In recent years, computational methods are able to accurately predict the velocity field in three-dimensions for pulsatile flow, in tortuous and complex vascular geometries. This capability, together with the advent of medical imaging methods that are able to determine the lumenal geometry and inflow conditions in vessels of interest, provide the impetus to question whether it might be possible to predict the hemodynamic influences on the vessel wall on a patient-specific basis. Figure 2.1 below shows the location of aneurysms always happened.

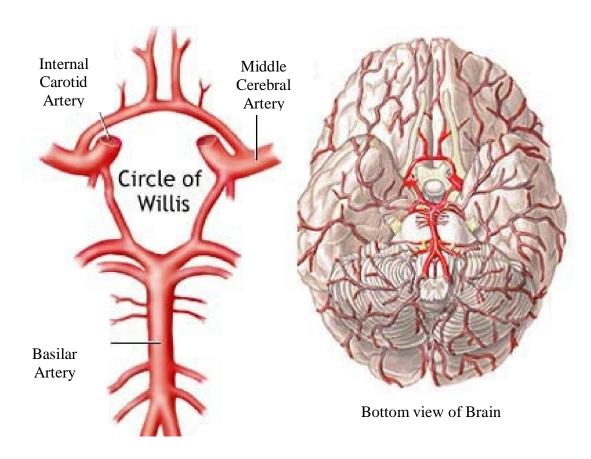



Figure 2.2: Location of Aneurysms in Circle of Willis

(http://www.nlm.nih.gov/medlineplus/ency/imagepages/18009.htm)

The flow related aspects dominate the life cycle of cerebral aneurysms. Understanding the role of blood and its flow mechanics will provide access to the deeper understanding of the cerebral aneurysm life. Besides that, the understanding can the role of blood flow will provide possibilities to assess rupture risk and to improve endovascular treatment methods. In order to improve the treatment method, the analysis must be done because there is no other method to measure blood flow patterns. With the advent of flow diversion using stents as treatment, the cause rather than the symptom may be addressed.

Cerebral aneurysms, a vessel disease marked by undue dilation of an arterial lumen indicating wall weakness and therefore exposing the patient to vessel rupture risk, are comparable to other complex systems that are governed by multiple parameters, and that in the case of cerebral aneurysms exhibit yet partially understood relationships (J.R Cebral et al, 2006).

Among others, the parameter of special interest is flow because it plays a significant role in all the different segments of the aneurysm life cycle, i.e. initiation, growth and rupture. When it comes to minimally invasive endovascular treatment, preliminary clinical results indicate that control of local flow parameters may alleviate from aneurysm disease. Such flow control is today conceivable by use of flow diverting devices such as stents. Different from today's treatment of symptoms with insertion of intraaneurismal flow diverters (coils) to induce thrombosis, application of flow correction in the parent vessel with stents would treat the cause and bears the potential to have better long-term efficacy (P. Lylyk et. Al, 2006).

Understanding flow and developing methods to assess and plan for correction is important to the surgical planning. A significant contribution to treatment and treatment planning using modern medical imaging can be expected. Patients with this highly prevalent disease (2-4%) but overall low rupture incidence (10/100'000/year) will benefit of better rupture risk assessment and better treatment.

#### 2.3 Hemodynamic of cerebral aneurysm

Hemodynamics plays an important role in the progression and rupture of cerebral aneurysms. Hemodynamics of cerebral aneurysm which is a force involved in the circulation of blood i.e. hemodynamics concerns the physical factors governing blood flow within the circulatory system. Parameters are believed to be responsible for aneurysm initiation, growth and rupture (Steiger et al, 1990). The important hemodynamic parameters include pulsatile nature of blood flow, blood pressure and wall shear stress. These fluid mechanical forces also intricately regulate structure and function of endothelial cell layer, the innermost layer of a vessel wall (Barakat et al, 2000). Aneurysm and parent vessel geometry, neck size, blood viscosity, wall elasticity etc. affect the hemodynamics of cerebral aneurysms. However, in large vessels, wall elasticity, non-Newtonian viscosity, slurry particles in the fluid, body forces and temperature are often neglected because of their secondary importance (Wootton et al, 1999).

#### 2.3.1 Wall Shear Stress (WSS)

The temporal and spatial variations in wall shear stress (WSS) within the aneurysmal saccular are hypothesized to be correlated with the growth and rupture of the aneurysm. The current work describes the blood flow dynamics in 34 patient-specific models of saccular aneurysms located in the region of the anterior and posterior circulation of the circle of Willis (Alvaro Valencia et al, 2007). The models were obtained from three-dimensional rotational angiography image data and blood flow dynamics was studied under a physiologically representative waveform of inflow. The three-dimensional continuity and momentum equations for unsteady laminar flow were solved with commercial software using non-structured fine grid sizes. The vortex structure, the wall pressure, and the WSS showed large variations, depending on the morphology of the aneurysmal saccular for lateral unruptured and ruptured aneurysms with an aneurysm surface index, which is defined as the ratio between the aneurysm area and the artery area at model inlet, respectively.

#### 2.3.2 Pulsatile Flow

The pulsatile flow reveal characteristic features of the cardiovascular system. Fukushima et al. (2008) carried out aneurysms flow experiments as well as twodimensional simulations. They determined as the flow velocity increased, center of an intra-aneurysmal vortex moved from proximal end to distal end of an aneurysm. During a period of the cardiac cycle, transient reversal flow occurred, which caused the vortex to appear and disappear. They assume that pulsatile flow produced a flow pattern that was quite different than the steady flow. They determined that the presence of an oscillatory component in the flow velocity altered the steady flow pattern. A pair of vortices behind, and a horseshoe vortex in the front of the stenosis characterized the pulsatile flow pattern. Taylor et al. (1994) also showed periodic changes in the location and width of the abovementioned vortex. They can induce vibrations of the aneurysm wall that contribute to progression and eventual rupture (Ortega et al, 1999). For the present CFD study to capture the pulsatile flow dynamics, which was done using physiological velocity waveform in a basilar artery. Figure 2.2 below shows velocity vector field and maximum systole of pulsatile flow simulation.

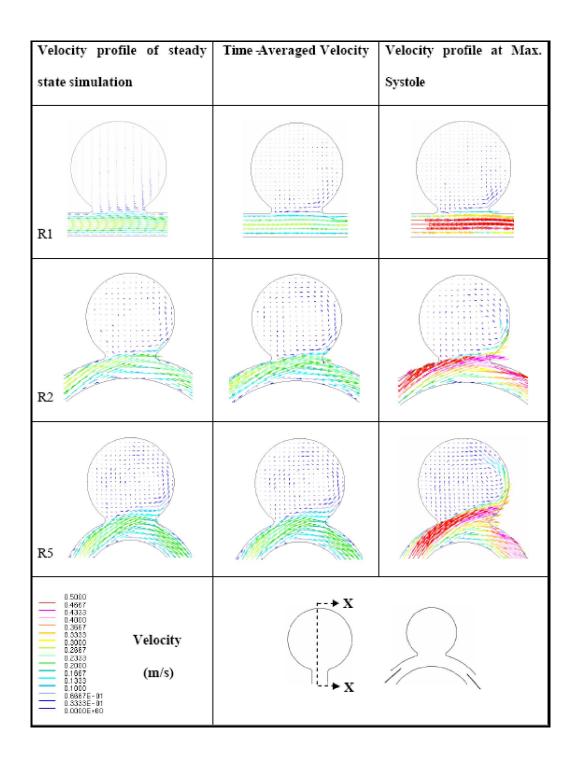



Figure 2.3: Velocity vector field and maximum systole of pulsatile flow simulation (Yie Meng Hoi, 2003)

## 2.4 Flow in stented Cerebral Aneurysm

Stent installation is the best solution for the aneurysm problem in order to prevent further rupture or burst of aneurysms. Investigation on arterial wall structure and behaviour are relevant to fluid interaction with the aneurismal vessels. According to M.P.Marks (1994), stents are flexible cylindrical mesh tubes made of stainless steel or alloys. However, according to Liepsch (2001) and Hoi (2004), the fluid flow is understood to have the greatest influence on aneurysms growth and rupture. Stent and coil implantation is a promising minimally invasive endovascular technique, which can sometimes be utilized successfully for inoperable regions, in order to prevent further rupture of a cerebral aneurysm leading to hemorrhage. In his previous works, he focused on the flow reduction ability of the stent itself and revealed that the positioning effect plays important roles in the treatment.

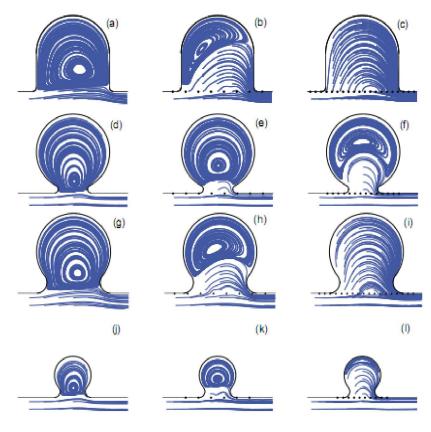
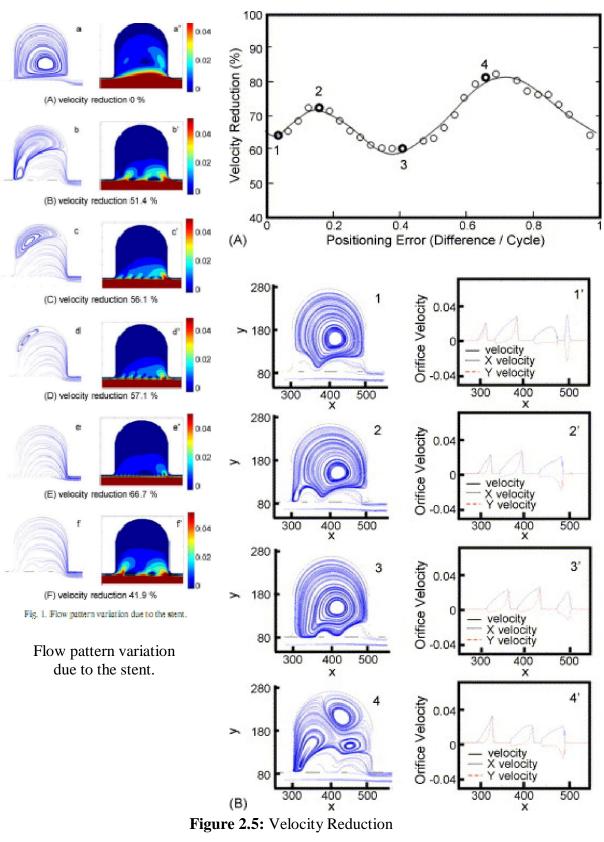




Figure 2.4: Flow in Stented and non-stented (M. Hirabayashi et al, 2004)

Generally the positioning effect makes it difficult to predict the flow reduction performance in advance, because he does not have enough parameters, which can describe the flow reduction effect with accuracy. Then he proposes new basic parameters to understand the flow pattern in the stented aneurysm and its effect on the velocity reduction and to verify the flow reduction mechanism based on these parameters. In order to design the functional stent, it is important to identify the effective parameters. Numerical simulations will provide a useful tool to characterize the stented flow and define new parameters to improve the treatment effect resulting from a stent implantation.

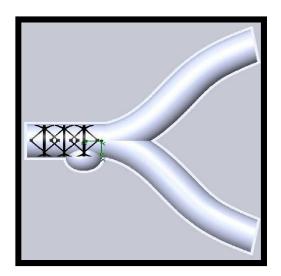
Several experimental and numerical studies on stented flows have been reported. They emphasize the existence of large coherent vortex structures within lateral aneurysms model; however they do not discuss well the flow reduction mechanism. In stented aneurysms numerical works, flow behaviour around the stent revealed that the positioning effect plays important roles in the treatment (Hirabayashi et. al., 2006). The positioning effect makes it difficult to predict the flow phenomena because there are no stent parameters, can describe the flow effect with accuracy.

Hirabayashi et. al., (2006) proposed new basic parameters to understand the flow pattern in the stented aneurysms and its effect on the velocity change to verify the flow reduction mechanism based on these parameters. Identifying the effective parameters during development of new design to obtain high efficiency stent is very important. To characterize the stented flow and define new parameters, the numerical solution is used. This because the numerical solution will provide a useful tool in order to improve the treatment effect resulting from a stent implantation. The ideal stent would optimize and reduce the pressure on the aneurysms wall.



(M. Hirabayashi et al, 2006)

## 2.5 Closure


This project will focus on the flow at the branches at the Circle of Willis. In many cases from medical report, the branches are the main part for bloods have a trouble flow and many diseases detect in this area. Artheoclorosis, aneurysm and high blood pressure are come from the branches. The pressure and the velocity of the blood will be the changes in the analysis using finite volume method in the Computational Fluid Dynamics (CFD). This method is the 1st degree of accuracy method and we cannot use experiment to analysis the data. It is because we cannot do the analysis on the human or dead body. From the analysis with the real condition and parameter, we will conclude that the analysis can get the almost similar result compare to the real one.

# **CHAPTER 3**

## METHODOLOGY

# 3.1 GEOMETRY OF MODEL

This study focus particularly on the model of aneurysm at artery with diameter of 6 mm with the aneurysm size is 14 mm diameter and 21 mm length. The modeling was completely done in CAD software package namely COSMOS with data of the aneurysm parameter taken according to the stent produce nowadays. The wall thickness of the aneurysm is set to 0.5 mm and model of aneurysm as shown in figure 3.1.



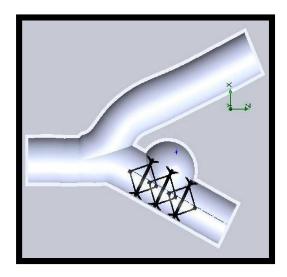
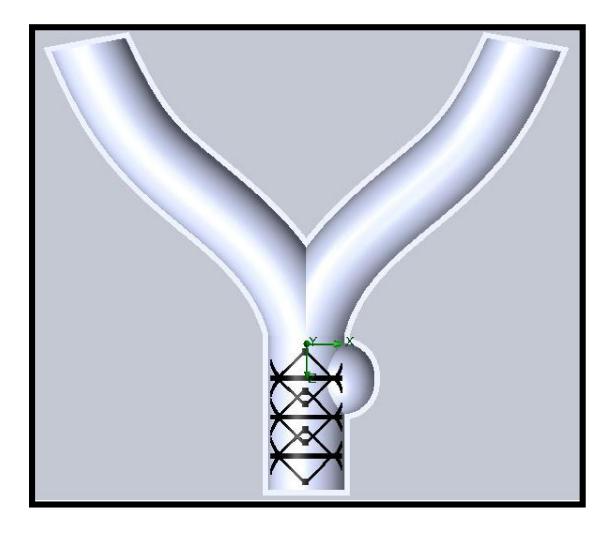




Figure 3.1: The geometry model of aneurysm



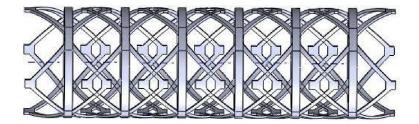



Figure 3.2: The geometry model of stent

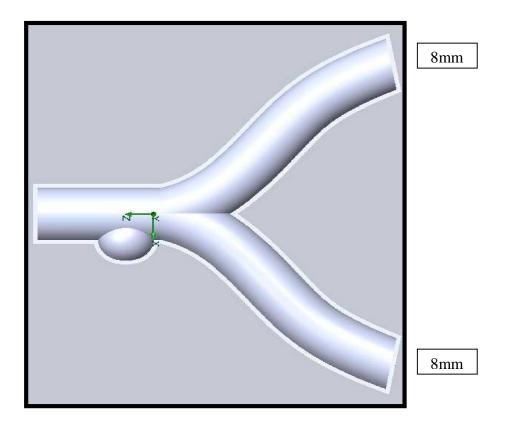



Figure 3.3: First Model

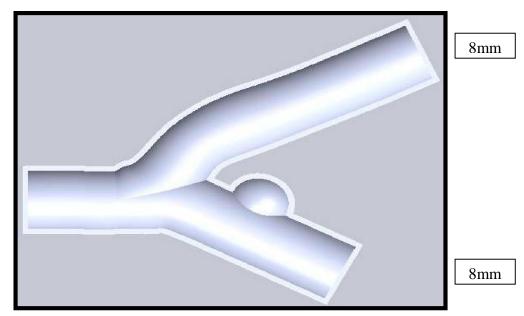



Figure 3.4: Second Model

# 3.2 GOVERNING EQUATION OF BLOOD FLOW

Blood flow in artery is considered to be incompressible, consisting of the continuity and Navier-Stokes equations. The governing equations are written as follows for a computational domain :

$$\frac{\partial u_i}{\partial x_i} = 0 \tag{1}$$

$$\rho\left(\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j}\right) = -\frac{\partial P}{\partial x_j} + \mu \frac{\partial^2 u_i}{\partial x_j \partial x_j} + f_i$$
<sup>(2)</sup>

 $u_i = \text{velocity in the } i^{th} \text{ direction}$  P = Pressure  $f_i = \text{Body force}$   $\rho = \text{Density}$   $\mu_i = \text{Viscosity}$  $\partial_{ij} = \text{Kronecker delta}$ 

The shear stress, at the wall of aneurysm calculated base on a function of velocity gradient only:

$$\tau = \mu \frac{\partial u}{\partial y} \tag{3}$$

Where u/y is the velocity gradient along the aneurismal wall taking considerations of fluid viscosity. Therefore, the simple viscous fluids considered with linear relationship. The equation of motion in terms of vorticity, as follows:

$$\frac{\partial\omega}{\partial t} - \nabla X \left( \nabla X \,\omega \right) = \frac{\mu}{\rho} \nabla^2 \omega \tag{4}$$

Where is the vorticity,  $\rho$  =Density and  $\mu$ = viscosity with vector <sup>2</sup>V evaluated as well.

# 3.3 SIMULATIONS ASSUMPTION, PARAMETER AND BOUNDARY CONDITIONS

For the simulation that carried out in this study, it is assumed that blood is an incompressible, Newtonian fluid and that the flow is laminar and assumption of Newtonian behavior is based on the findings of Perktold et al. (1989). Although the blood is actually non-Newtonian fluid. The simulation started from the beginning of systole with pressure defined at the artery while the wall was treated as no-slip wall. Then it is repeated with a different design. The parameter used in the simulation is listed in Table 3.1

**Table 3.1**: Parameters used in the simulation

| Parameters                | Value            |
|---------------------------|------------------|
| Blood Velocity (Cerebral) | 0.7 m/s          |
| Pressure                  | 463 Pa           |
| Temperature               | 293 K (constant) |

## 3.4 BOUNDARY CONDITIONS

# 3.4.1 Initial Velocity

Droppler ultrasound data measurement is used to set the initial condition of velocity to 0.7m/s (Marie Oshima et al, 2000).The velocity is differing according to the other place in our body. The velocity for cerebral is 0.7 m/s.

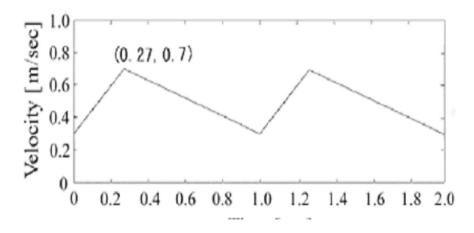



Figure 3.5: Initial condition.Graph Velocity versus Length.

(Marie Oshima et al (2(000).)

