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ABSTRACT 

 

The use of natural fibers as reinforcement in polymer composites has become necessary 

based on the several advantages of lignocellulosic fibers over their inorganic 

counterparts. However, limitations to the use of natural fiber in composites are the 

inherent reduced adhesion between the fiber and matrix, high moisture absorption and 

UV degradation owing to non-cellulosic components of natural fibers.  In this research, 

composites were fabricated from oil palm empty fruit bunch fiber (EFB) and poly lactic 

acid (PLA) with different loading percent of 10-40 wt%. Mechanical testing revealed 

that 30 wt% of fiber content produced the highest mechanical properties and this was 

selected as the optimum fiber content based on treated EFB fiber that were fabricated. 

To enhance the compatibility of EFB with PLA, the fiber surface was treated by 

ultrasound in both water and alkali medium and optimization was done by response 

surface methodology (RSM), which selected 100 mins exposure time at 90
o
C in 2 wt% 

NaOH as the optimum treatment condition. Fibers were further treated with 

poly(dimethysiloxane) coupling agent to increase bonding of EFB with PLA. Effects of 

fiber treatment were investigated through mechanical, structural, morphological and 

thermal analysis. Characteristic strength analysis of fibers was also done by Weibull 

characteristic model. Fabrication of composites was done by extrusion followed by 

pelletizing after which test samples were prepared using injection moulding machine, 

and composite characterization was carried out. Furthermore, biostrong impact modifier 

was incorporated into the composites up to 2 wt% to improve the impact properties and 

it was found to increase the IS of PLA by 38%, but also led to reduction in other 

mechanical properties of EFB/PLA composites. Morphological analysis of composites 

fractured surface by scanning electron microscopy (SEM) and functional groups 

analysis by Fourier transforms infrared spectroscopy (FTIR) revealed improved 

adhesion of treated fibers with PLA. Structural analysis by X-ray diffraction (XRD), 

supported results from differential scanning calorimetric (DSC) analysis which showed 

that composites prepared with the combination of  ultrasound  alkali and silane treated 

fibers has the highest crystallinity index (CrI% = 75.44%). Thermogrvimetric analysis 

(TGA) also showed that silane ultrasound and alkali treatment of EFB fibers increased 

the thermal stability of the composites by raising the peak decomposition temperature, 

with an increase of 43% in activation energy (Ea = 56.52 kJ/mol). Natural degradation 

analysis also confirmed the reduced effect of environmental factors on silane and 

ultrasound treated fiber based composites compared to untreated fiber based 

composites. Besides that, water uptake analysis and contact angle measurements 

revealed the increased hydrophobicity of composites after silane treatment of EFB 

fibers, with about 106
o
 contact angle value and less than 5% water uptake after 150 days 

soaking period. The highest mechanical properties were obtained from composites 

based on combined ultrasound, alkali and silane treated fibers. 
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ABSTRAK 

 

Penggunaan gentian semula jadi sebagai komponen penguat dalam komposit polimer 

amat penting berasaskan kepada beberapa kelebihan gentian lignoselulosa berbanding 

bahagian bukan organik. Walau bagaimanapun, terdapat kekangan kepada penggunaan 

serat semula jadi dalam komposit  seperti kelemahan lekatan di antara gentian dan 

matriks, penyerapan kelembapan yang tinggi dan degradasi UV oleh komponen bukan 

selulos gentian semula jadi. Dalam kajian ini, komposit diperbuat dari gentian tandan 

kosong kelapa sawit (EFB) dan poli asid laktik (PLA) dengan berat di antara 10-40 %. 

Ujian mekanikal menunjukkan bahawa 30 % berat kandungan gentiant menghasilkan 

sifat mekanikal tertinggi dan dipilih sebagai kandungan gentian optimum berdasarkan 

komposit EFB terawat yang dihasilkan. Untuk meningkatkan keserasian di antara EFB 

dengan PLA, permukaan gentian telah dirawat dengan kaedah ultrasound dalam 

medium  air dan sederhana alkali dengan pengoptimuman dilakukan melalui kaedah 

gerak balas permukaan (RSM), dengan 100 minit masa pendedahan pada 90
0
C di dalam 

2% berat NaOH sebagai kaedah rawatan yang optimum. Gentian juga dirawat dengan 

ejen gandingan poly(dimethysiloxane) untuk meningkatkan ikatan di antara EFB dengan 

PLA. Kesan rawatan gentian diuji melalui analisis mekanikal, struktur, morfologi dan 

terma. Analisis kekuatan ciri gentian juga telah dilakukan dengan menggunakan 

Weibull model. Penghasilan komposit dengan gentian dilakukan melalui kaedah 

penyemperitan diikuti dengan pelletizing selepas sampel ujian dihasilkan dengan 

menggunakan mesin pengacuan suntikan, dan seterusnya pencirian komposit dilakukan. 

