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ABSTRACT 

 

This thesis discusses the effect of dimensional parameters on warpage of injection-
molded plastic part using response surface method.  The objectives of this thesis are to 
investigate the effect of dimensional parameter on warpage, to develop prediction first 
and second mathematical model for warpage of plastic part using response surface 
method. A thin plastic part model is used in the analysis. To achieve minimum warpage, 
optimum process condition dimensional parameters are determined. X dimension, Y 
dimension and Z dimension are used as variables. The most important input parameter 
in this experiment is Z dimension (wall thickness) which is affecting the warpage of the 
plastic part. The others input also must be considered. Use the different value of X 
dimension, Y dimension and Z dimension to determine different value of warpage. The 
design of experiment that use in this experiment is three level full factorial designs. 
Finite element analysis using MoldFlow is done to determine experimental value of 
warpage. Response surface methodology is used to predict the warpage value based on 
finite element result and suitable predictive model is selected based on percentage of 
error comparison then optimization process using response surface method is done and 
the optimum dimensional parameters with minimum warpage value is obtained.  
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ABSTRAK 

 
Tesis ini membincangkan kesan parameter dimensi pada warpage injeksi-
bahagian plastik menggunakan kaedah permukaan respons. Objektif daripada 
tesis ini adalah untuk meneliti kesan daripada parameter pada warpage dimensi, 
untuk mengembangkan ramalan pertama dan kedua model matematik untuk 
warpage bahagian plastik menggunakan kaedah permukaan respons. Bahagian 
plastik tipis model yang digunakan dalam analisis. Untuk mencapai minimum 
warpage, kondisi muat yang optimum ditentukan parameter dimensi. Dimensi X, 
dimensi Y dan dimensi Z digunakan sebagai pembolehubah. Yang paling 
penting parameter masukan dalam percubaan ini adalah dimensi Z (ketebalan 
dinding) yang mempengaruhi warpage bahagian plastik. Masukan yang lain juga 
harus dipertimbangkan. Guna nilai yang berbeza dimensi X, Y dan Z dimensi 
dimensi untuk menentukan nilai yang berbeza warpage. Rancangan percubaan 
yang digunakan dalam percubaan ini adalah tiga peringkat rekabentuk faktorial 
lengkap. Analisis elemen hingga menggunakan MoldFlow dilakukan untuk 
menentukan nilai percubaan warpage. Permukaan respons metodologi yang 
digunakan untuk memprediksi nilai warpage berdasarkan keputusan elemen 
hingga dan model ramalan yang sesuai dipilih berdasarkan nisbah peratusan 
kesalahan maka proses pengoptimuman menggunakan kaedah respon 
permukaan dilakukan dan parameter dimensi yang optimum dengan nilai 
minimum yang diperolehi warpage. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 BACKGROUND STUDY 

 

 Injection molding operation is the most cost-effective and agile processing 

technology for manufacturing when it comes to high demand for the components on a 

mass scale.  The procedure of injection molding is described, such as plastication, 

injection, packing, cooling, ejection and process part/part quality control applications. 

When the interior of cavity has become stable, the product is ejected from the mold. 

Defects of the products, such as warpage, shrinkage, sink marks, and residual stress, are 

caused by many factors during the production process. These defects influence the 

quality and accuracy of the products. Dimensional stability is an important factor for the 

minimum warpage of name card holder part. Reducing warpage is one of the top 

priorities to improve the quality of injection-molded parts. During production of plastic 

parts, the quality problems arise from dimensional ratio of the parts designed. Designs 

of dimensional process parameters are investigated from several aspects in the 

literature. Several researches have been conducted on the warpage of name card holder 

parts. However, very few of them are devoted to the optimization of such parts. In this 

study, an efficient optimization method by coupling finite element analysis, response 

surface methodology and genetic algorithm is introduced to minimize warpage of name 

card holder parts. The developed optimization method is applied to a name card holder 

part model. During the optimization process, finite element (FE) analyses of the part 