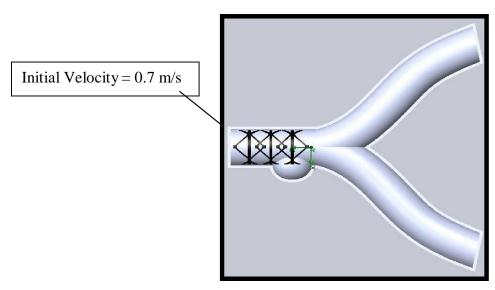
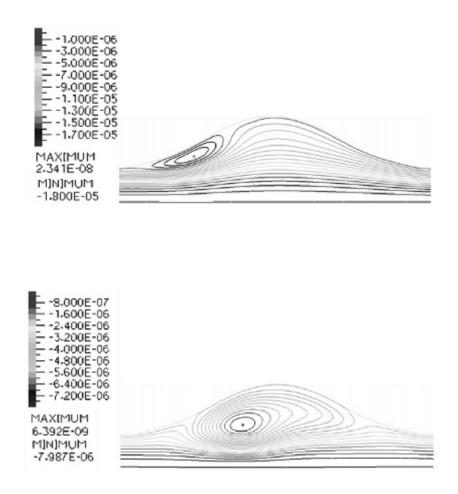




Figure 3.6: Inlet Velocity

#### 3.4.2 Peak pressure systole and diastole

K.M. Khanafer et al, (2007) concluded that the vortex formation critical during the diastole which show significant change to the flow behavior. They analyzed numerically using a simulated physiological waveform in aneurysm. According to the discussions, peak deformation occur shortly after systolic peak flow velocity in the flexible wall model while in the CSS(Computational Solid Stress) model they take place at peak pressure. Due to the collision of the vortices with the wall that cause it to vibrate, local pressure increases which contributes to wall shear stress increase and weakening of the AA wall. Based on Figure 3.7 below, we can see the vortex formation.



**Figure 3.7:** Vortex Formation (K.M. Khanafer et al, (2007))

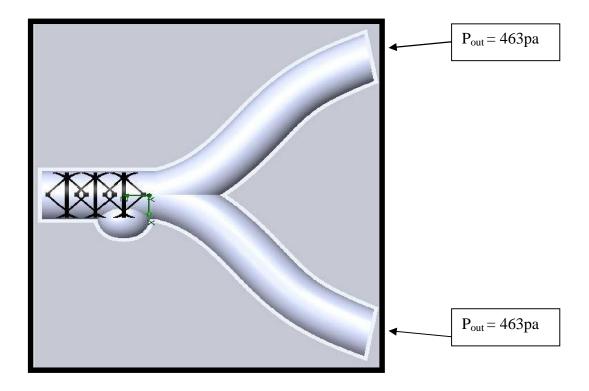



Figure 3.8: Pressure Output

# **CHAPTER 4**

## **RESULT AND DISCUSSION**

## 4.0 INTRODUCTION

In this chapter the data from the analysis using COSMOS flo will be assessed and the comparison for before and after treatment will be done. The discussion describes about the result and what were influencing the result of the experiment. Computational fluid dynamic simulations using the finite volume method have been applied to assess local changes of velocity, pressure, vorticity and shear stress in aneurysms, and these hemodynamic parameters are fairly well understood. The stent placement will affect the flow of blood inside the aneurysms.

# 4.1 RESULT

The result is based on the analysis that done in two condition. The first condition is the analysis of blood flow in cerebral aneurysms before the treatment or stenting process. The second condition is the analysis of flow phenomena in stented cerebral aneurysms. After an analysis performed, the flow phenomena in stented cerebral aneurysms is more stable compared to before the treatment. The analysis of aneurysms done in two different locations at the cerebral for three cases with the different size of dome for each case. The size of dome for each case is 3.5 mm, 4.5 mm and 5.5 mm in radius. The different locations will give the different result of velocity profile and pressure distribution.

## 4.2 VELOCITY PROFILE

From the simulation of blood vessel model, we can see the velocity profile. Velocity profile for stented and non-stented are different each other. The lowest minimum velocity refers to the simulations results and analysis for non-stented blood vessel. The magnitude of velocity for normal blood vessel is 0.7 m/s. Because of the aneurysms occurred, there will be velocity reduction once the flow passes through the aneurysms region. This because, there are energy losses during the blood flow. After stent implementation, the highest minimum velocity will be increased. The effect of stenting can be seen in Figure 4.1, Figure 4.2 and Table 4.1.

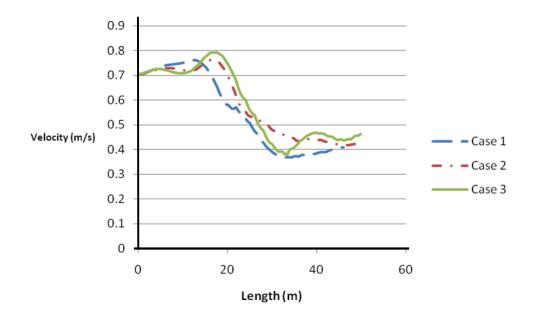



Figure 4.1: Velocity Profile for non-stented aneurysms for First Model

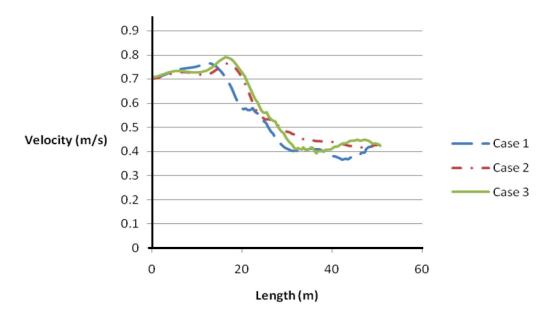



Figure 4.2: Velocity Profile for Stented aneurysms for First Model

 Table 4.1: Minimum Velocity for non-stented and Stented Aneurysms for First Model

| No | Aneurysms<br>Case | Min Velocity(m/s) for non-<br>stented | Min Velocity(m/s) for stented |
|----|-------------------|---------------------------------------|-------------------------------|
| 1  | 1                 | 0.374                                 | 0.416                         |
| 2  | 2                 | 0.421                                 | 0.443                         |
| 3  | 3                 | 0.36                                  | 0.404                         |

Calculation percentage of velocity

Case I

$$\% = 0.416 - 0.374 \times 100$$
  
0.374  
= 11.23%

Case II

 $= 0.443 - 0.421 \times 100$ 0.421 = 5.23%

# Case III



Figure 4.3: Velocity Profile for non-stented aneurysms for Second Model

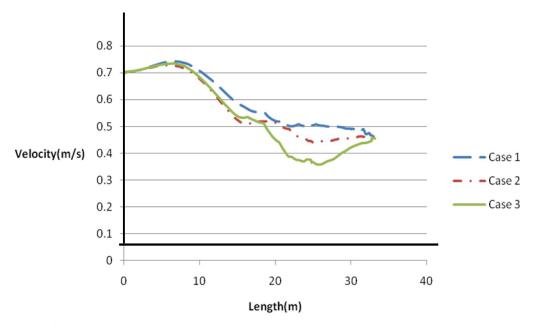



Figure 4.4: Velocity Profile for stented aneurysms for Second Model

| No | Aneurysms<br>Case | Min Velocity(m/s) for non-<br>stented | Min Velocity(m/s) for stented |
|----|-------------------|---------------------------------------|-------------------------------|
| 1  | 1                 | 0.487                                 | 0.495                         |
| 2  | 2                 | 0.424                                 | 0.454                         |
| 3  | 3                 | 0.343                                 | 0.382                         |

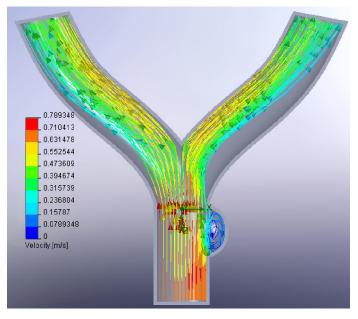
**Table 4.2**: Minimum Velocity for non-stented and Stented Aneurysms for Second Model

#### **Calculation percentage of velocity**

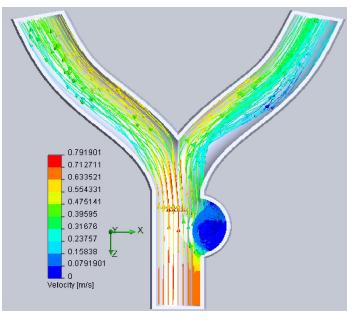
Case I

$$\% = 0.495 - 0.487 \times 100$$
  
0.487  
= 1.64%

Case II


 $\% = 0.454 - 0.424 \times 100$ 0.424 = 7.075%

Case III


 $= 0.382 - 0.343 \times 100$ 0.343 = 11.370%

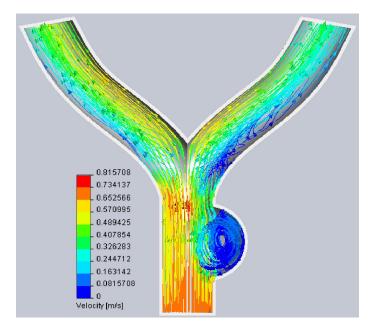
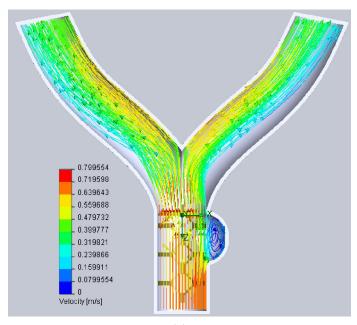
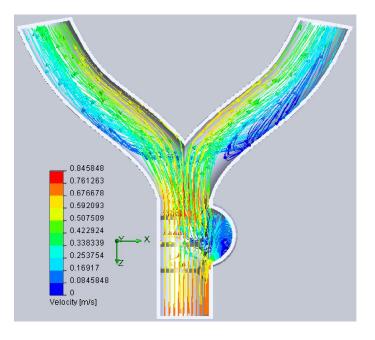

Stenting effect could be seen from the velocity profile inside the stented aneurysm at the same instances as previously selected for the non stented model. The large vortex formation that dominated the non stented aneurysm flow has reduced when selected stent applied. In Table 4.1 and 4.2 above, the higher minimum velocity obtained from the analysis. It shows that, the percentage of minimum velocity for each case is increased.

Figure 4.5 below, shows the velocity streamlines for three cases of aneurysms for first model with different size of aneurysms. The vortex formation can be seen in all cases. In cases 3, the large vortex was formed and reduced the minimum velocity. From the analysis, the lowest minimum velocity obtained in cases 3 due to the larger size of aneurysms compared to the case 1 and case 2. The larger size of aneurysms will caused the greater losses of energy. The minimum velocity for case 1 is 0.374 m/s, case 2 is 0.421 m/s and case 3 is 0.36 m/s.




(a)

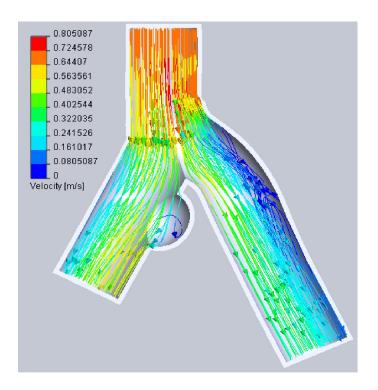




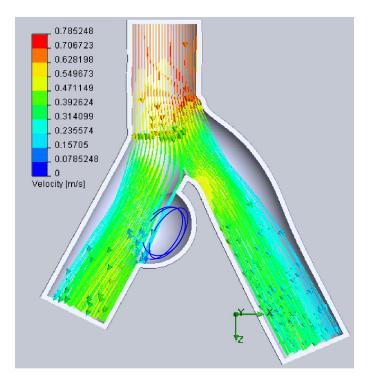

(c) **Figure 4.5**: (a) Case 1 (b) Case 2 (c) Case 3 Velocity Streamlines for non-stented Aneurysms of First Model

For Figure 4.6 below, shows the velocity streamlines for stented aneurysms of first model. To increase the higher minimum velocity, a selected stent is been used in blood vessel. The vortex formation for all cases were reduced after the stenting implementation compared to the before stenting implementation. Although there are still vortex formed in the aneurysms, but the higher minimum velocity for all cases are increased. The minimum velocity for case 1 is 0.416 m/s, case 2 is 0.443 m/s and case 3 is 0.404 m/s. The higher minimum velocity for all cases were increased compared to before stenting implementation.




(a)





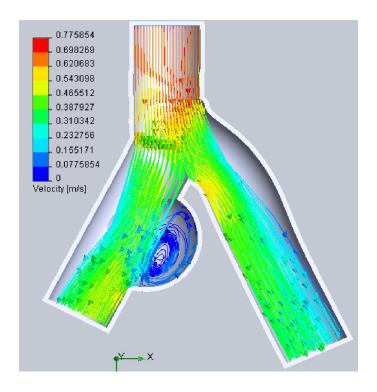
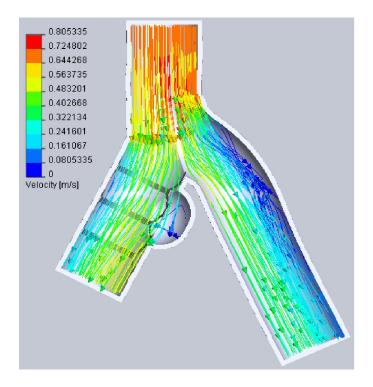


**Figure 4.6**: (a) Case 1 (b) Case 2 (c) Case 3 Velocity Streamlines for Stented Aneurysms of First Model

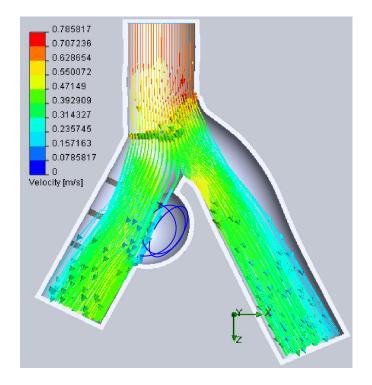
Figure 4.7 below, shows the velocity streamlines for three cases of aneurysms for second model with different size of aneurysms. The vortex formation can be seen in all cases. In cases 3, the large vortex was formed and reduced the minimum velocity. From the analysis, the lowest minimum velocity obtained in cases 3 due to the larger size of aneurysms compared to the case 1 and case 2. The larger size of aneurysms will caused the greater losses of energy. From the analysis of the second model, the minimum velocity obtained for Case 1 is 0.487 m/s, Case 2 is 0.424 m/s and Case 3 is 0.343 m/s. The reduction of velocity was large compared to the inlet velocity that is 0.7 m/s.

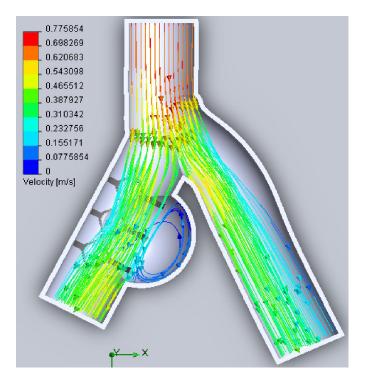


(a)







<sup>(</sup>c)


**Figure 4.7**: (a) Case 1 (b) Case 2 (c) Case 3 Velocity Streamlines for non-stented Aneurysms of Second Model

After stenting implementation, the vortex formed in the aneurysms was decreased. The stent implant will help to reduce the energy losses and increase the minimum velocity due to the vortex formation. In Figure 4.8 below, the effect of stent can be seen. Stent should modify the blood circulation in the aneurysms but not stop it from enter the aneurysms or dome. From the analysis done, the minimum velocity for all cases of second model was increased. For Case 1, the minimum velocity is 0.495 m/s, case 2 is 0.454 m/s and case 3 is 0.382 m/s. The increase of minimum velocity can prevent the aneurysms from rupture.



(a)





(c)

**Figure 4.8**: (a) Case 1 (b) Case 2 (c) Case 3 Velocity Streamlines for stented Aneurysms of Second Model

#### 4.3 PRESSURE

Figure 4.9 and 4.10 represented the pressure profile inside the aneurysms for the first and second model. In the first model of non-stented aneursyms for all case, the high pressure was noted in the aneurysms region and peak pressure occurs before the flow enters the distal neck of aneurysms. The increased of pressure inside the aneurysms area was because of the growth of the aneurysms. The higher the size of aneurysms, the peak pressure will be higher.

After stenting process, the effect of stenting can be seen. The stent disturbed the flow of blood. This make the level of flow activity become higher and reduced the pressure. For the both models, the peak pressures were decreased as in Figure 4.9 and 4.10.

In Figure 4.9 below, the peak pressure before the stenting process was 453 Pa. After stenting process, the peak pressure reduced to 422 Pa. The effect of stenting can be seen from the reduction of pressure.

In Figure 4.10, the reduction of peak pressure can also be seen. Before the stent placement, the peak pressure was obtained that was 455 Pa. After the stent placement, the peak pressure was reducing to 432 Pa. The reduction of peak pressure was depending on the stent that used. In this analysis, the type of stent was not considered.

Bernoulli principle gives the relationship between velocity and pressure. According to Bernoulli principle, the exit pressure will be higher than the inlet pressure. The detail has been proved by the numerical calculation enclosed with the sample calculation. The data for calculation has been taken from the result of simulation. The initial value and the end result can be considered reliable.

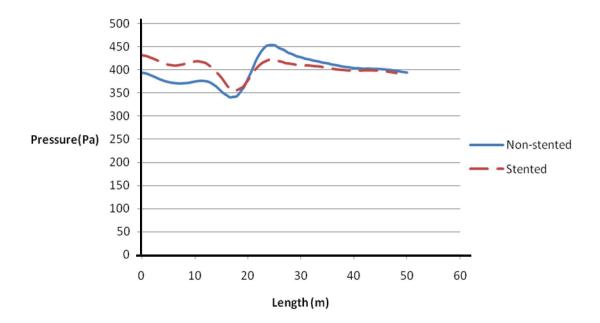



Figure 4.9: Pressure for Stented and non-stented aneurysms for First Model

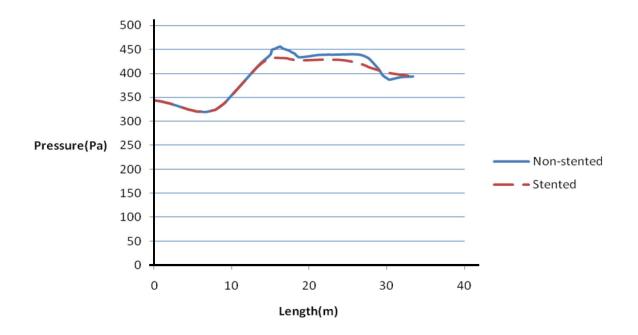



Figure 4.10: Pressure for Stented and non-stented aneurysms for second Model

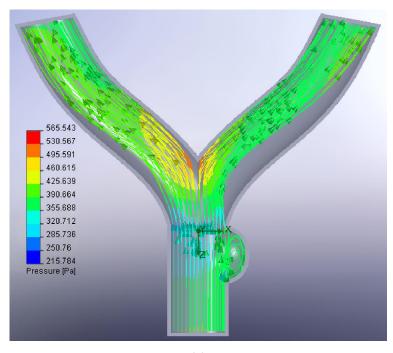
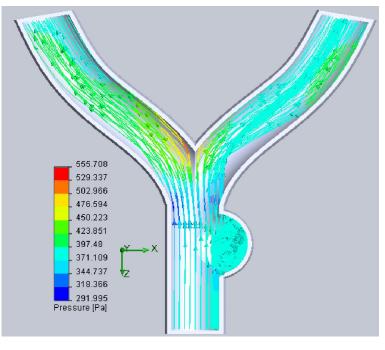
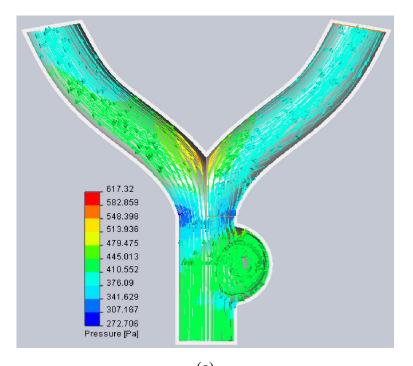

| No | Aneurysms Case | Peak Pressure (Pa) |
|----|----------------|--------------------|
| 1  | Non-stented    | 453                |
| 2  | With Stent     | 422                |

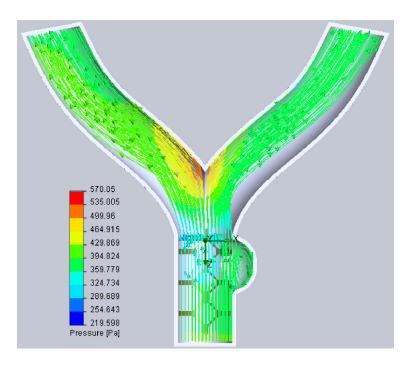
Table 4.3: Peak Pressure of non-stented and Stented Aneurysms for First Model


 Table 4.4: Peak Pressure of non-stented and Stented Aneurysms for Second Model

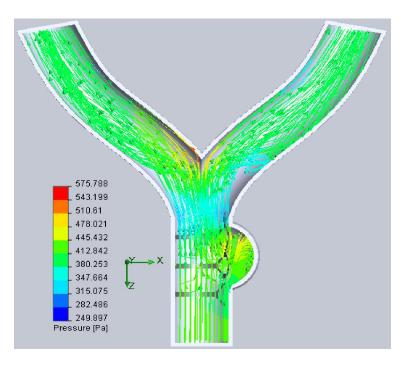

| No | Aneurysms Case | Peak Pressure (Pa) |
|----|----------------|--------------------|
| 1  | Non-stented    | 455                |
| 2  | With Stent     | 432                |

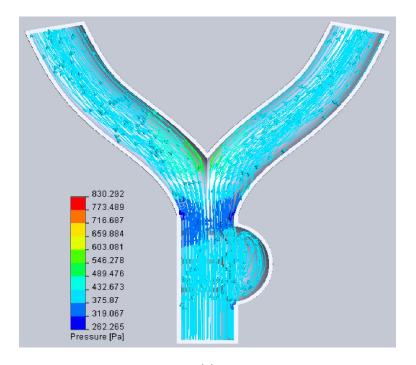
In Figure 4.11 below, the effect of aneurysms to the pressure distribution can be seen. Due to the aneurysms occurred, the pressure of blood were increased. The increased of pressure inside the aneurysms area was because of the growth of the aneurysms. The higher the size of aneurysms, the peak pressure will be higher. For case 1, the pressure obtained is 456 Pa, Case 2 is 453 Pa and case 3 is 454 Pa.