Seterusnya, 2% berat pengubahsuai impak (biostrong) dicampurkan ke dalam formulasi 

komposit dan didapati meningkatkan IS PLA  IS PLA sebanyak 38%, namun juga 

mengurangkan sifat mekanikal yang lain dalam komposit EFB/PLA. Analisis kegagalan 

permukaan komposit dilakukan dengan menggunakan scanning electron microscopy 

(SEM) dan analisis kumpulan fungsi menggunakan Fourier transforms infrared 

spectroscopy (FTIR) menunjukkan pelekatan yang lebih baik di antara gentian EFB 

terawat dengan PLA. Analisis struktur menggunakan X-ray diffraction (XRD), yang 

disokong dengan differential scanning calorimetric (DSC) analisis menunjukkan 

bahawa komposit yang dihasilkan dengan gabungan ultrasound gentian alkali dan 

dirawat silane mempunyai indeks penghabluran tertinggi (CRI% = 75.44%) Analisis 

thermogravimetrik (TGA) juga menunjukkan bahawa ultrasound silane dan rawatan 

alkali gentian EFB meningkat kestabilan terma komposit dengan menaikkan suhu 

penguraian puncak, dengan peningkatan sebanyak 43% dalam tenaga pengaktifan (Ea = 

56.52 kJ / mol). Analisis degradasi alam juga mengesahkan pengurangan kesan alam 

sekitar terhadap komposit gentian terawat silane dan ultrasound berbanding dengan 

yang lain. Di samping itu, analisis pengambilan air dan pengukuran sudut menunjukkan 

hydrophobicity komposit meningkat selepas rawatan silane gentian EFB, dengan nilai 

sudut 106
0
 dan kurang dari 5% penyerapan air selepas 150 hari tempoh rendaman. Sifat-

sifat mekanikal yang paling tinggi diberikan oleh komposit dengan gabungan ultrasound 

alkali dan silane yang digunakan untuk merawat gentian. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 GENERAL INTRODUCTION 

 

The use of natural fibers in more diversified fields came alongside the 

emergence of polymers in the 19
th

 century. This followed the success of the German 

Chemist Hermann Staudinger‘s ability to prove his earlier proposed hypothesis about 

polymers to be true. At the same time, researchers also developed interest in synthetic 

fibers due to their superior dimensional properties, making it to slowly replace the 

natural fibers in several applications. However, fabrications of synthetic fiber reinforced 

polymer composites required a lot of energy, as well as pollute the environment 

especially during production and recycling (Mohanty et al., 2005).  

 

This again brought attention back to the natural fibers based on their distinct 

advantages (Mohanty et al., 2005; Wambua et al., 2003). The renewed interest therefore 

opened grounds for a large number of modifications to bring the natural fibers at par, 

and where possible superior to the synthetic fibers. These modifications therefore made 

natural fibers suitable for such applications as packaging, medicine, furniture and 

automatic parts (Rijswijk & Brouwer, 2002, Nickel et al., 2003; Netravali et al., 2003; 

Marsh, 2003; Wambua et al., 2003; Suddell and Evans, 2003; Schloesser, 2004; Mathur, 

2006). Hydrophilic character of natural fibers however led to composites with weak 

interface but pre-treatments were sought, which aims at improving the adhesion 

between fibers and polymer matrices.  

 

http://en.wikipedia.org/wiki/Hermann_Staudinger


 
 

 

 

 

 

CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 GENERAL INTRODUCTION 

 

The use of natural fibers in more diversified fields came alongside the 

emergence of polymers in the 19
th

 century. This followed the success of the German 

Chemist Hermann Staudinger‘s ability to prove his earlier proposed hypothesis about 

polymers to be true. At the same time, researchers also developed interest in synthetic 

fibers due to their superior dimensional properties, making it to slowly replace the 

natural fibers in several applications. However, fabrications of synthetic fiber reinforced 

polymer composites required a lot of energy, as well as pollute the environment 

especially during production and recycling (Mohanty et al., 2005).  