model base are conducted for combination of process parameters organized based on 

statistical full factorial experimental design. X dimension, Y dimension, and Z 
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dimension are considered as process conditions dimensional parameters influencing 

warpage. Other parameters of effecting minimum warpage are taken into consideration 

as constant, such as mold temperature, melt temperature, injection time, injection 

pressure, etc. A predictive model for warpage in terms of the critical process parameters 

is then created using response surface methodology. Response surface model is coupled 

with an effective genetic algorithm to find the optimum process parameter values. The 

following sections explain in detail the generation of predictive models for minimum 

warpage (Babur Ozcelik & Tuncay Erzurumlu). 

 

1.2 OBJECTIVE 

The objectives of the project are: 

1. To develop prediction first and second mathematical model for warpage of thin 

shell plastic part using response surface method 

2. To investigate the effect of dimensional parameter on warpage of thin shell plastic 

part 

3. To investigate the optimum dimension for the thin shell plastic part with minimum 

warpage  

 

1.3 PROBLEM STATEMENT 

The plastic industry today is one of the most important industries in the 

manufacturing world. Many manufacturers are focusing in developing plastics parts for 

most of things in our daily life. For example, this news, Forte nanocomposite nears 2nd 

application By Frank Esposito GALVESTON, TEXAS --Posted October 4, 2004 Noble 

Polymers is gaining ground with its Forte-brand nanocomposites, aiming to have its 

second commercial application as well as an extrusion grade on the market by mid-

2005. Forte, a polypropylene-based nanocomposite, is used in the interior trim console 

of a vehicle that will hit the road in June, Noble business unit leader Tim Patterson said 

at Flexpo 2004, held Sept. 15-17 in Galveston. Patterson declined to identify the 

vehicle, citing confidentiality agreements, but the console is noteworthy in that it is not 

being molded by Cascade Engineering Inc., the Grand Rapids, Mich.-based injection 

molded that owns Noble. The first commercial nano- composite use for Noble - which 
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operates about 80 million pounds of compounding capacity and employs 23 in Grand 

Rapids - was a seat back molded by Cascade in September 2003. Cascade currently 

consumes about 95 percent of Noble's compounding output - mainly soft, flexible 

thermoplastic olefins - but Noble eventually hopes to sell more of its product to outside 

customers, Patterson said. The seat back commercialized last year had used 30 percent 

glass-filled PP, but had warpage issues, Cascade materials engineering director Taher 

Abujoudeh said. Forte eliminated warpage while offering better aesthetics and lower 

cost, he said. Other nanocomposite projects in the works for Noble include office 

furniture - where it can replace 20 percent glass-filled PP - as well as heavy-truck 

exterior trim and speaker housing parts. The nanocomposite business started out small 

for Noble, with modest sales of about 700,000 pounds in its just-completed fiscal year. 

But the firm already has new sales on the books equaling that amount, Patterson said. 

To date, Noble's nanocomposite work has centered on injection molding grades. Its first 

extrusion grade is set to debut in June, Abujoudeh said. Cascade placed 30th in a recent 

Plastics News ranking of North American injection molders, with annual sales of $200 

million (http://www.plasticsnews.com/headlines2.html?id=04100401403&q=warpage 

24/3/09 Tuesday). 

 

1.4 PROBLEM SOLVING 

From this study of effect of dimensional parameter on warpage, the problem 

encounter due to warpage of plastics part can be solved. Then the losses caused by 

rejected part due to warpage can be solved. The study of warpage optimization is one of 

the solutions to the problem faced by plastics industry. 

 

1.5 PROJECT SCOPE 

1. Using Finite Element (FE) (Moldflow) to get experimental warpage value 

2. Using warpage value from MoldFlow to predict warpage using Respond Surface 

Method (RSM) 

3. Compare result of FE analysis with predicted result from RSM (choose parameter 

with smallest predicted warpage value) 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 INTRODUCTION 

 

 Injection molding is one of the most important polymer processing methods for 

producing plastic parts. Process parameters in addition to molding material and part design 

are major factors affecting the quality of plastic parts produced by injection molding. 