(a)

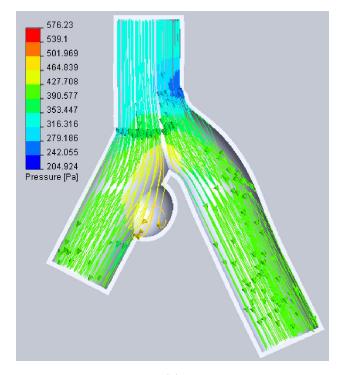




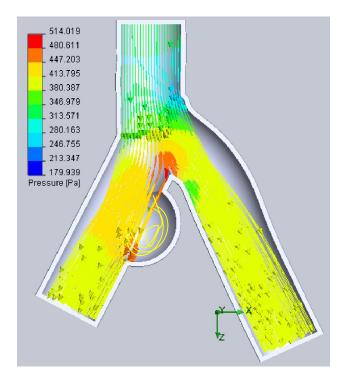


(c) **Figure 4.11**: (a) Case 1 (b) Case 2 (c) Case 3 Pressure for non-stented Aneurysms of First Model

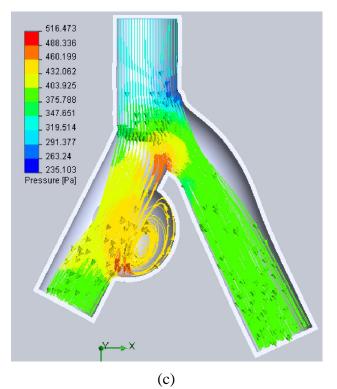
After stenting implementation, the vortex formed in the aneurysms was decreased. The stent implant will help to reduce the energy losses and decrease the pressure due to the vortex formation. Stent should modify the blood circulation in the aneurysms but not stop it from enter the aneurysms or dome. In Figure 4.12 below, the vortex formed in the aneurysms was decreased. This will help to reduce the peak pressure. For case 1, the pressure obtained is 450 Pa, Case 2 is 422 Pa and case 3 is 445 Pa. The decrease of peak pressure depends on the type of selected stent. In this analysis, the analysis was not focused on type of stent but only focused on the stenting effect.




(a)

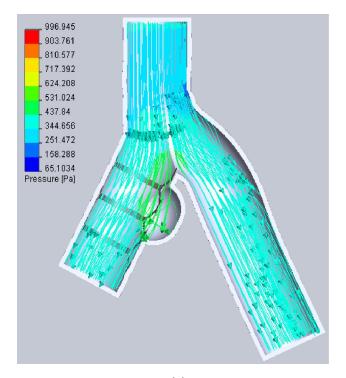




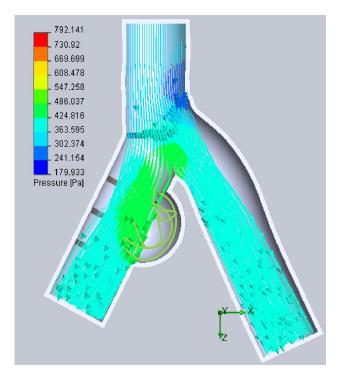


(c) **Figure 4.12**: (a) Case 1 (b) Case 2 (c) Case 3 Pressure for Stented Aneurysms of First Model

While, in Figure 4.13 below, the effect of aneurysms to the pressure distribution of second model can be seen. Due to the aneurysms occurred, the pressure of blood were increased. The increased of pressure inside the aneurysms area was because of the growth of the aneurysms. The higher the size of aneurysms, the peak pressure will be higher. For case 1, the pressure obtained is 427 Pa, Case 2 is 438 Pa and case 3 is 454 Pa. Each case gives different value of peak pressure. The higher value of peak pressure is obtained in case 3.

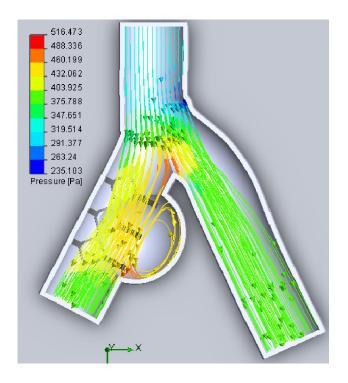



(a)






**Figure 4.13**: (a) Case 1 (b) Case 2 (c) Case 3 Pressure for non-stented Aneurysms of Second Model


After stenting procedure, the vortex formed in the aneurysms was also decreased. The stent implant help to reduce the energy losses and decrease the pressure due to the vortex formation. In Figure 4.14 below, the vortex formed in the aneurysms was decreased after stenting process. This will help to reduce the peak pressure of aneurysms. For case 1, the pressure obtained is 419 Pa, Case 2 is 428 Pa and case 3 is 435 Pa. The value of peak pressure obtained is different compared to the first model. This shows that, different locations will give different value of peak pressure.



(a)



(b)



(c) **Figure 4.14**: (a) Case 1 (b) Case 2 (c) Case 3 Pressure for Stented Aneurysms of Second Model

## **CHAPTER 5**

### CONCLUSIONS AND RECOMMENDATIONS

#### 5.1 CONCLUSIONS

This study established the correlation between the location of aneurysms to the flow of phenomena and blood parameter. The analysis was done for stent and non-stented aneurysms to determine the velocity profile and pressure distribution.

Based on the plotted graph, the minimum velocity for both locations of aneurysms were different. From the plotted result, the second model gives the higher minimum velocity compare to the first model. For the both locations and cases, the higher minimum velocity was obtained after stenting process.

Stenting effect could be seen from the velocity profile inside the stented aneurysm at the same instances for the non stented model. The large vortex formation that dominated the non stented aneurysm flow has reduced when the selected stent applied.

As the conclusion, the stent will decrease the pressure and increase the minimum velocity. This help to prevent the rupture or burst of the aneurysms. Each location will give the different value of velocity and pressure. The aneurysms will affect the normal blood parameter.

### 5.2 **RECOMMENDATIONS**

In order to obtain strong correlation between the location of aneurysms to the flow of phenomena and blood parameter, the recommendations are as below:

- 1. For the selected stent used, the stent must be the best stent among the stent. So that, the effect of stenting to the flow phenomena can be seen clearly.
- Pulse may have effect on the rupture of aneurysms in their growth rate. Therefore, future studies should consider the pulsatile condition of blood flow simulation by introducing the different Reynolds number.
- 3. The aneurysms size may differ from case to case. So, by varying the aneurysms size this study will be able to predict the effect of dome size to the flow behavior.
- The analysis of aneurysms should be done in more different location in Circle of Willis.

#### REFERENCES

- Wiebers DO, Whisnant JP, Huston J 3rd, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. *Lancet*. Jul 12 2003; 362(9378):103-10.
- [2] Schievink WI. Intracranial aneurysms. *N Engl J Med.* Jan 2 1997; 336(1):28-40.
- [3] Yanaka K, Nagase S, Asakawa H, et al. Management of unruptured cerebral aneurysms in patients with polycystic kidney disease. *Surg Neurol*. Dec 2004; 62(6):538-45; discussion 545.
- [4] Brisman JL, Song JK, Newell DW. Cerebral aneurysms. *N Engl J Med.* Aug 31 2006; 355(9):928-39.
- [5] Unruptured intracranial aneurysms--risk of rupture and risks of surgical intervention. International Study of Unruptured Intracranial Aneurysms Investigators. N Engl J Med. Dec 10 1998; 339(24):1725-33.
- [6] Juvela S, Porras M, Poussa K. Natural history of unruptured intracranial aneurysms: probability and risk factors for aneurysm rupture. *Neurosurg Focus*. 2000; 8(5): Preview 1.
- [7] Kershenovich A, Rappaport ZH, Maimon S. Brain computed tomography angiographic scans as the sole diagnostic examination for excluding aneurysms in patients with perimesencephalic subarachnoid hemorrhage. *Neurosurgery*. Oct 2006; 59(4):798-801; discussion 801-2.

- [8] Subarachnoid Hemorrhage. In: Goldstein L. A Primer on Stroke Prevention and Treatment - an Overview based on AHA/ASA Guidelines. Dallas, TX: Wiley-Blackwell; April 2009.
- [9] Cloft HJ, Kallmes DF. Aneurysm packing with HydroCoil Embolic System versus platinum coils: initial clinical experience. *AJNR Am J Neuroradiol*. Jan 2004; 25(1):60-2.
- [10] Solomon RA, Fink ME, Pile-Spellman J. Surgical management of unruptured intracranial aneurysms. *J Neurosurg*. Mar 1994; 80(3):440-6.
- [11] Fiorella D, Albuquerque FC, Woo H, et al. Neuroform in-stent stenosis: incidence, natural history, and treatment strategies. *Neurosurgery*. Jul 2006; 59(1):34-42; discussion 34-42.
- [12] Lylyk P, Miranda C, Ceratto R, Ferrario A, Scrivano E, Luna HR. Curative endovascular reconstruction of cerebral aneurysms with the pipeline embolization device: the Buenos Aires experience. *Neurosurgery*. Apr 2009; 64(4):632-42; discussion 642-3; quiz N6.
- [13] Hoh BL, Rabinov JD, Pryor JC, et al. In-hospital morbidity and mortality after endovascular treatment of unruptured intracranial aneurysms in the United States, 1996-2000: effect of hospital and physician volume. *AJNR Am J Neuroradiol*. Aug 2003; 24(7):1409-20.
- [14] Solomon RA, Mayer SA, Tarmey JJ. Relationship between the volumes of craniotomies for cerebral aneurysm performed at New York state hospitals and inhospital mortality. *Stroke*. Jan 1996; 27(1):13-7.
- [15] King JT Jr, Berlin JA, Flamm ES. Morbidity and mortality from elective surgery for asymptomatic, unruptured, intracranial aneurysms: a meta-analysis. *J*

Neurosurg. Dec 1994;81(6):837-42

- [16] Raaymakers TW, Rinkel GJ, Limburg M, et al. Mortality and morbidity of surgery for unruptured intracranial aneurysms: a meta-analysis. *Stroke*. Aug 1998; 29(8):1531-8.
- [17] Brilstra EH, Rinkel GJ, van der Graaf Y, et al. Treatment of intracranial aneurysms by embolization with coils: a systematic review. *Stroke*. Feb 1999; 30(2):470-6.
- [18] Henkes H, Fischer S, Weber W, et al. Endovascular coil occlusion of 1811 intracranial aneurysms: early angiographic and clinical results. *Neurosurgery*. Feb 2004; 54(2):268-80; discussion 280-5.
- [19] Johnston SC, Zhao S, Dudley RA. Treatment of unruptured cerebral aneurysms in California. *Stroke*. Mar 2001; 32(3):597-605.
- [20] Tsutsumi K, Ueki K, Morita A, et al. Risk of rupture from incidental cerebral aneurysms. *J Neurosurg*. Oct 2000; 93(4):550-3.
- [21] Biousse V, Newman NJ. Aneurysms and subarachnoid hemorrhage. *Neurosurg Clin N Am*. Oct 1999; 10(4):631-51.
- [22] Flamm ES, Grigorian AA, Marcovici A. Multifactorial analysis of surgical outcome in patients with unruptured middle cerebral artery aneurysms. *Ann Surg.* Oct 2000; 232(4):570-5.
- [23] Johnston SC, Wilson CB, Halbach VV, et al. Endovascular and surgical treatment of unruptured cerebral aneurysms: comparison of risks. *Ann Neurol.* Jul 2000; 48(1):11-9.

- [24] Kremer C, Groden C, Hansen HC. Outcome after endovascular treatment of Hunt and Hess grade IV or V aneurysms: comparison of anterior versus posterior circulation. *Stroke*. Dec 1999; 30(12):2617-22.
- [25] Ohashi Y, Horikoshi T, Sugita M. Size of cerebral aneurysms and related factors in patients with subarachnoid hemorrhage. *Surg Neurol*. Mar 2004; 61(3):239-45; discussion 245-7.
- [26] Tait MJ, Norris JS. Intracranial aneurysm surgery and its future. *J R Soc Med.* Mar 2004; 97(3):156.
- [27] Kayembe KNT, Sasaharam M, Hazama F: Cerebral Aneurysms and Variations of Circle of Willis, *Stroke*, 15:846-850, 1984.
- [28] Forget TR Jr, Benitez R, Veznedaroglu E, *et al.*: A review of size and location of ruptured intracranial aneurysms. *Neurosurgery*, 49(6):1322-1326, 2001.
- [29] Ujiie H, Tachibana H, Hiramatsu O, *et al.*: Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysm: a possible index for surgical treatment of intracranial aneurysms, *Neurosurgery*, 45:119-130, 1999.

# **APPENDIX : Data for**

**Plotted Results** 

| First Model Without Stent |            |  |
|---------------------------|------------|--|
| For Case 1                |            |  |
| Length (mm) Velocity      |            |  |
| 0                         | 0.70334851 |  |
| 0.454720422               | 0.70399372 |  |
| 1.596853821               | 0.70944573 |  |
| 2.979315753               | 0.71971533 |  |
| 4.318489098               | 0.72992352 |  |
| 5.330431955               | 0.73662184 |  |
| 5.620191288               | 0.73817345 |  |
| 6.312053123               | 0.74154303 |  |
| 6.888953372               | 0.74330846 |  |
| 8.13357678                | 0.74604694 |  |
| 9.305983273               | 0.74861179 |  |
| 9.881140145               | 0.75068462 |  |
| 10.45362807               | 0.75346893 |  |
| 11.57737796               | 0.75984737 |  |
| 11.87849341               | 0.76160682 |  |
| 12.63544907               | 0.76228883 |  |
| 13.02112356               | 0.76262012 |  |
| 13.70637944               | 0.75633003 |  |
| 14.16427737               | 0.75238817 |  |
| 14.71624558               | 0.74249954 |  |
| 15.31638305               | 0.73195239 |  |
| 15.71111596               | 0.72148974 |  |
| 16.51179462               | 0.69953885 |  |
| 16.66572499               | 0.69406257 |  |
| 17.58988421               | 0.66047891 |  |
| 17.74439159               | 0.65490762 |  |
| 18.39748461               | 0.62577633 |  |
| 18.80601888               | 0.61092542 |  |
| 19.07837505               | 0.60243506 |  |
| 19.17982534               | 0.59857226 |  |
| 19.4578235                | 0.59035889 |  |
| 19.73582165               | 0.58426467 |  |
| 20.01381981               | 0.58031728 |  |

| 1           | l l        |
|-------------|------------|
| 20.18724605 | 0.57955735 |
| 20.36067229 | 0.57966772 |
| 20.54415254 | 0.57462324 |
| 20.8272998  | 0.56883789 |
| 21.09198493 | 0.56577981 |
| 21.35667005 | 0.56467191 |
| 21.62135518 | 0.56543974 |
| 21.82930914 | 0.56746462 |
| 22.03726311 | 0.57056359 |
| 22.39586924 | 0.55962478 |
| 22.69410515 | 0.5525189  |
| 22.99234106 | 0.54786272 |
| 23.29057697 | 0.54560259 |
| 23.58881289 | 0.54568828 |
| 24.20266054 | 0.5245155  |
| 24.49890216 | 0.51647437 |
| 24.79514377 | 0.51081127 |
| 25.09138538 | 0.50749446 |
| 25.32338306 | 0.49897598 |
| 25.52869024 | 0.49223018 |
| 26.01415769 | 0.47769533 |
| 26.29431796 | 0.47102677 |
| 26.57447824 | 0.46637651 |
| 26.95682909 | 0.4540814  |
| 27.27324474 | 0.44547738 |
| 27.86403112 | 0.43176921 |
| 28.05809932 | 0.42841101 |
| 28.68847078 | 0.4132928  |
| 29.00365651 | 0.40684783 |
| 29.2125731  | 0.40330279 |
| 30.23330786 | 0.38761138 |
| 31.07860597 | 0.37702132 |
| 32.15935991 | 0.37064367 |
| 32.65141109 | 0.36757829 |
| 32.89926391 | 0.36681424 |
| 33.37681851 | 0.36801935 |
| 33.69518824 | 0.36773456 |
| 33.84456378 | 0.36776428 |
| 34.29269043 | 0.36674944 |
| 34.51258181 | 0.36733169 |
|             |            |

| 34.98341195 | 0.3710473  |
|-------------|------------|
| 35.45424209 | 0.37210919 |
| 36.03011898 | 0.37052279 |
| 36.54259892 | 0.37578825 |
| 36.87130519 | 0.37715843 |
| 37.03565832 | 0.3772407  |
| 37.20001145 | 0.37692612 |
| 37.3600897  | 0.37705459 |
| 37.71066043 | 0.3767293  |
| 37.9011529  | 0.37700375 |
| 38.31510101 | 0.38040282 |
| 38.62494105 | 0.38240836 |
| 38.93478109 | 0.38286604 |
| 39.28960544 | 0.38128884 |
| 39.5117519  | 0.38134618 |
| 39.95604482 | 0.38186311 |
| 40.29813854 | 0.38533969 |
| 41.12492963 | 0.38849657 |
| 41.62100428 | 0.38890348 |
| 41.85443979 | 0.38867352 |
| 42.30607574 | 0.389924   |
| 42.91278408 | 0.39603253 |
| 43.73306878 | 0.3985288  |
| 44.18642956 | 0.40058563 |
| 44.40406832 | 0.40041668 |
| 44.93324649 | 0.40207304 |
| 45.46842954 | 0.40696614 |
| 45.76336869 | 0.40725738 |
| 46.09763444 | 0.40778838 |