 

This again brought attention back to the natural fibers based on their distinct 

advantages (Mohanty et al., 2005; Wambua et al., 2003). The renewed interest therefore 

opened grounds for a large number of modifications to bring the natural fibers at par, 

and where possible superior to the synthetic fibers. These modifications therefore made 

natural fibers suitable for such applications as packaging, medicine, furniture and 

automatic parts (Rijswijk & Brouwer, 2002, Nickel et al., 2003; Netravali et al., 2003; 

Marsh, 2003; Wambua et al., 2003; Suddell and Evans, 2003; Schloesser, 2004; Mathur, 

2006). Hydrophilic character of natural fibers however led to composites with weak 

interface but pre-treatments were sought, which aims at improving the adhesion 

between fibers and polymer matrices.  

 

http://en.wikipedia.org/wiki/Hermann_Staudinger


2 
 

In pre-treatments, either the cellulose hydroxyl groups of the fiber get activated 

or new moieties are added that can effectively interlock with the matrix (Khalid et al., 

2008; Cabedo et al., 2006). Despite this necessity for surface treatment in order to 

obtain desirable results from natural fiber reinforced polymer composites, the unique 

attribute of natural fibers, such as being less abrasive to processing equipment as well as 

reduced respiratory tract related problem for worker, makes them highly esteemed 

(Bledzki et al., 1999; Mohanty et al., 2000; Kandachar, 2002; Mohanty et al., 2002; 

Evans et al., 2002; Sanadi, 2004, Maya and Thomas, 2008). Moreover, they are less 

expensive and also possesses good load bearing potential which contributes to its wide 

spread application in several sectors such as aircraft, construction, storage facilities and 

even in foot wears. In countries where improved sustainability is legislation due to 

environmental consciousness, there is high priority to the incorporation of 

lignocellulosic fibers in polymer composites especially in automotive applications 

(Bledzki et al., 2002; Evans et al., 2002). Among the various natural fibers; flax, 

bamboo, sisal, hemp, ramie, jute, oil palm and wood fibers are of particular interest. 

 

Oil palm (Elaeis guineensis Jacq.) is one of the oil crops in the world that 

produces the largest quantity of edible oil. Cultivation of oil palm has an extension of 

over 42 countries with an estimated value of about 11 million hectare on a worldwide 

basis (Khalil et al., 2008). Some countries which possess the largest areas for oil palm 

cultivation includes West African countries like Nigeria, South East Asian countries 

like Indonesia and Malaysia, Latin America countries and India (Joseph et al., 2006). 

The estimated amount of dry matter produced from an annual oil palm plantation is 

about 55 ton per hectare, in form of fibrous biomass alongside an equivalent 5.5 ton of 

oil (Hasamudin and Soom, 2002). 

 

Apart from palm oil which is the main product from palm oil industries, vast 

quantities of biomass from which fibers can be obtained are also produced. The fibers 

can be gotten either from the palm frond, palm trunk, fruit mesocarp and especially oil 

palm empty fruit bunch (EFB). Oil palm empty fruit bunch is the fibrous mass which 

remains after palm fruits had been separated from the fruit bunches.  Oil palm empty 

fruit bunch had been said to possess a yielding capacity of up to 73% fibers; higher than 

other sources in the oil palm industry (Wirjosentono et al., 2004). This led to the 
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preference of EFB both in terms of availability as well as cost (Rozman et al., 2000). 

Oil palm empty fruit bunch is a hard and tough fiber which is in many ways similar to 

coir fibers (Ibrahim et al., 2005). Surface of EFB fibers has many pores which offer it 

good interlocking properties with polymer matrix during composite fabrication. 

However the presence of porous surface morphology could lead to high water 

absorption by the action of capillary whenever it is exposed to water (Hill and Khalil 

2000). Analysis of EFB would reveal some granules of starch on the interior of the 

vascular bundle (Law et al., 2007).  