Quality of these parts is often associated with warpage. Effects of process parameters on 

non-uniform shrinkage leading to warpage are investigated from several aspects in 

literature. In this study, the effect of dimensional parameter values for name card holder in 

minimizing warpage is investigated. Best values of process parameters in this study are 

obtained by exploiting advantages of finite element (FE) software MoldFlow, statistical 

design of experiments, integrated response surface method and genetic algorithm. FE 

analyses of the name card holder are conducted for dimensional parameters designed based 

on statistical full factorial experimental design. A predictive model for warpage is then 

created using integrated response surface method exploiting FE analysis results. 

 

2.2  DIMENSIONAL INTEGRITY 

 

 The configuration (shape and dimensions) of a molded part is intimately related to 

the thermo-mechanical history of the material used during the process cycle, the cavity 

geometry, and the physical properties (compressibility and thermal expansion coefficient) 

of the material. The configuration of the molded part can be divided into two main 
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contributions: (a) the “as-molded” configuration and (b) changes in configuration over 

time. The as-molded configuration is determined by the state of the material in the mold 

cavity at the instant just prior to mold opening, the abrupt changes in pressure and stress 

upon injection, and the subsequent unconstrained cooling of the solid part to ambient 

temperature after injection from the mold. The final configuration of as-molded part is 

controlled by several distinct, though strongly coupled, factors, including the pressure and 

temperature histories in the mold cavity, cooling (thermal) stress, warpage, and shrinkage. 

Warpage relates to the distortion induced by the inhomogeneous shrinkage and relaxation 

of residual stress in the part once outside the mold, while shrinkage simply expresses the 

overall dimensional change as the unconstrained part cool down to ambient temperature. 

(Jehuda Greener & Reinhold wimberger-Friedl) 

  

2.3 INJECTION MOLDING HISTORY 

 

The injection molding has seen steady growth since its beginnings in the late 1800's. 

The technique has evolved from the production of combs and buttons to major consumer, 

industrial, medical, and aerospace products. In 1868, perhaps in response to a request by 

billiard ball maker Phelan and Collander, John Wesley Hyatt invented a way to make 

billiard balls by injecting celluloid into a mould. By 1872, John and his brother Isaiah Hyatt 

patented the injection molding machine. The machine was primitive yet it was quite 

suitable for their purposes. It contained a basic plunger to inject the plastic into a mould 

through a heated cylinder. Revolutionizing the plastics industry in 1946, James Hendry 

built the first screw injection molding machine with an auger design to replace Hyatt's 

plunger. The auger is placed inside the cylinder and mixes the injection material before 

pushing forward and injecting the material into the mould. Now day, almost all injection 

molding machines use this same technique. ( http://www.plasticmoulding.ca/history.htm) 
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2.4 INJECTION MOLDING PROCESS PARAMETERS 

Injection molding process have a few processing parameter. The processing 

parameter such as:  

 

a) Temperatures 

Typical temperature profiles are based on gradually increasing temperature 

during the compression phase with cooling at the nozzle.  

 

b) Injection 

A slow to moderate injection speed should be used if injection speed is too fast. 

The frictional heat can cause surface imperfections.  

 

c) Mold Temperature 

The recommend temperature for general molding for the mold is between 10°C 

to 40°C. However for certain grades and end applications a reduction below 

10°C has been found to offer advantages with cycle time. When using 

temperatures below 10°C care must be taken to ensure cavities will consistently 

fill and no condensation appears on the mold face. 