| First Model Without Stent<br>for Case 2 |            |  |  |  |
|-----------------------------------------|------------|--|--|--|
| Length (mm) Velocity                    |            |  |  |  |
| 0                                       | 0.70213353 |  |  |  |
| 0.27940681                              | 0.70344501 |  |  |  |
| 0.838220429                             | 0.70442667 |  |  |  |
| 1.854617281                             | 0.70969052 |  |  |  |
| 3.266381839                             | 0.71813528 |  |  |  |
| 4.785231566                             | 0.72544095 |  |  |  |
| 6.102034971                             | 0.72892774 |  |  |  |
| 7.419954724                             | 0.72957885 |  |  |  |
| 8.739380738                             | 0.72678233 |  |  |  |
| 9.633483232                             | 0.7232895  |  |  |  |
| 10.05880016                             | 0.7212828  |  |  |  |
| 11.37568769                             | 0.71788035 |  |  |  |
| 12.69163287                             | 0.72162527 |  |  |  |
| 13.56807918                             | 0.73096604 |  |  |  |
| 13.89958832                             | 0.73516285 |  |  |  |
| 14.35638548                             | 0.74093064 |  |  |  |
| 15.0197741                              | 0.75003903 |  |  |  |
| 15.33949661                             | 0.75449925 |  |  |  |
| 16.0919225                              | 0.76072121 |  |  |  |
| 16.66521293                             | 0.76554724 |  |  |  |
| 17.23536979                             | 0.76173368 |  |  |  |
| 17.98815787                             | 0.75656562 |  |  |  |
| 19.13158002                             | 0.73046632 |  |  |  |
| 19.31568838                             | 0.72615971 |  |  |  |
| 20.16437621                             | 0.69656127 |  |  |  |
| 20.66053898                             | 0.67896518 |  |  |  |
| 21.18320738                             | 0.65574866 |  |  |  |
| 21.52521506                             | 0.64077239 |  |  |  |
| 21.72692056                             | 0.63064741 |  |  |  |
| 22.06306879                             | 0.61479465 |  |  |  |
| 22.32296891                             | 0.60131548 |  |  |  |
| 22.58286902                             | 0.58928589 |  |  |  |
| 22.86099246                             | 0.57860067 |  |  |  |
| 23.13911591                             | 0.569868   |  |  |  |

|             | i i        |
|-------------|------------|
| 23.41723935 | 0.56311533 |
| 23.57526453 | 0.56058789 |
| 23.81552011 | 0.55794818 |
| 24.0557757  | 0.55676222 |
| 24.23446896 | 0.5502177  |
| 24.50173993 | 0.5423304  |
| 24.76901091 | 0.53695612 |
| 25.03628188 | 0.5340158  |
| 25.24958587 | 0.53325967 |
| 25.59460639 | 0.53347671 |
| 25.93962692 | 0.53608294 |
| 26.27855707 | 0.52707377 |
| 26.61748723 | 0.5215556  |
| 26.8545206  | 0.51892287 |
| 27.09155397 | 0.51790799 |
| 27.37391194 | 0.51591248 |
| 27.65626991 | 0.51571008 |
| 27.88993682 | 0.50956666 |
| 28.12360372 | 0.50481208 |
| 28.4394092  | 0.49969016 |
| 28.75521467 | 0.49698348 |
| 29.07102015 | 0.49664628 |
| 29.28857851 | 0.49513827 |
| 29.54039158 | 0.48880196 |
| 29.86947745 | 0.48216356 |
| 30.19856333 | 0.47777548 |
| 30.52764921 | 0.47559877 |
| 30.88910508 | 0.47571312 |
| 31.12223147 | 0.47291699 |
| 31.43992851 | 0.466804   |
| 31.75762555 | 0.46259258 |
| 32.07532259 | 0.46025582 |
| 32.28002296 | 0.45977847 |
| 32.48472334 | 0.46006742 |
| 33.20635852 | 0.45784574 |
| 33.49994531 | 0.45170267 |
| 33.79353209 | 0.45016236 |
| 34.08711887 | 0.45021723 |
| 34.57779862 | 0.44815363 |
| 35.24010686 | 0.44009782 |
|             |            |

| I           | I          |
|-------------|------------|
| 35.47448438 | 0.43500558 |
| 35.93294776 | 0.4343388  |
| 36.44310552 | 0.42944402 |
| 37.01524931 | 0.43302718 |
| 37.19248423 | 0.43122904 |
| 37.81975462 | 0.44220869 |
| 38.13164364 | 0.44239943 |
| 39.06731069 | 0.44325882 |
| 39.3320562  | 0.44177066 |
| 39.66497859 | 0.44084448 |
| 40.66374579 | 0.43838185 |
| 40.84025995 | 0.43857899 |
| 40.91528082 | 0.43865681 |
| 41.83453143 | 0.43239562 |
| 42.10947053 | 0.43143781 |
| 42.7117796  | 0.42921021 |
| 43.1612919  | 0.42654242 |
| 43.76093224 | 0.4236275  |
| 44.04335115 | 0.42321693 |
| 44.32577006 | 0.42284977 |
| 44.73291294 | 0.41999779 |
| 45.33482895 | 0.41871935 |
| 45.63452389 | 0.41917873 |
| 45.93421883 | 0.41971347 |
| 46.51369146 | 0.41718409 |
| 46.73102084 | 0.41742313 |
| 47.48315064 | 0.41821648 |
| 47.79186871 | 0.42020401 |

| First Model V | Vithout Stent | 23.2510932  | 0.617358062 |   | 35.41104657 | 0.416313652 |
|---------------|---------------|-------------|-------------|---|-------------|-------------|
| For C         | ase 3         | 23.45091566 | 0.611979763 |   | 35.82320427 | 0.424507967 |
| Length (mm)   | Velocity      | 23.65073812 | 0.607865817 |   | 35.96951784 | 0.427937795 |
| 0             | 0.705040143   | 23.85056059 | 0.605016903 |   | 36.11583141 | 0.431597643 |
| 0.274535233   | 0.706561808   | 24.05038305 | 0.603431562 |   | 37.75113046 | 0.455365999 |
| 0.8236057     | 0.707733756   | 24.39040732 | 0.586441327 |   | 37.92453973 | 0.457770112 |
| 1.775632647   | 0.713582847   | 24.58608312 | 0.577677158 |   | 38.3249898  | 0.459654538 |
| 3.244666      | 0.722898129   | 24.96786049 | 0.563146673 |   | 38.72543987 | 0.464571623 |
| 3.620136099   | 0.725310086   | 25.15396206 | 0.557268718 |   | 39.28604503 | 0.467071499 |
| 4.682735976   | 0.72681678    | 25.34006364 | 0.552248024 |   | 39.78463802 | 0.469495605 |
| 5.018103236   | 0.727232997   | 25.52616521 | 0.548096905 |   | 40.12838005 | 0.466502851 |
| 6.091035682   | 0.723099861   | 25.71226678 | 0.544795296 |   | 40.47212208 | 0.465402234 |
| 7.299014419   | 0.716828648   | 25.89836835 | 0.542330836 |   | 40.68719196 | 0.465581928 |
| 7.470321626   | 0.715882098   | 26.08446993 | 0.540691073 |   | 40.90226185 | 0.466506973 |
| 8.218968342   | 0.712534031   | 26.55911382 | 0.51800946  |   | 41.65401353 | 0.463753713 |
| 8.820220626   | 0.710422976   | 26.92759484 | 0.503379624 |   | 41.6800052  | 0.463755026 |
| 9.210660593   | 0.709113878   | 27.29607587 | 0.491874781 |   | 42.08202808 | 0.458347765 |
| 10.08265132   | 0.709617123   | 27.6645569  | 0.483449413 |   | 42.48405096 | 0.454889494 |
| 10.61044007   | 0.710105122   | 28.04158564 | 0.477876322 |   | 42.88607385 | 0.453373925 |
| 11.31984163   | 0.714919302   | 28.49406233 | 0.458323111 |   | 43.08708529 | 0.453341927 |
| 12.01109592   | 0.719896415   | 28.85587495 | 0.444901576 |   | 43.36482947 | 0.452333727 |
| 12.52714714   | 0.728284158   | 29.21768757 | 0.434471296 |   | 43.53202603 | 0.452167891 |
| 13.40942879   | 0.742520293   | 29.41088249 | 0.43026359  |   | 43.91016487 | 0.445995553 |
| 13.71479649   | 0.748945109   | 29.60407741 | 0.426925382 |   | 44.28830372 | 0.441751398 |
| 14.80866054   | 0.771333023   | 29.99046725 | 0.422694829 |   | 44.66644257 | 0.439427279 |
| 15.99960727   | 0.789419537   | 30.69137533 | 0.404689633 |   | 44.85551199 | 0.438982458 |
| 16.20931496   | 0.792851727   | 31.08850328 | 0.397281822 |   | 45.00123177 | 0.439889627 |
| 17.14985606   | 0.792977646   | 31.48563123 | 0.392769316 |   | 45.29267134 | 0.442508954 |
| 17.38499133   | 0.792958899   | 31.6841952  | 0.391578902 |   | 45.48716274 | 0.44205609  |
| 17.61089456   | 0.794113435   | 31.84111776 | 0.391874038 |   | 45.88968581 | 0.43832814  |
| 18.60700771   | 0.78367906    | 31.99804031 | 0.392609878 |   | 46.09094734 | 0.437143617 |
| 19.04083876   | 0.77688049    | 32.42463333 | 0.390983584 |   | 46.25876992 | 0.437794357 |
| 20.58726681   | 0.731640406   | 32.80130222 | 0.380947578 |   | 46.76223765 | 0.44144975  |
| 21.68645568   | 0.690734861   | 32.99483172 | 0.383447496 |   | 46.93006022 | 0.443234968 |
| 21.84984695   | 0.685316831   | 33.38189073 | 0.378097348 |   | 47.29832228 | 0.441823503 |
| 22.07724098   | 0.672130279   | 33.76894973 | 0.395512897 |   |             |             |
| 22.49129395   | 0.649434985   | 34.15600873 | 0.402047245 | ] |             |             |
| 22.67795288   | 0.63989407    | 34.30734493 | 0.403753066 | ] |             |             |
| 22.8646118    | 0.631413101   | 34.58673115 | 0.405425195 | ] |             |             |
| 23.05127073   | 0.623997985   | 34.99888886 | 0.409949514 | ] |             |             |

| First Model With Stent |          |  |  |
|------------------------|----------|--|--|
| For Cas                | se 1     |  |  |
| Length (mm) Velocity   |          |  |  |
| 0                      | 0.70334  |  |  |
| 0.43848172             | 0.703934 |  |  |
| 1.580604497            | 0.709212 |  |  |
| 2.89983081             | 0.718762 |  |  |
| 4.205873369            | 0.728595 |  |  |
| 5.312350394            | 0.735851 |  |  |
| 5.479912812            | 0.736746 |  |  |
| 6.410465752            | 0.741199 |  |  |
| 6.691005694            | 0.742137 |  |  |
| 7.870500268            | 0.745373 |  |  |
| 9.017497876            | 0.748254 |  |  |
| 9.713580363            | 0.75068  |  |  |
| 10.13255703            | 0.752993 |  |  |
| 11.22136667            | 0.759451 |  |  |
| 11.86271302            | 0.763395 |  |  |
| 12.26135206            | 0.763757 |  |  |
| 13.00730152            | 0.764189 |  |  |
| 13.31504311            | 0.761235 |  |  |
| 14.15689173            | 0.752857 |  |  |
| 14.31741294            | 0.749783 |  |  |
| 15.20887842            | 0.732829 |  |  |
| 15.29773788            | 0.73128  |  |  |
| 16.16984562            | 0.709604 |  |  |
| 16.4553361             | 0.703158 |  |  |
| 16.72357871            | 0.694656 |  |  |
| 17.04774123            | 0.683297 |  |  |
| 17.68451551            | 0.660693 |  |  |
| 17.89827704            | 0.65106  |  |  |
| 18.56835255            | 0.621572 |  |  |
| 18.73596754            | 0.61481  |  |  |
| 19.0859068             | 0.601186 |  |  |
| 19.40110389            | 0.589475 |  |  |
| 19.6744286             | 0.582588 |  |  |
| 19.94775331            | 0.577757 |  |  |
| 20.22107803            | 0.575017 |  |  |
| 20.44251993            | 0.575    |  |  |
| 20.76359883            | 0.577535 |  |  |

| 21.01731426 | 0.573301 |
|-------------|----------|
| 21.27920132 | 0.57103  |
| 21.54108839 | 0.570524 |
| 21.80297545 | 0.571717 |
| 22.06486251 | 0.574544 |
| 22.32674958 | 0.578946 |
| 22.53427868 | 0.572659 |
| 22.79589187 | 0.565944 |
| 23.05750506 | 0.560994 |
| 23.31911825 | 0.557778 |
| 23.58073144 | 0.556262 |
| 23.84234463 | 0.556417 |
| 24.18112047 | 0.5442   |
| 24.44049715 | 0.535008 |
| 24.69987383 | 0.527604 |
| 24.95925051 | 0.52197  |
| 25.33365989 | 0.516919 |
| 25.56253244 | 0.507748 |
| 25.791405   | 0.499796 |
| 26.21995179 | 0.486591 |
| 26.41962603 | 0.48118  |
| 26.62371167 | 0.476957 |
| 26.8277973  | 0.473821 |
| 27.06610452 | 0.465553 |
| 27.30441173 | 0.458165 |
| 27.54271895 | 0.451644 |
| 27.8284338  | 0.445714 |
| 28.08880584 | 0.439978 |
| 28.34917789 | 0.435927 |
| 28.59750648 | 0.42982  |
| 28.91707822 | 0.423817 |
| 29.23664996 | 0.418675 |
| 29.5909794  | 0.413868 |
| 29.75774845 | 0.412268 |
| 30.07500052 | 0.409797 |
| 30.66196212 | 0.404707 |
| 31.20401229 | 0.401556 |
| 31.40661702 | 0.401123 |
| 31.5545896  | 0.40163  |
| 32.09817157 | 0.402147 |
|             |          |