 

Report from several authors had shown that oil palm empty fruit bunch fiber, 

among several other natural fibers had been used to reinforce polymers in different 

applications and at varying degrees. A notable example is the incorporation of natural 

fibers into thermoplastics like PLA, wherein the issue of fiber matrix interaction is 

always contentious from one researcher to another (Bax & Müssig, 2008; Bledzki, et al., 

2009; Huda et al., 2006; Huda et al., 2008; Huda et al., 2005; Mathew et al., 2003; 

Petersson et al., 2007; Petinakis et al., 2009; Plackett et al., 2003; Suryanegara et al., 

2009; Sykacek et al., 2009; Van de Velde & Kiekens, 2002). However, most of these 

researches show that there is apparently poor adhesion between the fiber and the PLA 

matrix interface, hence the need for further modifications to improve the surface 

interaction of EFB fibers and PLA matrix. The essence of surface modification is to 

make the hydrophilic fiber become more susceptible to the hydrophobic polymer matrix 

through surface treatment of the fiber. This is to enhance fiber matrix interaction which 

is a major perquisite for composites in which mechanical, tensile, abrasive and other 

desirable properties are priorities. There is this possibility through surface treatment, in 

which case the hydroxyl groups get activated or through the addition of new moieties 

that can interlock effectively with the polymer matrix.  

 

Several modifications have been made on fiber surface in times past, and their 

effect noted. These studies have been undertaken to modify the performance of natural 

fibers in varying degrees. Different surface treatment methods such as alkali treatment 

(Chang et al., 2009), isocyanate treatment (Maiti et al., 2004,) acrylation (Huda et al., 

2008), benzoylation (Mohanty et al., 2001), latex coating (Sreekala, 2000), 

permanganate treatment (Joseph, 2000), acetylation (Larsson-Brelid et al., 2008), silane 
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CHAPTER 3 

 

 

MATERIALS AND METHODOLOGY 

 

 

3.1 INTRODUCTION 

 

In this research, composites were from oil palm empty fruit bunch fiber (EFB) 

and poly (lactic) acid (PLA) matrix. The selection of materials and experimental 

procedures were selected based on literature review as discussed in Chapter 2. 

Modifications were made to the surface of oil palm empty fruit bunch (EFB) through 

ultrasound treatment in both water and alkali medium. Composites were prepared from 

EFB fiber and PLA matrix. To further enhance the adhesion of fiber to the matrix, 

silane coupling agent; poly (dimethylsiloxane), chlorine terminated (PDMS) was used 

incorporated onto the fiber surface.  Improvements were offered to make up for the 

brittleness of the poly (lactic) acid (PLA) matrix through the incorporation of impact 

modifier. Different characterization procedures were carried out in order to study the 

effect of surface treatment on performance of EFB fiber reinforced poly (lactic) acid 

composites, as well as the influence of impact modifier on the composite.  

 

This chapter describes the various materials used for the research as well as the 

experimental procedures, the different treatment methods applied to the fiber surface, 

the composite fabrication steps, the characterization and standard testing methods such 

as ASTM, ISO, etc. as well as little details on the equipment and machines implored for 

the various testing. The flow process of the experimental design is as represented in 

Figure 3.1. 
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(i) 

 

 

(ii) 

 

Figure 3.1: Experimental flow of research methodology showing (i) fiber treatment 

                   and characterization and (ii) composite fabrication and characterization 
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3.2 MATERIALS 

 

3.2.1 Polymer Matrix 

 

The polymer matrix used for this research is thermoplastic poly (lactic) acid 

resin. It is a Poly lactic acid of Natureworks Ingeo
TM

 Biopolymer 3051D grades 

supplied by Unic Technology Ltd, China. It has a density of 1.24 g/cm
3
, melt flow index 

of 30-40g / 10 min. (190
o
C/2.16kg) and a melting temperature of 160-170

o
C. 

 

3.2.2 Reinforcing Fiber 

 

The fiber used is oil palm empty fruit bunch (EFB) fibers which were collected 

as waste materials from LKPP Corporation Sdn. Bhd., Kuantan, Malaysia. 

 

3.2.3 Chemicals 

 

The chemicals used for this research and the suppliers are listed in Table 3.1. 

 

Table 3.1: List of chemicals 

 

                       Chemical                                                              Supplier 

 

Acetone                                                                                           Merck 

Acetic acid                                                                                      Sigma 

Sodium hydroxide (NaOH)                                                            Merck 

Potassium Bromide (KBr)                                                              Merck 

Tetraoxosulphate (VI) acid (H2SO4)                                              Sigma 

 

3.2.4 Impact Modifier 

 

The impact modifier used (Biomax
®
 Strong 120) was collected for experimental 

purposes from Dupont, Switzerland. Dupont
TM

 Biomax
®
 strong (biostrong) is an 

ethylene-epoxy based copolymer specially designed to be grafted on to modify PLA. 

  