 

d) Mold Cooling 

The purpose of mold cooling is to control the rate at which heat is removed from 

the molding. If there is no cooling on the mold then initially the mold will be 

cool and will heat up due to the heat transfer from the molded parts. This effect 

can result in varying shrinkage rates. Mold cooling is therefore recommended 

and the cooling channels should be evenly distributed in the mold. Unbalanced 

cooling will also have a detrimental effect on the quality and consistency of the 

product produced. 
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2.5  WARPAGE OF PLASTIC INJECTION MOLDING PART 

 

 Warpage is a distortion where the surfaces of the molded part do not follow the 

intended shape of the design. Part warpage results from molded-in residual stresses, which, 

in turn, is caused by differential shrinkage of material in the molded part. If the shrinkage 

throughout the part is uniform, the molding will not deform or warp, it simply becomes 

smaller. However, achieving low and uniform shrinkage is a complicated task due to the 

presence and interaction of many factors such as molecular and fiber orientations, mold 

cooling, part and mold designs, and process conditions.  

 

Influence of unfilled and filled materials  

For fiber reinforced thermoplastics, reinforcing fibers inhibit shrinkage due to their 

smaller thermal contraction and higher modulus. Therefore, fiber reinforced materials 

shrink less along the direction in which fibers align (typically the flow direction) compared 

to the shrinkage in the transverse direction. Similarly, particle-filled thermoplastics shrink 

less than unfilled grades, but exhibit a more isotropic nature.  For non-reinforced materials 

warpage is generally influenced by wall thickness and mold temperature.  If wall thickness 

and mold temperatures are not optimal the molding will most likely warp.  

Different of shrinkage between filled and unfilled materials.  

 

 
 

Figure 2.1: Shrinkage Differentials 

 

Source: (http://www.dsm.com/en_US/html/dep/Warpage.htm      24/2/09 Tuesday) 
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For glass reinforced materials totally different characteristics are evident due to fiber 

orientation.  If a non-reinforced and a fiber reinforced material are compared in the same 

design it is possible to see contary warpage in the same part. 

Unreinforced vs fiber reinforced materials.  

 

 
 

Figure 2.2: Unreinforced Vs Fiber Reinforced 

 

Source: (http://www.dsm.com/en_US/html/dep/Warpage.htm      24/2/09 Tuesday) 

 

Influence of cooling  

Non-uniform cooling in the part and asymmetric cooling across the part thickness from the 

cavity and core can also induce differential shrinkage. The material cools and shrinks 

inconsistently from the wall to the center, causing warpage after ejection.  

Part warpage due to:  

(a) non-uniform cooling in the part  

(b) asymmetric cooling across the part thickness  
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Figure 2.3: Cooling Influence 

 

Source: (http://www.dsm.com/en_US/html/dep/Warpage.htm      24/2/09 Tuesday) 

 

 

Influence of wall thickness  

Shrinkage increases as the wall thickness increases. Differential shrinkage due to non-

uniform wall thickness is a major cause of part warpage in unreinforced thermoplastics. 

More specifically, different cooling rates and crystallization levels generally arise within 

parts with wall sections of varying thickness.  Larger volumetric shrinkage due to the high 

crystallization level in the slow cooling areas leads to differential shrinkage and thus part 

warpage. 
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Diagram of high shrinkage/low cooling vs warped part.  

 

 
 

Figure 2.4: High Shrinkage/Low Cooling Vs Warped Part 

 

Source: (http://www.dsm.com/en_US/html/dep/Warpage.htm      24/2/09 Tuesday) 

 

Influence of asymetric geometry  

Geometric asymmetry (e.g., a flat plate with a large number of ribs that are aligned in one 

direction or on one side of the part) will introduce non-uniform cooling and differential 

shrinkage that can lead to part warpage. The poor cooling of the wall on the ribbed side 

causes a slower cooling of the material on that one side, which can lead to part warpage. 

Poor design vs warped part.  