| 32.234067070.40208232.37670520.40208932.804619570.41016133.011329270.40396433.232547020.40396433.722306180.40691534.048812280.40750534.470868580.40750435.264023350.41067335.425302460.41091935.838895930.41001336.176893790.40830237.014260540.40830237.014260540.40830237.466227930.40830237.466227930.40093538.139676710.39864538.139676710.39864540.176548980.37924540.432016460.37924541.429018150.37289941.429018150.37629541.429018150.36610242.297355330.36610242.60193020.36613242.60193020.36613242.906505080.3683343.211079950.36843643.537926760.36702244.17013280.374744.491946060.37353245.17013280.378745.491946060.39353246.17013280.394746.491946060.39353246.17013280.394746.491946060.39353247.213123820.3947 |             | i        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| 32.804619570.41016133.011329270.40212333.232547020.40396433.722306180.40691534.048812280.40756534.470868580.40697834.706166850.40750435.264023350.41067335.425302460.41091935.838895930.41001336.176893790.40830236.423856410.40763436.423856410.40763436.423856410.40826537.014260540.40830237.014260540.40935438.139676710.39864538.969266980.39544240.176548980.37924540.432016460.37924541.429018150.37629541.429018150.36610242.297355330.36518842.60193020.36518842.60193020.36610242.996505080.3683343.211079950.36843643.537926760.36702244.17013280.378745.491946060.378353246.17013280.384746.491946060.39353247.213123820.3947                                                                                        | 32.23406707 | 0.402062 |
| 33.011329270.40212333.232547020.40396433.722306180.40691534.048812280.40756534.470868580.40750435.264023350.41067335.425302460.41091935.838895930.41001336.176893790.40830237.014260540.40826537.014260540.4093538.139676710.39864538.969266980.39544240.176548980.37024540.432016460.37924541.429018150.37289941.845169170.36610242.297355330.36518842.60193020.36612242.1074548980.36612241.845169170.36612341.429018150.37289941.845169170.36612242.125758570.36612242.10735530.36518842.60193020.36518842.60193020.3672542.906505080.3683343.211079950.36843643.537926760.3672244.17013280.374744.491946060.37353245.491946060.37353246.17013280.384746.491946060.39353247.213123820.3947                                    | 32.3767052  | 0.402089 |
| 33.232547020.40396433.722306180.40691534.048812280.40756534.470868580.40697834.706166850.40750435.264023350.41067335.425302460.41091935.838895930.41001336.176893790.40813436.423856410.40763436.423856410.40763436.423856410.40826537.014260540.40826537.014260540.40935438.139676710.39864538.969266980.39544240.176548980.37924540.432016460.37924540.432016450.37629541.429018150.37629541.845169170.36610242.297355330.36518842.60193020.3672542.906505080.3683343.211079950.36843643.537926760.3672544.17013280.374744.491946060.37853245.17013280.384746.17013280.39353246.17013280.3947                                                                                                                                  | 32.80461957 | 0.410161 |
| 33.722306180.40691534.048812280.40756534.470868580.40697834.706166850.40750435.264023350.41067335.425302460.41091935.838895930.41001336.176893790.40813436.423856410.40763436.863604750.40826537.014260540.40826537.014260540.4093537.466227930.40093538.139676710.39864538.969266980.39544240.176548980.37924540.432016460.37924541.4004206250.37629541.429018150.37289941.845169170.36610242.125758570.36610242.60193020.36518842.60193020.36633343.211079950.36843643.537926760.37629544.17013280.378744.491946060.37853245.17013280.378745.491946060.39353246.170132820.3947                                                                                                                                                 | 33.01132927 | 0.402123 |
| 34.048812280.40756534.470868580.40697834.706166850.40750435.264023350.41067335.425302460.41091935.838895930.41001336.176893790.40813436.423856410.40763436.423856410.40830237.014260540.40826537.466227930.4093538.139676710.39864538.969266980.39544240.176548980.37924540.293345680.37924540.432016460.37924541.429018150.37629541.429018150.36610242.297355330.36518842.60193020.36518842.60193020.36610242.906505080.3683343.211079950.36843643.537926760.37629544.17013280.378745.491946060.378353245.17013280.39353246.17013280.394746.491946060.39353247.213123820.3947                                                                                                                                                   | 33.23254702 | 0.403964 |
| 34.470868580.40697834.706166850.40750435.264023350.41067335.425302460.41091935.838895930.41001336.176893790.40813436.423856410.40763436.863604750.40826537.014260540.40826537.466227930.40093538.139676710.39864538.969266980.39544240.176548980.38008640.293345680.37924540.432016460.37924541.4004206250.37629541.845169170.36610242.297355330.36518842.60193020.36518842.60193020.36633343.211079950.36843643.537926760.3702244.17013280.374744.491946060.37853245.17013280.3843545.491946060.39353246.17013280.394746.491946060.39353247.213123820.3047                                                                                                                                                                      | 33.72230618 | 0.406915 |
| 34.706166850.40750435.264023350.41067335.425302460.41091935.838895930.41001336.176893790.40813436.423856410.40763436.863604750.40830237.014260540.40826537.466227930.4093538.139676710.39864538.969266980.39544240.176548980.37924540.293345680.37924540.432016460.37924541.404206250.37629541.429018150.37289941.845169170.36610242.297355330.36518842.60193020.36518842.60193020.3672542.906505080.3683343.211079950.36843643.537926760.37672244.17013280.378745.491946060.37853246.17013280.39353246.17013280.394746.491946060.39353247.213123820.3947                                                                                                                                                                        | 34.04881228 | 0.407565 |
| 35.264023350.41067335.425302460.41091935.838895930.41001336.176893790.40813436.423856410.40763436.863604750.40830237.014260540.40826537.466227930.4093538.139676710.39864538.969266980.39544240.176548980.37924540.293345680.37924540.432016460.37924541.404206250.37629541.429018150.37289941.845169170.36610242.297355330.36518842.60193020.36518842.60193020.3683343.211079950.36843643.537926760.3772244.17013280.374744.491946060.3785245.17013280.378745.491946060.39353246.17013280.394746.491946060.394354                                                                                                                                                                                                               | 34.47086858 | 0.406978 |
| 35.425302460.41091935.838895930.41001336.176893790.40813436.423856410.40763436.863604750.40830237.014260540.40826537.466227930.40574637.838201570.40093538.139676710.39864538.969266980.39544240.176548980.37924540.293345680.37924540.432016460.37924541.004206250.37629541.429018150.37289941.845169170.36931742.297355330.36518842.60193020.36518842.60193020.3672542.906505080.3683343.211079950.36843643.537926760.36702244.17013280.374744.491946060.37853245.17013280.384746.491946060.39353246.17013280.3947                                                                                                                                                                                                             | 34.70616685 | 0.407504 |
| 35.838895930.41001336.176893790.40813436.423856410.40763436.863604750.40830237.014260540.40826537.466227930.40574637.838201570.40093538.139676710.39864538.969266980.39544240.176548980.38008640.293345680.37924541.004206250.37024541.429018150.37289941.845169170.36610242.125758570.36610242.60193020.36518842.60193020.36518843.211079950.3683343.211079950.36843643.537926760.3774744.491946060.3785245.17013280.378745.491946060.39353246.17013280.394746.491946060.39353247.213123820.3947                                                                                                                                                                                                                                | 35.26402335 | 0.410673 |
| 36.176893790.40813436.423856410.40763436.863604750.40830237.014260540.40826537.466227930.4093537.838201570.40093538.139676710.39864538.969266980.39544240.176548980.37924540.293345680.37924540.432016460.37924541.404206250.37629541.429018150.36610241.845169170.36610242.297355330.36518842.60193020.36518842.60193020.3672542.906505080.3683343.211079950.36843643.537926760.36702244.17013280.374744.491946060.37853245.17013280.384746.491946060.39353246.17013280.3947                                                                                                                                                                                                                                                    | 35.42530246 | 0.410919 |
| 36.423856410.40763436.863604750.40830237.014260540.40826537.466227930.40574637.838201570.40093538.139676710.39864538.969266980.39544240.176548980.38008640.293345680.37924540.432016460.37943441.004206250.37629541.429018150.37289941.845169170.36610242.297355330.36518842.60193020.36518843.211079950.36843643.537926760.37629544.17013280.374744.491946060.37853245.17013280.384746.17013280.39353247.213123820.3947                                                                                                                                                                                                                                                                                                         | 35.83889593 | 0.410013 |
| 36.863604750.40830237.014260540.40826537.466227930.40574637.838201570.40093538.139676710.39864538.969266980.39544240.176548980.38008640.293345680.37924540.432016460.37943441.004206250.37629541.429018150.36931742.125758570.36610242.297355330.36518842.60193020.3672542.906505080.3683343.211079950.36843643.537926760.377244.491946060.378745.491946060.38353246.17013280.394746.491946060.39353247.213123820.3947                                                                                                                                                                                                                                                                                                           | 36.17689379 | 0.408134 |
| 37.014260540.40826537.466227930.40574637.838201570.40093538.139676710.39864538.969266980.39544240.176548980.38008640.293345680.37924540.432016460.37943441.004206250.37629541.429018150.36931742.125758570.36610242.297355330.36518842.60193020.3672542.906505080.3683343.211079950.36843643.537926760.374744.491946060.3785245.17013280.384745.491946060.39353246.17013280.394746.491946060.3947                                                                                                                                                                                                                                                                                                                                | 36.42385641 | 0.407634 |
| 37.466227930.40574637.838201570.40093538.139676710.39864538.969266980.39544240.176548980.38008640.293345680.37924540.432016460.37943441.004206250.37629541.429018150.36931742.125758570.36610242.297355330.36518842.60193020.3672542.906505080.3683343.211079950.36843643.537926760.37672244.17013280.374744.491946060.37853245.17013280.384746.17013280.39353247.213123820.3947                                                                                                                                                                                                                                                                                                                                                 | 36.86360475 | 0.408302 |
| 37.838201570.40093538.139676710.39864538.969266980.39544240.176548980.38008640.293345680.37924540.432016460.37943441.004206250.37629541.429018150.37289941.845169170.36931742.125758570.36610242.297355330.36518842.60193020.3672542.906505080.3683343.211079950.36843643.537926760.374744.491946060.3785245.17013280.378745.491946060.39353246.17013280.394746.491946060.3947                                                                                                                                                                                                                                                                                                                                                   | 37.01426054 | 0.408265 |
| 38.139676710.39864538.969266980.39544240.176548980.38008640.293345680.37924540.432016460.37943441.004206250.37629541.429018150.37289941.845169170.36931742.125758570.36518842.60193020.36518842.906505080.3683343.211079950.36843643.537926760.36702244.17013280.374744.491946060.37853245.17013280.384746.17013280.39353247.213123820.3947                                                                                                                                                                                                                                                                                                                                                                                      | 37.46622793 | 0.405746 |
| 38.969266980.39544240.176548980.38008640.293345680.37924540.432016460.37943441.004206250.37629541.429018150.37289941.845169170.36931742.125758570.36610242.297355330.36518842.60193020.3672542.906505080.36843643.537926760.36702244.17013280.374744.491946060.37853245.17013280.384746.17013280.39353247.213123820.3947                                                                                                                                                                                                                                                                                                                                                                                                         | 37.83820157 | 0.400935 |
| 40.176548980.38008640.293345680.37924540.432016460.37943441.004206250.37629541.429018150.37289941.845169170.36931742.125758570.36610242.297355330.36518842.60193020.3672542.906505080.3683343.211079950.36843643.537926760.36702244.17013280.374744.491946060.37853245.17013280.384746.17013280.39353247.213123820.3947                                                                                                                                                                                                                                                                                                                                                                                                          | 38.13967671 | 0.398645 |
| 40.293345680.37924540.432016460.37943441.004206250.37629541.429018150.37289941.845169170.36931742.125758570.36610242.297355330.36518842.60193020.3672542.906505080.36843643.211079950.36843643.537926760.36702244.17013280.374744.491946060.37853245.17013280.3845346.17013280.39353246.17013280.3947                                                                                                                                                                                                                                                                                                                                                                                                                            | 38.96926698 | 0.395442 |
| 40.432016460.37943441.004206250.37629541.429018150.37289941.845169170.36931742.125758570.36610242.297355330.36518842.60193020.3672542.906505080.3683343.211079950.36843643.537926760.36702244.17013280.374545.17013280.378745.491946060.38353246.17013280.394747.213123820.3947                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.17654898 | 0.380086 |
| 41.004206250.37629541.429018150.37289941.845169170.36931742.125758570.36610242.297355330.36518842.60193020.3672542.906505080.3683343.211079950.36843643.537926760.36702244.17013280.374744.491946060.37853245.17013280.3845346.17013280.39353246.17013280.3947                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40.29334568 | 0.379245 |
| 41.429018150.37289941.845169170.36931742.125758570.36510242.297355330.36518842.60193020.3672542.906505080.3683343.211079950.36843643.537926760.36702244.17013280.374744.491946060.37653245.17013280.38353246.17013280.384746.491946060.39353247.213123820.3947                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40.43201646 | 0.379434 |
| 41.845169170.36931742.125758570.36610242.297355330.36518842.60193020.3672542.906505080.3683343.211079950.36843643.537926760.36702244.17013280.374744.491946060.37653245.17013280.38353246.17013280.384746.491946060.39353247.213123820.3947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41.00420625 | 0.376295 |
| 42.125758570.36610242.297355330.36518842.60193020.3672542.906505080.3683343.211079950.36843643.537926760.36702244.17013280.374744.491946060.37653245.17013280.378745.491946060.38353246.17013280.394746.491946060.39353247.213123820.3947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41.42901815 | 0.372899 |
| 42.297355330.36518842.60193020.3672542.906505080.3683343.211079950.36843643.537926760.36702244.17013280.374744.491946060.37653245.17013280.378745.491946060.38353246.17013280.39353246.491946060.39353247.213123820.3947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41.84516917 | 0.369317 |
| 42.60193020.3672542.906505080.3683343.211079950.36843643.537926760.36702244.17013280.374744.491946060.37653245.17013280.378745.491946060.38353246.17013280.384746.491946060.39353247.213123820.3947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.12575857 | 0.366102 |
| 42.906505080.3683343.211079950.36843643.537926760.36702244.17013280.374744.491946060.37653245.17013280.378745.491946060.38353246.17013280.39353246.491946060.39353247.213123820.3947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42.29735533 | 0.365188 |
| 43.211079950.36843643.537926760.36702244.17013280.374744.491946060.37653245.17013280.378745.491946060.38353246.17013280.384746.491946060.39353247.213123820.3947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42.6019302  | 0.36725  |
| 43.537926760.36702244.17013280.374744.491946060.37653245.17013280.378745.491946060.38353246.17013280.384746.491946060.39353247.213123820.3947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42.90650508 | 0.36833  |
| 44.17013280.374744.491946060.37653245.17013280.378745.491946060.38353246.17013280.384746.491946060.39353247.213123820.3947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43.21107995 | 0.368436 |
| 44.491946060.37653245.17013280.378745.491946060.38353246.17013280.384746.491946060.39353247.213123820.3947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43.53792676 | 0.367022 |
| 45.17013280.378745.491946060.38353246.17013280.384746.491946060.39353247.213123820.3947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44.1701328  | 0.3747   |
| 45.491946060.38353246.17013280.384746.491946060.39353247.213123820.3947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44.49194606 | 0.376532 |
| 46.17013280.384746.491946060.39353247.213123820.3947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.1701328  | 0.3787   |
| 46.491946060.39353247.213123820.3947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.49194606 | 0.383532 |
| 47.21312382 0.3947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46.1701328  | 0.3847   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.49194606 | 0.393532 |
| 47 56456064 0 408252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47.21312382 | 0.3947   |
| T1.00-0004 0.400003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47.56456064 | 0.408353 |

| First Model With Stent |          |  |
|------------------------|----------|--|
| For Cas                | se 2     |  |
| Length (mm)            | Velocity |  |
| 0                      | 0.702134 |  |
| 0.27940681             | 0.703445 |  |
| 0.838220429            | 0.704427 |  |
| 1.854617281            | 0.709691 |  |
| 3.266381839            | 0.718135 |  |
| 4.785231566            | 0.725441 |  |
| 6.102034971            | 0.728928 |  |
| 7.419954724            | 0.729579 |  |
| 8.739380738            | 0.726782 |  |
| 9.633483232            | 0.72329  |  |
| 10.05880016            | 0.721283 |  |
| 11.37568769            | 0.71788  |  |
| 12.69163287            | 0.721625 |  |
| 13.56807918            | 0.730966 |  |
| 13.89958832            | 0.735163 |  |
| 14.35638548            | 0.740931 |  |
| 15.0197741             | 0.750039 |  |
| 15.33949661            | 0.754499 |  |
| 16.0919225             | 0.760721 |  |
| 16.66521293            | 0.765547 |  |
| 17.23536979            | 0.761734 |  |
| 17.98815787            | 0.756566 |  |
| 19.13158002            | 0.730466 |  |
| 19.31568838            | 0.72616  |  |
| 20.16437621            | 0.696561 |  |
| 20.66053898            | 0.678965 |  |
| 21.18320738            | 0.655749 |  |
| 21.52521506            | 0.640772 |  |
| 21.72692056            | 0.630647 |  |
| 22.06306879            | 0.614795 |  |
| 22.32296891            | 0.601315 |  |
| 22.58286902            | 0.589286 |  |
| 22.86099246            | 0.578601 |  |
| 23.13911591            | 0.569868 |  |
| 23.41723935            | 0.563115 |  |
| 23.57526453            | 0.560588 |  |
| 23.81552011            | 0.557948 |  |

| 24.0557757  | 0.556762 |
|-------------|----------|
| 24.23446896 | 0.550218 |
| 24.50173993 | 0.54233  |
| 24.76901091 | 0.536956 |
| 25.03628188 | 0.534016 |
| 25.24958587 | 0.53326  |
| 25.59460639 | 0.533477 |
| 25.93962692 | 0.536083 |
| 26.27855707 | 0.527074 |
| 26.61748723 | 0.521556 |
| 26.8545206  | 0.518923 |
| 27.09155397 | 0.517908 |
| 27.37391194 | 0.515912 |
| 27.65626991 | 0.51571  |
| 27.88993682 | 0.509567 |
| 28.12360372 | 0.504812 |
| 28.4394092  | 0.49969  |
| 28.75521467 | 0.496983 |
| 29.07102015 | 0.496646 |
| 29.28857851 | 0.495138 |
| 29.54039158 | 0.488802 |
| 29.86947745 | 0.482164 |
| 30.19856333 | 0.481778 |
| 30.52764921 | 0.47956  |
| 30.88910508 | 0.475713 |
| 31.12223147 | 0.472917 |
| 31.43992851 | 0.471804 |
| 31.75762555 | 0.470593 |
| 32.07532259 | 0.468026 |
| 32.28002296 | 0.461598 |
| 32.48472334 | 0.460067 |
| 33.20635852 | 0.454846 |
| 33.49994531 | 0.451703 |
| 33.79353209 | 0.450162 |
| 34.08711887 | 0.450217 |
| 34.57779862 | 0.451815 |
| 35.24010686 | 0.450098 |
| 35.47448438 | 0.447006 |
| 35.93294776 | 0.445339 |
| 36.44310552 | 0.443444 |

| 37.01524931 | 0.443027 |
|-------------|----------|
| 37.19248423 | 0.443229 |
| 37.81975462 | 0.442209 |
| 38.13164364 | 0.442399 |
| 39.06731069 | 0.443259 |
| 39.3320562  | 0.441771 |
| 39.66497859 | 0.440844 |
| 40.66374579 | 0.438382 |
| 40.84025995 | 0.438579 |
| 40.91528082 | 0.438657 |
| 41.83453143 | 0.432396 |
| 42.10947053 | 0.431438 |
| 42.7117796  | 0.42921  |
| 43.1612919  | 0.426542 |
| 43.76093224 | 0.423627 |
| 44.04335115 | 0.423217 |
| 44.32577006 | 0.42285  |
| 44.73291294 | 0.419998 |
| 45.33482895 | 0.418719 |
| 45.63452389 | 0.419179 |
| 45.93421883 | 0.419713 |
| 46.51369146 | 0.417184 |
| 46.73102084 | 0.417423 |
| 47.48315064 | 0.418216 |
| 47.79186871 | 0.420204 |
| 48.40930487 | 0.421759 |
| 48.71802295 | 0.423326 |
| 48.97600095 | 0.425557 |
| 50.03769214 | 0.427328 |
|             |          |

| First Model With Stent             |          |  |
|------------------------------------|----------|--|
| For Case 3<br>Length (mm) Velocity |          |  |
| 0                                  | 0.705036 |  |
| 0.299599185                        | 0.707612 |  |
| 0.898797554                        | 0.708921 |  |
| 1.821128909                        | 0.714663 |  |
| 3.309158372                        | 0.724613 |  |
| 3.875367085                        | 0.727954 |  |
| 4.764508201                        | 0.731323 |  |
| 5.09114186                         | 0.732574 |  |
| 6.188740418                        | 0.732684 |  |
| 6.488867362                        | 0.732699 |  |
| 7.584164545                        | 0.730016 |  |
| 8.98341192                         | 0.72695  |  |
| 9.2917623                          | 0.72625  |  |
| 10.29562117                        | 0.727086 |  |
| 10.69620744                        | 0.727355 |  |
| 11.54705871                        | 0.731657 |  |
| 12.09822663                        | 0.734367 |  |
| 12.76877451                        | 0.741611 |  |
| 13.49663243                        | 0.749824 |  |
| 13.95554676                        | 0.757553 |  |
| 14.91444244                        | 0.773968 |  |
| 15.10119295                        | 0.776183 |  |
| 16.16331703                        | 0.788596 |  |
| 16.29168855                        | 0.790062 |  |
| 17.6896939                         | 0.779769 |  |
| 19.08801454                        | 0.748933 |  |
| 19.23794408                        | 0.744439 |  |
| 19.55873674                        | 0.736451 |  |
| 20.5211147                         | 0.712055 |  |
| 20.86925856                        | 0.697843 |  |
| 21.85825155                        | 0.657729 |  |
| 22.09128303                        | 0.648842 |  |
| 22.45832682                        | 0.632842 |  |
| 22.8253706                         | 0.618897 |  |
| 23.00889249                        | 0.612897 |  |
| 23.19241438                        | 0.608524 |  |
| 23.37593627                        | 0.605315 |  |

| 23.58672161 | 0.596214 |
|-------------|----------|
| 24.09788116 | 0.575925 |
| 24.28069492 | 0.569674 |
| 24.46350867 | 0.564959 |
| 24.64632242 | 0.562108 |
| 24.82913617 | 0.560342 |
| 25.01194993 | 0.559549 |
| 25.19476368 | 0.559835 |
| 25.31409215 | 0.56079  |
| 25.43342061 | 0.562206 |
| 25.77235172 | 0.549427 |
| 25.94181728 | 0.5441   |
| 26.29579018 | 0.535472 |
| 26.64976309 | 0.529512 |
| 27.00315086 | 0.52585  |
| 27.3559535  | 0.52432  |
| 27.54659385 | 0.51648  |
| 27.73723419 | 0.509488 |
| 27.92787453 | 0.503335 |
| 28.50275213 | 0.487791 |
| 28.86282572 | 0.480609 |
| 29.22289931 | 0.475933 |
| 29.54777106 | 0.464027 |
| 29.87948311 | 0.453829 |
| 30.21803547 | 0.445423 |
| 30.69829656 | 0.434975 |
| 31.07052103 | 0.429002 |
| 31.45840732 | 0.41878  |
| 31.8462936  | 0.410256 |
| 32.23417989 | 0.413392 |
| 32.44062828 | 0.414077 |
| 32.93501214 | 0.409521 |
| 33.38928748 | 0.408776 |
| 33.59441753 | 0.41686  |
| 34.20980768 | 0.404997 |
| 35.01947775 | 0.41097  |
| 35.20427997 | 0.414873 |
| 35.57388441 | 0.415958 |
| 36.4978955  | 0.392324 |
| 36.66335244 | 0.399367 |

|             | 1        |
|-------------|----------|
| 37.48266034 | 0.401213 |
| 38.2807036  | 0.402222 |
| 38.46100695 | 0.406455 |
| 39.65696177 | 0.407658 |
| 39.83555475 | 0.40953  |
| 40.03652788 | 0.412581 |
| 40.63944729 | 0.420018 |
| 40.82404486 | 0.419549 |
| 41.19323999 | 0.420465 |
| 41.2614921  | 0.421252 |
| 42.36441856 | 0.433486 |
| 42.57086271 | 0.433162 |
| 43.13831632 | 0.434784 |
| 43.70576993 | 0.439779 |
| 44.02345952 | 0.443674 |
| 45.03484082 | 0.445163 |
| 45.65058214 | 0.448749 |
| 46.02343057 | 0.445507 |
| 46.396279   | 0.444848 |
| 47.0891515  | 0.447805 |
| 47.26264463 | 0.448759 |
| 48.16694516 | 0.443636 |
| 48.52373487 | 0.439878 |
| 48.87559407 | 0.433451 |
| 49.25459878 | 0.432786 |
| 49.6111195  | 0.43325  |
| 49.68338668 | 0.433456 |
| 50.2823819  | 0.429565 |
| 50.4967062  | 0.428267 |
| 50.65404726 | 0.424791 |
|             |          |

| For CaseLength (mm)Velocity00.70.4774619030.70322721.0103983330.7041042.058404610.70967262.8860561920.71668633.7714414310.72453314.4847751270.73048584.6280852190.73158225.2013255860.73597395.456979310.74020126.168519430.74020126.168519430.74020126.2489215010.74018577.2966844940.74018577.2966844940.74014238.3445926880.73330039.3925090.71850629.8654933460.708719510.440406930.69675711.17948330.670838312.370877220.645981312.544517130.641427913.394954790.51512513.501785920.512183614.324618990.582016414.578096980.582016414.578096980.582016414.578096980.566375715.630272170.564575615.789353690.564931216.569431220.549395316.569431220.549395316.569431220.549395316.569431220.549395316.569431220.549395318.282733150.5488706 | Second Model Without Stent |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------|
| 00.70.4774619030.70322721.0103983330.7041042.058404610.70967262.8860561920.71668633.7714414310.72453314.4847751270.73048584.6280852190.73158225.2013255860.73597395.456979310.74020126.168519430.74020126.2489215010.74057177.0004802370.74018577.2966844940.74014238.3445926880.73330039.3925090.71850629.8654933460.708719510.440406930.69675711.179488330.678356911.490053530.670838312.370877220.645981312.544517130.641427913.394954790.515152513.501785920.612183614.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.561952416.91326990.552949818.126663520.5493953                                                                   |                            |                                       |
| 0.4774619030.70322721.0103983330.7041042.058404610.70967262.8860561920.71668633.7714414310.72453314.4847751270.73048584.6280852190.73158225.2013255860.73597395.456979310.73706456.168519430.74020126.2489215010.74057177.0004802370.74018577.2966844940.74014238.3445926880.73330039.3925090.71850629.8654933460.708719510.440406930.69675711.179488330.678356911.490053530.670838312.370877220.645981312.544517130.641427913.394954790.515152513.501785920.612183614.324618990.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.561952416.91326990.552949818.126663520.5493953                                                                                           | Length (mm)                | , , , , , , , , , , , , , , , , , , , |
| 1.0103983330.7041042.058404610.70967262.8860561920.71668633.7714414310.72453314.4847751270.73048584.6280852190.73158225.2013255860.73597395.456979310.73706456.168519430.74020126.2489215010.74057177.0004802370.74018577.2966844940.74014238.3445926880.73330039.3925090.71850629.8654933460.708719510.440406930.69675711.179488330.678356911.490053530.670838312.370877220.645981312.544517130.641427913.394954790.615152513.501785920.612183614.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.561952416.91326990.552949818.126663520.5493953                                                                                           |                            |                                       |
| 2.058404610.70967262.8860561920.71668633.7714414310.72453314.4847751270.73048584.6280852190.73158225.2013255860.73597395.456979310.73706456.168519430.74020126.2489215010.74057177.0004802370.74018577.2966844940.74014238.3445926880.73330039.3925090.71850629.8654933460.708719510.440406930.69675711.179488330.678356911.490053530.670838312.370877220.645981312.544517130.641427913.394954790.515152513.501785920.612183614.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.52949816.91326990.552949818.126663520.5493953                                                                                                                                   | 0.477461903                | 0.7032272                             |
| 2.8860561920.71668633.7714414310.72453314.4847751270.73048584.6280852190.73158225.2013255860.73597395.456979310.73706456.168519430.74020126.2489215010.74018577.0004802370.74018577.2966844940.74014238.3445926880.73330039.3925090.71850629.8654933460.708719510.440406930.69675711.179488330.678356911.490053530.670838312.370877220.645981312.544517130.641427913.394954790.615152513.501785920.612183614.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.561952416.91326990.552949818.126663520.5493953                                                                                                                                 | 1.010398333                |                                       |
| 3.7714414310.72453314.4847751270.73048584.6280852190.73158225.2013255860.73597395.456979310.73706456.168519430.74020126.2489215010.74057177.0004802370.74018577.2966844940.74014238.3445926880.73330039.3925090.71850629.8654933460.708719510.440406930.69675711.17948330.678356911.490053530.670838312.370877220.645981312.544517130.641427913.394954790.615152513.501785920.612183614.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.561952416.91326990.552949818.126663520.5493953                                                                                                                                                      | 2.05840461                 | 0.7096726                             |
| 4.4847751270.73048584.6280852190.73158225.2013255860.73597395.456979310.73706456.168519430.74020126.2489215010.74057177.0004802370.74018577.2966844940.74014238.3445926880.73330039.3925090.71850629.8654933460.708719510.440406930.69675711.179488330.678356911.490053530.670838312.370877220.645981312.544517130.641427913.394954790.615152513.501785920.612183614.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.561952416.91326990.552949818.126663520.5493953                                                                                                                                                                         | 2.886056192                | 0.7166863                             |
| 4.6280852190.73158225.2013255860.73597395.456979310.73706456.168519430.74020126.2489215010.74057177.0004802370.74018577.2966844940.74014238.3445926880.73330039.3925090.71850629.8654933460.708719510.440406930.69675711.179488330.678356911.490053530.670838312.370877220.645981312.544517130.641427913.394954790.615152513.501785920.612183614.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.561952416.91326990.552949818.126663520.5493953                                                                                                                                                                                             | 3.771441431                | 0.7245331                             |
| 5.2013255860.73597395.456979310.73706456.168519430.74020126.2489215010.74057177.0004802370.74018577.2966844940.74014238.3445926880.73330039.3925090.71850629.8654933460.708719510.440406930.69675711.179488330.678386912.370877220.645981312.544517130.641427913.394954790.615152513.501785920.612183614.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.561952416.91326990.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                 | 4.484775127                | 0.7304858                             |
| 5.456979310.73706456.168519430.74020126.2489215010.74057177.0004802370.74018577.2966844940.74014238.3445926880.73330039.3925090.71850629.8654933460.708719510.440406930.69675711.179488330.678356911.490053530.670838312.370877220.645981312.544517130.641427913.394954790.615152513.501785920.612183614.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.561952416.91326990.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                 | 4.628085219                | 0.7315822                             |
| 6.168519430.74020126.2489215010.74057177.0004802370.74018577.2966844940.74014238.3445926880.73330039.3925090.71850629.8654933460.708719510.440406930.69675711.179488330.678356911.490053530.670838312.370877220.645981312.544517130.641427913.394954790.615152513.501785920.612183614.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.561952416.91326990.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                    | 5.201325586                | 0.7359739                             |
| 6.2489215010.74057177.0004802370.74018577.2966844940.74014238.3445926880.73330039.3925090.71850629.8654933460.708719510.440406930.69675711.179488330.678356911.490053530.670838312.370877220.645981312.544517130.641427913.394954790.615152513.501785920.612183614.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                                                          | 5.45697931                 | 0.7370645                             |
| 7.0004802370.74018577.2966844940.74014238.3445926880.73330039.3925090.71850629.8654933460.708719510.440406930.69675711.179488330.678356911.490053530.670838312.370877220.645981312.544517130.641427913.394954790.615152513.501785920.612183614.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.561952416.91326990.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                                                           | 6.16851943                 | 0.7402012                             |
| 7.2966844940.74014238.3445926880.73330039.3925090.71850629.8654933460.708719510.440406930.69675711.179488330.678356911.490053530.670838312.370877220.645981312.544517130.641427913.394954790.615152513.501785920.612183614.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                                                                                                  | 6.248921501                | 0.7405717                             |
| 8.3445926880.73330039.3925090.71850629.8654933460.708719510.440406930.69675711.179488330.678356911.490053530.670838312.370877220.645981312.544517130.641427913.394954790.615152513.501785920.612183614.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.561952416.91326990.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                                                                                                   | 7.000480237                | 0.7401857                             |
| 9.3925090.71850629.8654933460.708719510.440406930.69675711.179488330.678356911.490053530.670838312.370877220.645981312.544517130.641427913.394954790.615152513.501785920.612183614.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                                                                                                                                          | 7.296684494                | 0.7401423                             |
| 9.8654933460.708719510.440406930.69675711.179488330.678356911.490053530.670838312.370877220.645981312.544517130.641427913.394954790.615152513.501785920.612183614.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.561952416.91326990.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                                                                                                                                        | 8.344592688                | 0.7333003                             |
| 10.440406930.69675711.179488330.678356911.490053530.670838312.370877220.645981312.544517130.641427913.394954790.615152513.501785920.612183614.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                                                                                                                                                                               | 9.392509                   | 0.7185062                             |
| 11.179488330.678356911.490053530.670838312.370877220.645981312.544517130.641427913.394954790.615152513.501785920.612183614.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.561952416.91326990.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                                                                                                                                                                               | 9.865493346                | 0.7087195                             |
| 11.490053530.670838312.370877220.645981312.544517130.641427913.394954790.615152513.501785920.612183614.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.561952416.91326990.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.44040693                | 0.696757                              |
| 12.370877220.645981312.544517130.641427913.394954790.615152513.501785920.612183614.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.561952416.91326990.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.17948833                | 0.6783569                             |
| 12.544517130.641427913.394954790.615152513.501785920.612183614.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.49005353                | 0.6708383                             |
| 13.394954790.615152513.501785920.612183614.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.561952416.91326990.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.37087722                | 0.6459813                             |
| 13.501785920.612183614.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.561952416.91326990.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.54451713                | 0.6414279                             |
| 14.324618990.588489414.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.561952416.91326990.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13.39495479                | 0.6151525                             |
| 14.578096980.582016414.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.561952416.91326990.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.50178592                | 0.6121836                             |
| 14.688374590.57947115.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.561952416.91326990.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.32461899                | 0.5884894                             |
| 15.158064220.571149415.471190640.566375715.630272170.564575615.789353690.562940916.569431220.561952416.91326990.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.57809698                | 0.5820164                             |
| 15.471190640.566375715.630272170.564575615.789353690.562940916.569431220.561952416.91326990.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.68837459                | 0.579471                              |
| 15.630272170.564575615.789353690.562940916.569431220.561952416.91326990.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.15806422                | 0.5711494                             |
| 15.789353690.562940916.569431220.561952416.91326990.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.4 <mark>7119064</mark>  | 0.5663757                             |
| 16.569431220.561952416.91326990.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.63027217                | 0.5645756                             |
| 16.91326990.556713417.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.78935369                | 0.5629409                             |
| 17.448600380.552949818.126663520.5493953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.56943122                | 0.5619524                             |
| 18.12666352 0.5493953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.9132699                 | 0.5567134                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17.44860038                | 0.5529498                             |
| 18.28273315 0.5488706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18.12666352                | 0.5493953                             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.28273315                | 0.5488706                             |
| 19.03380057 0.5472882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.03380057                | 0.5472882                             |

| 19.16058946 | 0.5471892 |
|-------------|-----------|
| 19.37019112 | 0.5419428 |
| 19.65660785 | 0.5361054 |
| 19.94302458 | 0.5317123 |
| 20.22944132 | 0.5287604 |
| 20.40671722 | 0.5276362 |
| 20.71344078 | 0.5268653 |
| 21.02016435 | 0.5275439 |
| 21.32688791 | 0.5296652 |
| 21.48024969 | 0.5312645 |
| 21.79431118 | 0.5266262 |
| 22.07412845 | 0.5240456 |
| 22.35394572 | 0.5229987 |
| 22.63376299 | 0.5234713 |
| 22.78877737 | 0.5243786 |
| 23.10418303 | 0.5265065 |
| 23.4195887  | 0.5298816 |
| 23.73499437 | 0.5344926 |
| 23.86811875 | 0.5333306 |
| 24.29538503 | 0.5298252 |
| 24.60599982 | 0.5283815 |
| 24.75037859 | 0.5281028 |
| 24.89475737 | 0.528102  |
| 25.18351491 | 0.5289356 |
| 25.49310669 | 0.5282653 |
| 25.80269847 | 0.5292122 |
| 25.95749436 | 0.5302926 |
| 26.24170125 | 0.5273827 |
| 26.38390982 | 0.5262511 |
| 26.66204909 | 0.5218564 |
| 26.94018835 | 0.518717  |
| 27.21832762 | 0.5168334 |
| 27.34095409 | 0.5163837 |
| 27.46358056 | 0.5161788 |
| 27.58620703 | 0.5162188 |
| 27.74310978 | 0.5149103 |
| 27.90001253 | 0.5141365 |
| 28.05691528 | 0.5138973 |
| 28.16040847 | 0.5140228 |
| 28.58001942 | 0.5088996 |
|             |           |

| 0.5070003 |
|-----------|
| 0.5024966 |
| 0.4989916 |
| 0.496898  |
| 0.495445  |
| 0.4945325 |
| 0.4901651 |
| 0.487916  |
| 0.4795432 |
| 0.4788702 |
| 0.4758782 |
| 0.4693375 |
| 0.4688366 |
| 0.4685747 |
| 0.4598575 |
|           |

| Second Model Without |             | 17. |
|----------------------|-------------|-----|
| Stent for case 2     |             | 18. |
| Longth (mm) Volgoity |             | 18  |
| Length (mm)          | Velocity    | 19. |
| 0                    | 0.701918418 | 19. |
| 0.237071893          | 0.703312151 | 19. |
| 0.711215679          | 0.703975554 | 20. |
| 1.291335592          | 0.706803037 | 20. |
| 1.759035741          | 0.709083884 | 21. |
| 2.226997985          | 0.712614814 | 21. |
| 3.230836798          | 0.720026261 | 21. |
| 3.94575305           | 0.724907136 | 22. |
| 4.18138668           | 0.725960675 | 22. |
| 4.970082675          | 0.729277896 | 22. |
| 5.12079095           | 0.729383917 | 23. |
| 5.949383744          | 0.730103755 | 23. |
| 6.874003428          | 0.726507178 | 23. |
| 6.99699087           | 0.726059717 | 23. |
| 7.748904723          | 0.717834327 | 24. |
| 8.044612764          | 0.714655064 | 24  |
| 8.558701214          | 0.704493772 | 24. |
| 9.092254065          | 0.693985444 | 25. |
| 9.379681338          | 0.686357986 | 25. |
| 10.13992519          | 0.666123484 | 25  |
| 11.18763182          | 0.633537465 | 25. |
| 11.64957078          | 0.617434391 | 26. |
| 12.37004988          | 0.592428431 | 26. |
| 12.90169517          | 0.573467623 | 26. |
| 13.05224088          | 0.568545286 | 26. |
| 13.90495155          | 0.542099103 | 20. |
| 14.21004513          | 0.533176624 | 27. |
| 14.3699855           | 0.5290822   | 27. |
| 14.83128088          | 0.519777313 | 27. |
| 15.29257626          | 0.512392648 | 28. |
| 15.47526996          | 0.510066976 | 28. |
| 15.76007164          | 0.510227845 | 28. |
| 16.04487332          | 0.511179392 |     |
| 16.32967499          | 0.512877651 | 28. |
| 16.6146551           | 0.515282318 | 29. |
| 16.81572976          | 0.519002111 | 29. |
|                      |             | 29. |

| 17.78405381<br>18.25951584<br>18.8551331 | 0.516584471<br>0.516417715<br>0.516852673 |
|------------------------------------------|-------------------------------------------|
|                                          | 0 516852673                               |
| 10 0/55 4/50                             | 0.0100020/0                               |
| 19.26554652                              | 0.517243702                               |
| 19.54827589                              | 0.510575215                               |
| 19.85387563                              | 0.504492966                               |
| 20.44861206                              | 0.495274374                               |
| 20.74527718                              | 0.491822936                               |
| 21.07234108                              | 0.489308418                               |
| 21.52348819                              | 0.487620149                               |
| 21.79332767                              | 0.479855832                               |
| 22.06316715                              | 0.473545214                               |
| 22.33849604                              | 0.468647292                               |
| 22.91761521                              | 0.461688153                               |
| 23.21591608                              | 0.45986516                                |
| 23.36506651                              | 0.459601926                               |
| 23.66336738                              | 0.460369195                               |
| 23.75611635                              | 0.46102283                                |
| 24.15325382                              | 0.455401044                               |
| 24.4706384                               | 0.442774549                               |
| 24.78802298                              | 0.429074528                               |
| 25.04424283                              | 0.442980037                               |
| 25.33462231                              | 0.445432321                               |
| 25.6250018                               | 0.457152332                               |
| 25.91538129                              | 0.451452624                               |
| 26.07075187                              | 0.464161982                               |
| 26.24522304                              | 0.464624647                               |
| 26.40719824                              | 0.464489286                               |
| 26.89312383                              | 0.4653861                                 |
| 27.18351107                              | 0.466922201                               |
| 27.44033515                              | 0.471893626                               |
| 27.59921891                              | 0.47188968                                |
| 27.91698644                              | 0.470032749                               |
| 28.04836003                              | 0.471040231                               |
| 28.44248081                              | 0.475709469                               |
| 28.63019628                              | 0.476106388                               |
| 28.94869986                              | 0.473558294                               |
| 29.26720344                              | 0.472266658                               |
| 29.42645523                              | 0.472092074                               |
| 29.55668674                              | 0.472244041                               |

| 29.81714975 | 0.473173485 |
|-------------|-------------|
| 30.11403919 | 0.471718688 |
| 30.26248391 | 0.471626763 |
| 30.55937334 | 0.472713358 |
| 30.71794158 | 0.474018473 |
| 30.87650982 | 0.475804434 |
| 31.00086459 | 0.475708009 |
| 31.40941952 | 0.471964091 |
| 31.56399911 | 0.471128465 |
| 31.87315829 | 0.470366004 |
| 32.18231748 | 0.470815178 |
| 32.43360583 | 0.469337547 |
| 32.68489418 | 0.468836555 |
| 33.00381993 | 0.469631548 |
| 33.34549249 | 0.472231926 |
| 33.64176601 | 0.468574713 |
| 33.92076194 | 0.474269717 |
| 33.96063    | 0.477691868 |
| 33.96063005 | 0.477691868 |
|             |             |

| Second Model V |            |   | 19.93102904 | 0.45217275 |
|----------------|------------|---|-------------|------------|
| For Ca         |            | _ | 20.20059048 | 0.4457933  |
| Length (mm)    | Velocity   |   | 20.47015193 | 0.44064601 |
| 0              | 0.70116067 |   | 20.66825675 | 0.4308837  |
| 1.034604443    | 0.70480891 |   | 21.01083855 | 0.41469736 |
| 1.274454887    | 0.70606187 |   | 21.35342034 | 0.40068175 |
| 2.036636462    | 0.71007385 |   | 21.69600213 | 0.38882892 |
| 2.360060321    | 0.71242184 |   | 22.10007727 | 0.37746905 |
| 3.172586736    | 0.71833187 |   | 22.41883666 | 0.37130576 |
| 4.148692995    | 0.7254518  | - | 22.73759605 | 0.36717322 |
| 5.192571179    | 0.73124881 |   | 23.06124782 | 0.35926141 |
| 5.529684765    | 0.73300737 |   | 23.47381973 | 0.35049727 |
| 6.019210701    | 0.73337767 | - | 23.77331355 | 0.34562455 |
| 6.708207545    | 0.73400936 |   | 24.07280737 | 0.34226847 |
| 7.648727892    | 0.72723184 | - | 24.37230119 | 0.34042288 |
| 7.88672837     | 0.72557999 |   | 24.67179501 | 0.34007969 |
| 9.06525757     | 0.70480077 |   | 24.71737619 | 0.34020515 |
| 10.24388582    | 0.67560256 | - | 24.94257414 | 0.34049979 |
| 10.70066385    | 0.66260331 | - | 25.4438979  | 0.34412132 |
| 11.42264463    | 0.64201313 | - | 26.04291619 | 0.35078348 |
| 12.10754259    | 0.62016997 |   | 26.3409286  | 0.35398569 |
| 12.60621024    | 0.60500275 |   | 26.638941   | 0.35821879 |
| 13.24465674    | 0.5834153  |   | 26.88169183 | 0.36242751 |
| 13.53253459    | 0.57596302 | - | 27.66520833 | 0.37941186 |
| 14.13477372    | 0.5578812  |   | 28.69094004 | 0.40110943 |
| 14.45398873    | 0.54901907 |   | 29.21075516 | 0.40902863 |
| 14.76944173    | 0.54211834 | - | 30.01434441 | 0.42336195 |
| 15.08489473    | 0.53607573 |   | 31.33747087 | 0.43781693 |
| 15.34502447    | 0.53391248 | - | 31.77809861 | 0.43871324 |
| 15.60515421    | 0.53259243 |   | 32.04395438 | 0.44038672 |
| 15.84915682    | 0.53273334 |   | 32.30981015 | 0.4429108  |
| 16.33716204    | 0.5352056  | - | 32.66046502 | 0.44754248 |
| 16.43017468    | 0.53295291 | - | 32.67905615 | 0.44761547 |
| 17.05576454    | 0.52445433 |   | 33.10754273 | 0.44545808 |
| 17.83708805    | 0.51552323 | - | 33.21312373 | 0.44154581 |
| 18.40951933    | 0.51137894 | - | 33.45675427 | 0.44545808 |
| 18.74069408    | 0.49544561 |   | 34.10754273 | 0.43954581 |
| 19.00307674    | 0.48423937 |   |             |            |
| 19.46346349    | 0.46659843 |   |             |            |
| 19.6614676     | 0.45978742 |   |             |            |