 

Figure 2.5: Poor Design Vs Warped Part 

Source: (http://www.dsm.com/en_US/html/dep/Warpage.htm      24/2/09 Tuesday) 



11 

 

 

2.6  MOLDFLOW PLASTIC INSIGHTS 

 

Moldflow Plastic Insight products are a complete suite of advanced plastics process 

simulation tools for predicting and eliminating potential manufacturing problems 

simulations tools for predicting and eliminating potential manufacturing problems and 

optimizing part design, mold design and the injection molding process. MPI products 

simulate the broadest range of manufacturing processes. With MPI, one can simulate the 

filling, packing and cooling stages of the thermoplastics injection molding process and also 

predict the resultant fiber orientations and take that into account when predicting part 

warpage. MPI users can also simulate other complex molding process such as gas assisted 

injection molding, co-injection molding, injection-compression molding, microcellular 

molding, reactive molding, and microchip encapsulation. MPI is being employed in both 

tooling design and simulation of molding. MPI used to simulate mold designs before the 

tool is actually built. The simulations helps user determine different gate designs and 

locations, placement of cooling lines, and melt overflows. The Moldflow Plastics Insight 

suite of software is the world leading product for the in-depth simulations to validate part 

and mold design. Companies around the world have chosen Moldflow’s solution because 

they offer; Unique, Patented Fusion Technolgy. MPI/Fusion, which is based on Moldflow’s 

patented Dual DomainTM Technology, allows you to analyze CAD solid models of thin-

walled parts directly, resulting in a significant decrease in model preparation time. The time 

savings allow you to analyze more design iterations as well as perform more in depth 

analyzed. 

 

2.7  RESPONSE SURFACE METHODOLOGY 

 

 The RSM is an empirical modeling approach for determining the relationship 

between various processing parameters and responses with the various desired criteria and 

searches for the significance of these process parameters in the coupled responses. It is a 
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sequential experimentation strategy for building and optimizing the empirical model. 

Therefore, RSM is a collection of mathematical and statistical procedures, and is good for 

the modeling and analysis of problems in which the desired response is affected by several 

variables. The mathematical model of the desired response to several independent input 

variables is gained by using the experimental design and applying regression analysis. 

 The most extensive applications of RSM are in the particular situations where 

several input variables potentially influence some performance measure or quality 

characteristic of the process. Thus performance measure or quality characteristic is called 

the response. The input variables are sometimes called independent variables, and they are 

subject to the control of the scientist or engineer. The field of response surface 

methodology consists of the experimental strategy for exploring the space of the process or 

independent variables, empirical statistical modeling to develop an appropriate 

approximating relationship between the yield and the process variables, and optimization 

methods for finding the values of the process variables that produce desirable values of the 

response. 

 Computationally cost FE model is not suitable for large number of repetitive 

analyses which are often required in an optimization process. Therefore, in this study, the 

FE model for warpage is replaced by a simpler and more efficient predictive model created 

by response surface methodology (RSM). RSM is a model building technique based on 

statistical design of experiment and least square error fitting. 

 RSM is a collection of experimental strategies, mathematical methods, and 

statistical inference that enable an experimenter to make efficient empirical exploration of 

the system of interest. RSM can be defined as a statistical method that uses quantitative 

data from appropriate experiments to determine and simultaneously solve multi-variable 

equations. The work which initially generated interest in the package of techniques was a 

paper by Box and Wilson in year 1951. To solve such problems with conventional 

optimization, the RSM has been adopted. With RSM, optimization conditions are first set, 

and then a response surface is created between design variables and objective functions or 

constraint conditions (Amago. 19). 
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 This method is now broadly used in many fields, such as chemistry, biology, and 

manufacturing. RSM can be used to determine the factor levels that will simultaneously 

satisfy a set of desired specifications and determine the optimum combination of factors 

that yields a desired response and describes the response near the optimum. Furthermore, it 

determines how a specific response is affected by changes in the level of the factors over 

the specified levels of interest it can achieve a quantitative understanding of the system 

behavior over the region tested. It could also predict product properties throughout the 

region even at factor combinations not actually run. In general, a second order regression 

model is developed because of first order models often give lack off fit (Montgomery, D.C. 

1997). 

 In design optimization using RSM, the first task is to determine the optimization 

model, such as the identification of the interested system measure and the selection of the 

factors that influence the system measures significantly. To do this, understanding the 

physical meaning of the problem and some experience are both useful. After this, the 

important issues are the design of experiments and how to improve the fitting accuracy of 

the response surface models.RSM designs have the following properties such as predictions 

always have some degree of uncertainty but there is reasonable prediction throughout the 

experimental range, uniform prediction error is obtained by using a design the fills out the 

region of interest, the choice of experimental design is affected by the shape of the 

experimental region and in most cases, the region is determined by the ranges of the 

independent variable. Response surface methodology (RSM) is an optimization technique 

in the field of numerical analysis. For optimization, it uses a function called a response 

surface. A response surface is a function that approximates a problem with design variables 

and state quantities, using several analysis or experimental results. In general, design of 

experiments is used for analysis or experiment point parameter setting, and the least square 

method is used for function approximation. Response surface methodology is a 

combination of mathematical and statistical techniques useful for modeling and analyzing 

the problems in which several independent variables influence a dependent variable or 

response. The RSM technique attains convergence by repeating numerical and sensitivity 

analysis until the optimal solution as obtained. For problems with high non-linearity, and 
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for multimodal problems, there may be cases in which no solution can be found because of 

problems such as inability to obtain sensitivities or a lapse into a local solution. The study 

uses the Box-Behnken design in the optimization of experiments using RSM to understand 

the effect of important parameters. Box-Behnken Design is normally used when performing 

non-sequential experiments. That is, performing the experiment only once. These designs 

allow efficient estimation of the first and second order coefficients. Because Box-Behnken 

design has fewer design points, they are less expensive to run than central composite 

designs with the same number of factors. Box-Behnken Design do not have axial points, 

thus we can be sure that all design points fall within the safe operating. Box-Behnken 

Design also ensures that all factors are never set at their high levels simultaneously (Draper, 

N.R. and H. Smith, 1981; Box, G.E.P. and N.R. Draper. 1987; Box, G.E.P. & Behnken, 

D.W. 1960). 

 RSM has been extensively used in the prediction of responses such tool life, surface 

roughness and cutting forces. The Box-Behnken design is based on the combination of the 

factorial with incomplete block designs. It does not require a large number of tests as it 

considers only three levels (-1, 0, 1) of each independent parameter (Hill, W.J. and Hunter, 

W.G. 1966). The application of experimental design and response surface methodology in 

fermentations process can result in improved product yields, reduced process variability 

and development time and overall costs (RAO, K. Jagannadha, KIM, Chul-Ho and RHEE, 

Sang-Ki. 2000). The Experimental design and response surface methodology were applied 

for the optimization of the nutrient concentration in the culture medium for the enzyme 

production in shaken flasks at 200 rpm and 30ºC. The statistical analysis of the results 

showed that, in the range studied, all the factors had a significant effect (p < 0.05) on 

glucosyltransferase production and the highest enzyme activity was observed in culture 

medium containing sugar cane molasses (160 g/L), bacteriological peptone (20 g/L) and 

yeast extract Prodex Lac SD® (15 g/L) (H. Y. Kawaguti, E. Manrich and H. H. Sato. 2006). 

Response surface methodology (RSM) to describe relationships between a combination of 

factors and an organism’s growth curve parameters (Devlieghere, F., Debevere, J. and Van 

Impe, J. 1998). In general application of the response surface methodology, the 

representative peak or average value is usually selected as a response to establish the 
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relationship with the planned factors. For instance, a second-order polynomial equation was 

proposed to correlate the peak residual stress caused by the milling operation with the 

cutting conditions and the tensile strength of the material (M. M. EI-Khabeery and M. 

Fattouh. 1989). Response Surface Methodology used to predict the effects of cutting 

parameters on the variations of cutting forces during end milling operation of Al SiC metal 

matrix composite material by designing four factors, five level central composite rotatable 

design matrixes with full replication; for planning, conduction, execution and development 

of mathematical models (B. Ganesh babu, V. Selladurai
 
and R. Shanmugam. 2008). RSM is 

a combination of mathematical and statistical techniques used in an empirical study of 

relationships and optimization, where several independent variables influence the process. 