| Second Model With Stent |                      |  |
|-------------------------|----------------------|--|
| For ca                  | ise 1                |  |
| Length (mm)             | Length (mm) Velocity |  |
| 0                       | 0.7000001            |  |
| 0.468338068             | 0.7031578            |  |
| 1.010186956             | 0.70408043           |  |
| 2.058005706             | 0.70960638           |  |
| 2.850497968             | 0.71633775           |  |
| 3.719020733             | 0.72417179           |  |
| 4.532056758             | 0.73123125           |  |
| 5.200783819             | 0.73659299           |  |
| 6.109992959             | 0.74067132           |  |
| 6.248528069             | 0.7412743            |  |
| 7.296386796             | 0.74020419           |  |
| 7.617050339             | 0.73779248           |  |
| 8.344631842             | 0.73238114           |  |
| 9.029326242             | 0.72247643           |  |
| 9.394081481             | 0.71727913           |  |
| 10.32140267             | 0.69915531           |  |
| 10.44616909             | 0.69679408           |  |
| 11.43004128             | 0.67478005           |  |
| 11.50345419             | 0.67323878           |  |
| 12.26304881             | 0.65425809           |  |
| 12.58851037             | 0.64644916           |  |
| 12.73783848             | 0.64218403           |  |
| 13.48447904             | 0.62189373           |  |
| 13.82436975             | 0.61282646           |  |
| 14.40930007             | 0.5978511            |  |
| 14.70265285             | 0.59093954           |  |
| 15.24892633             | 0.58176279           |  |
| 15.65863143             | 0.57586428           |  |
| 15.74276468             | 0.57498              |  |
| 16.08923304             | 0.56862106           |  |
| 16.6622174              | 0.55984209           |  |
| 16.88462025             | 0.55693839           |  |
| 17.51394056             | 0.55315169           |  |
| 18.16938733             | 0.55048833           |  |
| 18.31481558             | 0.55017028           |  |
| 18.60567208             | 0.54969511           |  |
| 18.75912613             | 0.54461296           |  |
|                         |                      |  |

| 18.91258018 | 0.54003793 |
|-------------|------------|
| 19.06603423 | 0.53596883 |
| 19.36251414 | 0.52946994 |
| 19.64856584 | 0.52470281 |
| 19.80383454 | 0.52258069 |
| 20.11437193 | 0.51966484 |
| 20.42490933 | 0.51851547 |
| 20.61381059 | 0.51851707 |
| 20.80271185 | 0.51907521 |
| 20.94695692 | 0.5150324  |
| 21.08366721 | 0.51183802 |
| 21.35708777 | 0.50680726 |
| 21.63050834 | 0.50357701 |
| 21.93066145 | 0.50141226 |
| 22.08073801 | 0.50100509 |
| 22.22992504 | 0.50118422 |
| 22.52829911 | 0.50284057 |
| 23.0288373  | 0.50836953 |
| 23.21529074 | 0.50590954 |
| 23.50377455 | 0.50330122 |
| 23.79225836 | 0.50205522 |
| 23.93650026 | 0.50194197 |
| 24.01406813 | 0.50521058 |
| 24.30902399 | 0.50967531 |
| 24.60397985 | 0.50637287 |
| 24.8989357  | 0.50420034 |
| 25.19389156 | 0.50716232 |
| 25.35950948 | 0.50794682 |
| 25.60252911 | 0.5056635  |
| 25.9091832  | 0.50380732 |
| 26.2158373  | 0.50295632 |
| 26.36916435 | 0.5029081  |
| 26.58260412 | 0.50122664 |
| 26.72420626 | 0.50057144 |
| 27.00741055 | 0.50017707 |
| 27.29061483 | 0.50100461 |
| 27.54034875 | 0.50278684 |
| 27.65425098 | 0.50275711 |
| 27.76815321 | 0.50299285 |
| 28.00265883 | 0.50087351 |

| Ì           | i i        |
|-------------|------------|
| 28.23716445 | 0.49926613 |
| 28.47167007 | 0.49817037 |
| 28.70883565 | 0.497583   |
| 28.92023414 | 0.49532965 |
| 29.13163263 | 0.49369147 |
| 29.34303113 | 0.49266973 |
| 29.60945395 | 0.4922763  |
| 29.87587678 | 0.4928661  |
| 29.94005088 | 0.49059759 |
| 29.97985182 | 0.4900252  |
| 30.03407984 | 0.49116232 |
| 30.1738887  | 0.49194339 |
| 30.31742679 | 0.49043819 |
| 30.60450298 | 0.4820362  |
| 30.76804559 | 0.48439611 |
| 30.9315882  | 0.48423937 |
| 31.33888026 | 0.48659843 |
| 31.60068617 | 0.48978742 |
| 31.89979918 | 0.47217275 |
| 32.34846868 | 0.4757933  |
| 32.49802518 | 0.46817037 |
| 32.72047339 | 0.467583   |

|             |            | 17 |    |
|-------------|------------|----|----|
|             |            |    | 18 |
| Length (mm) | Velocity   |    | 19 |
| 0           | 0.7        |    | 19 |
| 0.505108315 | 0.70322396 |    | 19 |
| 1.060164305 | 0.70415978 |    | 20 |
| 1.309641058 | 0.70534497 |    | 20 |
| 2.087242559 | 0.7091137  |    | 21 |
| 2.229394552 | 0.7101559  |    | 21 |
| 3.105686523 | 0.71657212 |    | 21 |
| 4.153303562 | 0.72378306 |    | 22 |
| 5.090703066 | 0.72759563 |    | 22 |
| 5.337848339 | 0.72804479 |    | 22 |
| 6.034591487 | 0.72808952 |    | 23 |
| 6.248544996 | 0.72811318 |    | 23 |
| 6.895918013 | 0.72508165 |    | 23 |
| 7.296161958 | 0.72327938 |    | 23 |
| 7.758350657 | 0.71817249 |    | 23 |
| 8.343752991 | 0.71183412 |    | 24 |
| 8.593633189 | 0.70709377 |    | 24 |
| 9.391339834 | 0.69207714 |    | 24 |
| 10.14709476 | 0.67285184 |    | 25 |
| 10.43895006 | 0.66541472 |    | 25 |
| 11.49968831 | 0.6334378  |    | 25 |
| 11.64772878 | 0.62842985 |    | 26 |
| 12.78746669 | 0.59015381 |    | 26 |
| 13.04854843 | 0.58133127 |    | 26 |
| 14.07286288 | 0.54831482 |    | 26 |
| 14.37353516 | 0.53935341 |    | 27 |
| 14.65289464 | 0.53155999 |    | 27 |
| 15.13755063 | 0.52095592 |    | 27 |
| 15.46065463 | 0.51481845 |    | 27 |
| 15.597193   | 0.51289761 |    | 27 |
| 15.73373138 | 0.51113437 |    | 28 |
| 16.02319076 | 0.51059944 |    | 28 |
| 16.31265014 | 0.51076522 |    | 29 |
| 16.60210953 | 0.51159434 |    | 29 |
| 16.8455353  | 0.51359554 |    | 29 |
| 17.22983441 | 0.51995331 |    | 29 |
| 17.83472914 | 0.51919501 |    | 30 |

| 17.99659952 | 0.51899242 |
|-------------|------------|
| 18.80858491 | 0.51946487 |
| 19.18702496 | 0.51981315 |
| 19.41135407 | 0.51976557 |
| 19.69046607 | 0.52042373 |
| 20.12282921 | 0.51064792 |
| 20.67638069 | 0.50091905 |
| 21.10006195 | 0.4952603  |
| 21.52187678 | 0.49194339 |
| 21.80158649 | 0.49043819 |
| 22.05336912 | 0.4820362  |
| 22.32753282 | 0.47439611 |
| 22.62407759 | 0.46790217 |
| 23.07137383 | 0.46081046 |
| 23.37287678 | 0.4573197  |
| 23.67437974 | 0.45567978 |
| 23.76749726 | 0.45565594 |
| 23.86061478 | 0.45580519 |
| 24.33471944 | 0.44676721 |
| 24.65639204 | 0.44616555 |
| 24.97806464 | 0.43967502 |
| 25.12191646 | 0.43959284 |
| 25.56345663 | 0.44115806 |
| 25.87112965 | 0.44352209 |
| 26.02496615 | 0.44536647 |
| 26.36822965 | 0.44491017 |
| 26.62351752 | 0.44545381 |
| 26.78316618 | 0.44531859 |
| 27.10246348 | 0.44571506 |
| 27.24601329 | 0.44642828 |
| 27.67666272 | 0.44962241 |
| 27.82021252 | 0.45103992 |
| 27.9662951  | 0.45148787 |
| 28.17883247 | 0.45308678 |
| 28.39136983 | 0.45538263 |
| 29.0009994  | 0.4573917  |
| 29.31689607 | 0.45603134 |
| 29.4748444  | 0.45578896 |
| 29.61465326 | 0.45603243 |
| 30.03407984 | 0.45809974 |
|             |            |

| 30.1738887  | 0.45923459 |
|-------------|------------|
| 30.31742679 | 0.45905376 |
| 30.60450298 | 0.45980224 |
| 30.76804559 | 0.46100069 |
| 30.9315882  | 0.46267182 |
| 31.33888026 | 0.46351114 |
| 31.60068617 | 0.46212002 |
| 31.89979918 | 0.46155641 |
| 32.34846868 | 0.46260881 |
| 32.49802518 | 0.46346566 |
| 32.72047339 | 0.4628658  |
| 33.03773346 | 0.46329055 |
| 33.35499353 | 0.46512398 |
| 33.59924648 | 0.47151229 |
| 33.65478211 | 0.47175807 |

| Second Model |           | 19.93102904 | 0.452172 |
|--------------|-----------|-------------|----------|
| For Ca       |           | 20.20059048 | 0.445793 |
| Length (mm)  | Velocity  | 20.47015193 | 0.44064  |
| 0            | 0.7011607 | 20.66825675 | 0.430883 |
| 1.034604443  | 0.7048089 | 21.01083855 | 0.414697 |
| 1.274454887  | 0.7060619 | 21.35342034 | 0.400681 |
| 2.036636462  | 0.7100738 | 21.69600213 | 0.388828 |
| 2.360060321  | 0.7124218 | 22.10007727 | 0.38746  |
| 3.172586736  | 0.7183319 | 22.41883666 | 0.381305 |
| 4.148692995  | 0.7254518 | 22.73759605 | 0.376173 |
| 5.192571179  | 0.7312488 | 23.06124782 | 0.375261 |
| 5.529684765  | 0.7330074 | 23.47381973 | 0.371497 |
| 6.019210701  | 0.7333777 | 23.77331355 | 0.370624 |
| 6.708207545  | 0.7340094 | 24.07280737 | 0.377268 |
| 7.648727892  | 0.7272318 | 24.37230119 | 0.377342 |
| 7.88672837   | 0.72558   | 24.67179501 | 0.375079 |
| 9.06525757   | 0.7048008 | 24.71737619 | 0.366205 |
| 10.24388582  | 0.6756026 | 24.94257414 | 0.367499 |
| 10.70066385  | 0.6626033 | 25.4438979  | 0.359121 |
| 11.42264463  | 0.6420131 | 26.04291619 | 0.359783 |
| 12.10754259  | 0.62017   | 26.3409286  | 0.363985 |
| 12.60621024  | 0.6050028 | 26.638941   | 0.368218 |
| 13.24465674  | 0.5834153 | 26.88169183 | 0.371624 |
| 13.53253459  | 0.575963  | 27.66520833 | 0.379411 |
| 14.13477372  | 0.5578812 | 28.69094004 | 0.401109 |
| 14.45398873  | 0.5490191 | 29.21075516 | 0.409028 |
| 14.76944173  | 0.5421183 | 30.01434441 | 0.423361 |
| 15.08489473  | 0.5360757 | 31.33747087 | 0.437816 |
| 15.34502447  | 0.5339125 | 31.77809861 | 0.438713 |
| 15.60515421  | 0.5325924 | 32.04395438 | 0.440386 |
| 15.84915682  | 0.5327333 | 32.30981015 | 0.442910 |
| 16.33716204  | 0.5352056 | 32.66046502 | 0.447542 |
| 16.43017468  | 0.5329529 | 32.67905615 | 0.457615 |
| 17.05576454  | 0.5244543 | 33.10754273 | 0.455458 |
| 17.83708805  | 0.5155232 |             |          |
| 18.40951933  | 0.5113789 |             |          |
| 18.74069408  | 0.4954456 |             |          |
| 19.00307674  | 0.4842394 |             |          |
| 19.46346349  | 0.4665984 |             |          |
| 19.6614676   | 0.4597874 |             |          |

| First Model W | ithout Stent | 23.8155 |
|---------------|--------------|---------|
| Longth (mm)   | Droccuro(Do) | 24.0557 |
| Length (mm)   | Pressure(Pa) | 24.2344 |
| 0             | 393.5562041  | 24.5017 |
| 0.838220429   | 392.1202887  | 24.7690 |
| 1.854617281   | 387.5314708  | 25.0362 |
| 2.456823884   | 384.5918121  | 25.2495 |
| 3.266381839   | 380.3557988  | 25.9396 |
| 3.469121856   | 379.2930345  | 26.6174 |
| 4.785231566   | 374.2335074  | 26.8545 |
| 6.102034971   | 371.4195587  | 27.0915 |
| 7.419954724   | 370.4131726  | 27.6562 |
| 8.739380738   | 371.5910896  | 28.1236 |
| 10.05880016   | 374.6192256  | 28.4394 |
| 11.37568769   | 376.2532925  | 29.2885 |
| 12.69163287   | 373.7082074  | 29.8694 |
| 13.56807918   | 367.8016374  | 30.5276 |
| 13.89958832   | 365.3249498  | 30.8891 |
| 14.01271938   | 364.4831954  | 31.4399 |
| 15.0197741    | 353.6817372  | 32.0753 |
| 15.33949661   | 350.1973441  | 32.2800 |
| 16.0919225    | 344.6639902  | 32.4847 |
| 16.66521293   | 340.4864543  | 33.2063 |
| 17.23536979   | 341.6036816  | 33.4999 |
| 17.98815787   | 343.293032   | 34.0871 |
| 18.94747167   | 357.3491046  | 34.5777 |
| 19.13158002   | 360.0980422  | 35.2401 |
| 19.31568838   | 362.8880336  | 35.4744 |
| 20.16437621   | 383.1220025  | 35.7088 |
| 20.66053898   | 395.2813382  | 36.4431 |
| 21.18320738   | 409.5213575  | 37.1924 |
| 21.52521506   | 418.9089605  | 37.3622 |
| 21.72692056   | 423.5790641  | 38.1316 |
| 22.06306879   | 430.4056314  | 39.0673 |
| 22.32296891   | 435.3666709  | 39.6649 |
| 22.58286902   | 440.0015992  | 40.3308 |
| 22.86099246   | 443.9260988  | 40.3306 |
| 23.13911591   | 447.4265098  |         |
|               |              | 40.8402 |
| 23.41723935   | 450.5028322  | 41.5281 |

| 24.0557757452.724212824.23446896453.274230824.50173993453.446846524.76901091453.340508325.03628188452.95521625.24958587452.050879825.93962692446.744603526.61748723443.903713526.8545206442.436175527.09155397440.868242527.65626991436.58604128.12360372433.46012829.28857851428.870982229.86947745427.520789130.52764921425.246831730.88910508422.628569332.0753259420.905697532.28002296420.232202332.48472334419.499767833.20635852418.234863133.4994531417.412168634.08711887412.601887435.707862414.78605135.24010686413.412788935.47448438412.601887435.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859403.311707341.52811456402.494931340.63374579403.292086140.66374579403.292086140.66374579403.292086140.64374575403.311707341.52811456402.494931342.10947053402.2437897 | 23.81552011 | 452.4421691 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| 24.50173993453.446846524.76901091453.340508325.03628188452.95521625.24958587452.050879825.93962692446.744603526.61748723443.903713526.8545206442.436175527.09155397440.868242527.65626991436.58604128.12360372433.46012829.28857851428.870982229.86947745427.520789130.52764921425.246831730.88910508423.676407731.43992851422.628569332.07532259420.905697532.28002296420.232202332.48472334419.499767833.20635852418.234863133.4994531417.412168634.08711887415.529795234.57779862414.78605135.24010686413.412788935.47448438412.601887435.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069403.329956240.66374579403.329956240.66374579403.329056240.66374579403.311707341.52811456402.4949313                                                                                                           | 24.0557757  | 452.7242128 |
| 24.76901091453.340508325.03628188452.95521625.24958587452.050879825.93962692446.744603526.61748723443.903713526.8545206442.436175527.09155397440.868242527.65626991436.58604128.12360372434.913882628.4394092433.46012829.28857851428.870982229.86947745427.520789130.52764921425.246831730.88910508423.676407731.43992851422.628569332.07532259420.905697532.28002296420.232202332.48472334419.499767833.20635852418.234863133.49994531417.412168634.08711887415.529795234.57779862414.78605135.24010686413.412788935.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859403.311707340.33082339403.329956240.66374579403.311707341.52811456402.4949313                                                                                                                                 | 24.23446896 | 453.2742308 |
| 25.03628188452.95521625.24958587452.050879825.93962692446.744603526.61748723443.903713526.8545206442.436175527.09155397440.868242527.65626991436.58604128.12360372433.46012829.28857851428.870982229.86947745427.520789130.52764921425.246831730.88910508423.676407731.43992851422.628569332.07532259420.905697532.8002296420.232202332.48472334419.499767833.20635852418.234863133.49994531417.412168634.08711887415.529795234.57779862414.78605135.24010686413.412788935.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859403.311707340.33082339403.329956240.6374579403.311707341.52811456402.4949313                                                                                                                                                                              | 24.50173993 | 453.4468465 |
| 25.24958587452.050879825.93962692446.744603526.61748723443.903713526.8545206442.436175527.09155397440.868242527.65626991436.58604128.12360372434.913882628.4394092433.46012829.28857851428.870982229.86947745427.520789130.52764921425.246831730.88910508423.676407731.43992851422.628569332.07532259420.905697532.8002296420.232202332.48472334419.499767833.20635852418.234863133.49994531417.412168634.08711887415.529795234.57779862414.78605135.24010686413.412788935.47448438412.601887435.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859403.329956240.6374579403.311707341.52811456402.4949313                                                                                                                                                                              | 24.76901091 | 453.3405083 |
| 25.93962692446.744603526.61748723443.903713526.8545206442.436175527.09155397440.868242527.65626991436.58604128.12360372433.46012829.28857851428.870982229.86947745427.520789130.52764921425.246831730.88910508423.676407731.43992851422.628569332.07532259420.905697532.28002296420.232202332.48472334419.499767833.20635852418.234863133.49994531417.412168634.08711887415.529795234.57779862414.78605135.24010686413.412788935.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859403.329956240.66374579403.292086140.84025995403.311707341.52811456402.4949313                                                                                                                                                                                                                       | 25.03628188 | 452.955216  |
| 26.61748723443.903713526.8545206442.436175527.09155397440.868242527.65626991436.58604128.12360372434.913882628.4394092433.46012829.28857851428.870982229.86947745427.520789130.52764921425.246831730.88910508423.676407731.43992851422.628569332.07532259420.905697532.28002296420.232202332.48472334419.499767833.20635852418.234863133.49994531417.412168634.08711887415.529795234.57779862414.78605135.24010686413.412788935.47448438412.601887435.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859403.329956240.66374579403.292086140.84025995403.311707341.52811456402.4949313                                                                                                                                                                                                  | 25.24958587 | 452.0508798 |
| 26.8545206442.436175527.09155397440.868242527.65626991436.58604128.12360372434.913882628.4394092433.46012829.28857851428.870982229.86947745427.520789130.52764921425.246831730.88910508423.676407731.43992851422.628569332.07532259420.905697532.28002296420.232202332.48472334419.499767833.20635852418.234863133.49994531417.412168634.08711887415.529795234.57779862414.78605135.24010686413.412788935.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859403.329956240.6374579403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                     | 25.93962692 | 446.7446035 |
| 27.09155397440.868242527.65626991436.58604128.12360372434.913882628.4394092433.46012829.28857851428.870982229.86947745427.520789130.52764921425.246831730.88910508423.676407731.43992851422.628569332.07532259420.905697532.28002296420.232202332.48472334419.499767833.20635852418.234863133.49994531417.412168634.08711887415.529795234.57779862414.78605135.24010686413.412788935.47448438412.601887435.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859403.329956240.66374579403.3292086140.84025995403.311707341.52811456402.4949313                                                                                                                                                                                                                                            | 26.61748723 | 443.9037135 |
| 27.65626991436.58604128.12360372434.913882628.4394092433.46012829.28857851428.870982229.86947745427.520789130.52764921425.246831730.88910508423.676407731.43992851422.628569332.07532259420.905697532.28002296420.232202332.48472334419.499767833.20635852418.234863133.49994531417.412168634.08711887415.529795234.57779862414.78605135.24010686413.412788935.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069403.329956240.66374579403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                     | 26.8545206  | 442.4361755 |
| 28.12360372434.913882628.4394092433.46012829.28857851428.870982229.86947745427.520789130.52764921425.246831730.88910508423.676407731.43992851422.628569332.07532259420.905697532.28002296420.232202332.48472334419.499767833.20635852418.234863133.20635852418.234863133.49994531417.412168634.08711887415.529795234.57779862414.78605135.24010686413.412788935.47448438412.601887435.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069403.292086140.33082339403.329956240.66374579403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                        | 27.09155397 | 440.8682425 |
| 28.4394092433.46012829.28857851428.870982229.86947745427.520789130.52764921425.246831730.88910508423.676407731.43992851422.628569332.07532259420.905697532.28002296420.232202332.48472334419.499767833.20635852418.234863133.49994531417.412168634.08711887415.529795234.57779862414.78605135.24010686413.412788935.47448438412.601887435.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069403.329956240.66374579403.311707340.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                          | 27.65626991 | 436.586041  |
| 29.28857851428.870982229.86947745427.520789130.52764921425.246831730.88910508423.676407731.43992851422.628569332.07532259420.905697532.28002296420.232202332.48472334419.499767833.20635852418.234863133.49994531417.412168634.08711887415.529795234.57779862414.78605135.24010686413.412788935.47448438412.601887435.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859403.329956240.66374579403.3292086140.84025995403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                 | 28.12360372 | 434.9138826 |
| 29.86947745427.520789130.52764921425.246831730.88910508423.676407731.43992851422.628569332.07532259420.905697532.28002296420.232202332.48472334419.499767833.20635852418.234863133.20635852418.234863133.49994531417.412168634.08711887415.529795234.57779862414.78605135.24010686413.412788935.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859403.329956240.66374579403.292086140.84025995403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                        | 28.4394092  | 433.460128  |
| 30.52764921425.246831730.88910508423.676407731.43992851422.628569332.07532259420.905697532.28002296420.232202332.48472334419.499767833.20635852418.234863133.49994531417.412168634.08711887415.529795234.57779862414.78605135.24010686413.412788935.47448438412.601887435.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859403.329956240.66374579403.292086140.84025995403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                                              | 29.28857851 | 428.8709822 |
| 30.88910508423.676407731.43992851422.628569332.07532259420.905697532.28002296420.232202332.48472334419.499767833.20635852418.234863133.20635852418.234863133.49994531417.412168634.08711887415.529795234.57779862414.78605135.24010686413.412788935.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859403.329956240.66374579403.292086140.84025995403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                                                                    | 29.86947745 | 427.5207891 |
| 31.43992851422.628569332.07532259420.905697532.28002296420.232202332.48472334419.499767833.20635852418.234863133.49994531417.412168634.08711887415.529795234.57779862414.78605135.24010686413.412788935.47448438412.601887435.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859403.329956240.66374579403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.52764921 | 425.2468317 |
| 32.07532259420.905697532.28002296420.232202332.48472334419.499767833.20635852418.234863133.20635852418.234863133.49994531417.412168634.08711887415.529795234.57779862414.78605135.24010686413.412788935.47448438412.601887435.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859403.329956240.66374579403.292086140.84025995403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.88910508 | 423.6764077 |
| 32.28002296420.232202332.48472334419.499767833.20635852418.234863133.49994531417.412168634.08711887415.529795234.57779862414.78605135.24010686413.412788935.47448438412.601887435.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859403.329956240.66374579403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.43992851 | 422.6285693 |
| 32.48472334419.499767833.20635852418.234863133.49994531417.412168634.08711887415.529795234.57779862414.78605135.24010686413.412788935.47448438412.601887435.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859403.329956240.66374579403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32.07532259 | 420.9056975 |
| 33.20635852418.234863133.49994531417.412168634.08711887415.529795234.57779862414.78605135.24010686413.412788935.47448438412.601887435.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859403.329956240.66374579403.292086140.84025995403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32.28002296 | 420.2322023 |
| 33.49994531417.412168634.08711887415.529795234.57779862414.78605135.24010686413.412788935.47448438412.601887435.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859403.329956240.66374579403.292086140.84025995403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32.48472334 | 419.4997678 |
| 34.08711887415.529795234.57779862414.78605135.24010686413.412788935.47448438412.601887435.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859403.329956240.66374579403.292086140.84025995403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33.20635852 | 418.2348631 |
| 34.57779862414.78605135.24010686413.412788935.47448438412.601887435.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859403.329956240.66374579403.292086140.84025995403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33.49994531 | 417.4121686 |
| 35.24010686413.412788935.47448438412.601887435.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859403.329956240.66374579403.292086140.84025995403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34.08711887 | 415.5297952 |
| 35.47448438412.601887435.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859404.025536740.33082339403.292086140.66374579403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34.57779862 | 414.786051  |
| 35.7088619411.763201436.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859404.025536740.33082339403.329956240.66374579403.292086140.84025995403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.24010686 | 413.4127889 |
| 36.44310552410.345691637.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859404.025536740.33082339403.329956240.66374579403.292086140.84025995403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35.47448438 | 412.6018874 |
| 37.19248423408.844313437.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859404.025536740.33082339403.329956240.66374579403.292086140.84025995403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35.7088619  | 411.7632014 |
| 37.36226866408.201136538.13164364406.487208139.06731069405.239725139.66497859404.025536740.33082339403.329956240.66374579403.292086140.84025995403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36.44310552 | 410.3456916 |
| 38.13164364406.487208139.06731069405.239725139.66497859404.025536740.33082339403.329956240.66374579403.292086140.84025995403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 37.19248423 | 408.8443134 |
| 39.06731069405.239725139.66497859404.025536740.33082339403.329956240.66374579403.292086140.84025995403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37.36226866 | 408.2011365 |
| 39.66497859404.025536740.33082339403.329956240.66374579403.292086140.84025995403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38.13164364 | 406.4872081 |
| 40.33082339403.329956240.66374579403.292086140.84025995403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39.06731069 | 405.2397251 |
| 40.66374579403.292086140.84025995403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39.66497859 | 404.0255367 |
| 40.84025995403.311707341.52811456402.4949313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40.33082339 | 403.3299562 |
| 41.52811456 402.4949313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.66374579 | 403.2920861 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40.84025995 | 403.3117073 |
| 42 10947053 402 2437807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41.52811456 | 402.4949313 |
| 12.10777000 402.2407077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42.10947053 | 402.2437897 |

| 42.7117796  | 402.4481809 |
|-------------|-------------|
| 43.1612919  | 402.106173  |
| 44.04335115 | 401.7153496 |
| 44.32577006 | 401.6540778 |
| 44.73291294 | 401.7384182 |
| 45.63452389 | 400.9004407 |
| 46.73102084 | 399.7719063 |
| 47.48315064 | 398.5989052 |
| 48.71802295 | 396.3487416 |
| 48.97600095 | 395.7657319 |
| 50.03769214 | 394.0276731 |

| First Model With Stent |             | 19.8 |
|------------------------|-------------|------|
|                        |             | 20.1 |
| Longth (mm)            | Pressure    | 20.6 |
| Length (mm)            | (Pa)        | 20.9 |
| 0                      | 431.8303736 | 21.0 |
| 0.833522491            | 430.3406375 | 21.2 |
| 1.865457051            | 425.9449262 | 21.5 |
| 2.231744549            | 424.3819741 | 21.8 |
| 3.08615436             | 420.0545632 | 22.1 |
| 3.629716286            | 417.2969135 | 22.2 |
| 4.523585922            | 413.5120821 | 22.6 |
| 5.027101537            | 411.3945473 | 23.0 |
| 5.892907246            | 410.0709855 | 23.3 |
| 6.424402991            | 409.3411679 | 23.5 |
| 7.165506875            | 410.8421708 | 23.7 |
| 7.82258429             | 412.1079816 | 24.1 |
| 8.491693526            | 414.4955665 | 24.4 |
| 9.221814766            | 416.9986685 | 24.7 |
| 9.726087904            | 417.7669202 | 25.0 |
| 10.62079319            | 419.0253163 | 25.3 |
| 10.94112967            | 418.1379755 | 25.5 |
| 12.01840423            | 415.1965271 | 25.8 |
| 13.0347282             | 407.1441447 | 26.0 |
| 13.22691936            | 405.735093  | 26.3 |
| 13.41911051            | 404.3369105 | 26.7 |
| 14.26476347            | 393.3829112 | 26.8 |
| 14.82621094            | 386.4623789 | 27.1 |
| 15.18741334            | 381.1957722 | 27.4 |
| 15.35742183            | 378.5198946 | 27.7 |
| 16.03745578            | 367.4755298 | 28.0 |
| 16.22870068            | 364.2719059 | 28.3 |
| 17.00213683            | 358.2271353 | 28.6 |
| 17.19549587            | 356.7906204 | 28.9 |
| 17.34253206            | 355.8857204 | 29.3 |
| 17.63660444            | 354.2400632 | 29.6 |
| 17.75136345            | 355.1616471 | 30.0 |
| 18.3456275             | 358.4479833 | 30.0 |
| 18.90126263            | 361.7987207 | 30.2 |
| 19.08647434            | 363.0285703 | 30.4 |
| 19.28571623            | 365.949651  | 31.1 |
|                        |             | 31.1 |

| 19.83519666 | 374.3445265 |
|-------------|-------------|
| 20.17105831 | 379.6649046 |
| 20.62916284 | 387.1595638 |
| 20.90249663 | 392.4180428 |
| 21.05252922 | 395.1765851 |
| 21.2025618  | 397.9244864 |
| 21.52676797 | 402.2058488 |
| 21.85097413 | 406.2037769 |
| 22.1751803  | 409.9182708 |
| 22.29527916 | 411.0067601 |
| 22.65845506 | 414.5907602 |
| 23.02163096 | 417.1671871 |
| 23.38480686 | 418.7360408 |
| 23.58608505 | 420.0311065 |
| 23.78736324 | 421.1228589 |
| 24.11762413 | 422.0394435 |
| 24.41403313 | 422.4333081 |
| 24.71044213 | 422.1880184 |
| 25.00685113 | 421.3035744 |
| 25.30727217 | 419.7523529 |
| 25.55985503 | 419.5801281 |
| 25.81243789 | 419.1752237 |
| 26.06502074 | 418.5376398 |
| 26.39613118 | 417.8431931 |
| 26.72724161 | 416.6704695 |
| 26.86135179 | 416.0540302 |
| 27.12957216 | 414.5857874 |
| 27.43886901 | 414.4378476 |
| 27.74816586 | 413.9805263 |
| 28.05943657 | 413.2130728 |
| 28.36027359 | 412.9781865 |
| 28.66111061 | 412.4078542 |
| 28.96194762 | 411.5020757 |
| 29.30267006 | 411.703658  |
| 29.65771579 | 411.5260143 |
| 30.01276152 | 410.9316326 |
| 30.23888755 | 410.8031458 |
| 30.46501358 | 410.5110607 |
| 30.82721488 | 409.7106692 |
| 31.19054918 | 409.9091642 |

| 1           | I           |
|-------------|-------------|
| 31.55388347 | 409.7522322 |
| 31.7528393  | 409.5132068 |
| 31.95179514 | 409.1675803 |
| 32.26366474 | 408.8439324 |
| 32.69593571 | 407.9895561 |
| 32.97575844 | 408.0069111 |
| 33.25558117 | 407.8550373 |
| 33.5354039  | 407.5339347 |
| 33.91068251 | 406.8275083 |
| 34.53153883 | 405.2183292 |
| 35.12351486 | 404.5988552 |
| 35.7154909  | 403.5728148 |
| 35.93525469 | 403.0902446 |
| 36.30327433 | 401.8864082 |
| 37.52570397 | 400.4432026 |
| 38.05387269 | 399.9573115 |
| 38.64791026 | 399.1653089 |
| 39.01377966 | 398.9097218 |
| 39.37964906 | 398.8443897 |
| 40.17393948 | 398.9898066 |
| 40.53156927 | 398.7309205 |
| 40.88919906 | 398.6775717 |
| 41.21049591 | 398.7355332 |
| 41.79250027 | 399.0066615 |
| 42.15562977 | 398.984501  |
| 42.75406803 | 398.9163247 |
| 43.3525063  | 399.097995  |
| 43.51557715 | 399.0973537 |
| 44.51029747 | 398.6527097 |
| 44.8619815  | 398.2804747 |
| 46.00251109 | 396.9572947 |
| 47.07374396 | 395.2127136 |
| 48.0361935  | 393.4237018 |
|             |             |

| Second Mo   | 20.4911379    |             |
|-------------|---------------|-------------|
| Ste         | Stent         |             |
|             | l             | 21.44076569 |
| Length (mm) | Pressure (Pa) | 22.52589512 |
| 0           | 343.440215    | 22.76418181 |
| 0.271702887 | 343.1894179   | 23.10671543 |
| 0.81510866  | 341.7501329   | 24.08050917 |
| 1.280074338 | 340.0406866   | 25.28729515 |
| 2.051600132 | 336.9703904   | 25.62954924 |
| 2.377534195 | 335.3042026   | 26.24887793 |
| 3.172498983 | 331.2325541   | 26.35482549 |
| 4.163759047 | 326.049445    | 26.69751803 |
| 4.35105414  | 325.0653301   | 27.04152188 |
| 5.211654134 | 321.7288439   | 27.35658905 |
| 5.529605439 | 320.4838397   | 27.67165623 |
| 6.068769757 | 320.0980426   | 28.30167998 |
| 6.708151896 | 319.6218439   | 28.81201963 |
| 7.681027453 | 323.2956559   | 29.00734739 |
| 7.886692262 | 324.0714332   | 29.23202762 |
| 8.543377676 | 331.8721783   | 29.45670785 |
| 9.0652364   | 338.0880608   | 29.80098019 |
| 10.04609702 | 355.4559527   | 30.08292795 |
| 11.42247373 | 379.9859798   | 30.36487571 |
| 12.69586229 | 403.3293043   | 31.02781576 |
| 12.96935521 | 408.143109    | 31.73847935 |
| 13.78983396 | 422.0707772   | 32.36220036 |
| 13.97696018 | 424.8226215   | 33.11984437 |
| 14.31575248 | 429.3631926   | 33.36591675 |
| 14.99333708 | 439.3582893   | 00.00071070 |
| 15.17844313 | 448.7704304   |             |
| 15.52447706 | 450.919024    |             |
| 16.21654492 | 455.6139067   |             |
| 16.57725985 | 451.8193361   |             |
| 17.46032283 | 446.7879121   |             |
| 17.7399615  | 443.6222611   |             |
| 18.01960017 | 441.9127427   |             |
| 18.38314376 | 436.476394    |             |
| 18.72080082 | 433.462471    |             |
| 19.6590493  | 434.9221649   |             |
| 19.98992909 | 435.4880805   | ]           |

436.8099253 438.1501964 438.4898947 438.9676077 438.8752966 438.8142804 439.1714783 439.6178719 439.6739698 439.2573353 439.0994038 438.0518207 436.3144476 433.8601889 431.0417146 420.4988853 411.1524804 407.3504186 401.5273204 396.0878658 391.7119914 388.9304345 386.8272658 389.2825242 391.8676995 392.6471171 393.1937062 393.3945944

| Second Model With Stent |             |  |  |  |
|-------------------------|-------------|--|--|--|
|                         | Pressure    |  |  |  |
| Length (mm)             | (Pa)        |  |  |  |
| 0                       | 343.440215  |  |  |  |
| 0.271712549             | 343.1895236 |  |  |  |
| 0.815137647             | 341.7537041 |  |  |  |
| 1.274454887             | 340.0642535 |  |  |  |
| 2.036636462             | 337.0499072 |  |  |  |
| 2.360060321             | 335.3944983 |  |  |  |
| 3.172586736             | 331.2257097 |  |  |  |
| 4.148692995             | 326.0959384 |  |  |  |
| 4.351146092             | 325.0274254 |  |  |  |
| 5.192571179             | 321.7395758 |  |  |  |
| 5.529684765             | 320.4153561 |  |  |  |
| 6.019210701             | 320.0731116 |  |  |  |
| 6.708207545             | 319.5961634 |  |  |  |
| 7.648727892             | 323.2366659 |  |  |  |
| 7.88672837              | 324.1524346 |  |  |  |
| 9.06525757              | 338.1884289 |  |  |  |
| 10.70066385             | 367.111487  |  |  |  |
| 11.59553644             | 383.2729335 |  |  |  |
| 12.10754259             | 392.7245845 |  |  |  |
| 13.24465674             | 412.8104295 |  |  |  |
| 13.53253459             | 416.9601455 |  |  |  |
| 13.81555871             | 420.8601874 |  |  |  |
| 14.45398873             | 428.4968231 |  |  |  |
| 14.76944173             | 431.4225566 |  |  |  |
| 15.08489473             | 432.3017992 |  |  |  |
| 15.60515421             | 432.6805334 |  |  |  |
| 15.84915682             | 432.7157908 |  |  |  |
| 16.43017468             | 432.2683679 |  |  |  |
| 17.05576454             | 431.8742517 |  |  |  |
| 17.40491807             | 430.3999273 |  |  |  |
| 17.83708805             | 429.069134  |  |  |  |
| 18.12330369             | 428.0374903 |  |  |  |
| 18.40951933             | 427.3452726 |  |  |  |
| 19.00307674             | 427.4613859 |  |  |  |
| 19.93102904             | 427.9162483 |  |  |  |
| 20.66825675             | 428.3355371 |  |  |  |

| 21.69600213 | 428.9480623 |  |  |
|-------------|-------------|--|--|
| 22.41883666 | 428.8502138 |  |  |
| 22.73759605 | 428.7208827 |  |  |
| 23.06124782 | 428.8066202 |  |  |
| 23.77331355 | 428.5360448 |  |  |
| 24.37230119 | 427.7297494 |  |  |
| 24.71737619 | 427.0190181 |  |  |
| 25.72002371 | 424.1655982 |  |  |
| 26.04291619 | 423.0923714 |  |  |
| 26.638941   | 420.0614193 |  |  |
| 26.88169183 | 418.6777324 |  |  |
| 27.36719349 | 415.6504325 |  |  |
| 27.66520833 | 413.2406564 |  |  |
| 29.21075516 | 405.3098414 |  |  |
| 29.91826497 | 402.2501355 |  |  |
| 30.01434441 | 401.8966395 |  |  |
| 31.33747087 | 398.3063119 |  |  |
| 31.77809861 | 397.4880442 |  |  |
| 32.66046502 | 395.7160148 |  |  |
| 33.10754273 | 395.2843705 |  |  |
|             |             |  |  |