The first and second order mathematical models, in terms of machining parameters, were 

developed for surface roughness prediction using RSM on the basis of experimental results. 
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CHAPTER 3 

 

 

METHODOLOGY 

 

 

3.1 INTRODUCTION 

 

This chapter includes all overall process to determine the effect of dimensional 

parameter on warpage of name card holder plastic part. The first step is to determine other 

parameters that effecting warpage of plastic part. 

Second step is to do simulation model of the name card holder part using CAD 

software. From the data obtain from the simulation; a RSM model will be created in order 

to improve the FE model due to inability of the model to do large number of repetitive 

analyses. 

Then, from the RSM model, the warpage optimization will be done using the 

genetic algorithm method. From the result of genetic algorithm warpage optimization, the 

effect of dimensional parameter on warpage can be determined. 

There are also example of table that can be used to analyze the data collected to 

determine the warpage optimization and then to determine the effect of dimensional 

parameter on warpage of plastic part.  
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3.2 PROJECT FLOW CHART 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Project Flow Chart 

 

LITERATURE REVIEW 

 

 

 

 

METHODOLOGY 

Consider other parameters of effecting minimum warpage 
(mold temperature, injection time, injection pressure, etc 

Conduct finite element analyses for combination of 
process parameters organized. 

Predict warpage value using response surface method by 
first and second order 

Find the optimum process parameters values using 
response surface method 

Data collecting and discussion 
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3.3 DESIGN OF EXPERIMENT 

 

 Design of experiment (DOE) has been used to select process parameters that could 

result better quality of product. The DOE is an effective way to optimize various process 

parameters. Three independent variables consist of process parameters, each with three 

levels. For warpage were applied total of 33 =27 experimental runs. In this study the three 

independent variables are X dimension, Y dimension, and Z dimension. These three 

variables had total of 33=27 experiments. The model of plastics part is build using 

SOLIDWORKS software. 

 

Table 3.1: Three Level Full Factorial Designs 

 

Factors 
Level 

-1 0 1 

X dimension (mm) 30 95 160 

Y dimension (mm) 5 45 85 

Z dimension (mm) 0.8 1.2 1.6 
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Table 3.2: Training Data Set According to Full Factorial Design 

 

Experiment 
number X dimension (mm)  Y dimension (mm)  Z dimension (mm)  

1 95  5  0.8  
2 30  5  1.6  
3 160  45  0.8  
4 30  85  0.8  
5 95  45  1.6  
6 160  85  1.6  
7 160  5  1.2  
8 95  85  1.6  
9 160  85  0.8  
10 30  5  0.8  
11 160  45  1.6  
12 30  85  1.6  
13 30  5  1.2  
14 95  5  1.6  
15 30  85  1.2  
16 160  85  1.2  
17 95  5  1.2  
18 160  5  0.8  
19 30  45  1.2  
20 30  45  1.6  
21 95  45  1.2  
22 95  85  0.8  
23 95  45  0.8  
24 30  45  0.8  
25 160  5  1.6  
26 160  45  1.2  
27 95  85  1.2  
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Figure 3.2: SOLIDWORKS model 

 

 

3.4  FINITE ELEMENT ANALYSIS 

The simulation model of the name card holder part was designed using CAD 

software. To develop a simulation model, the geometry of the name card holder part is 

executed using fusion mesh with MoldFlow. It is created by MoldFlow Plastic Insight 5.0 

which is commercial software based on hybrid finite-element/finite-difference method for 

solving pressure, flow and temperature fields. 

 

Figure 3.3: Plastic Models after Meshing In Moldflow Plastic Insight  
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Figure 3.4: Plastic Models with Cooling Channel 

 

 

 

3.5  RESPONSE SURFACE METHOD 

FE model is not suitable for large number of repetitive analyses which are often 

required in an optimization process. Therefore, the FE model for warpage is replaced by a 

simpler and more efficient predictive model created by response surface methodology 

(RSM). RSM is a model building technique based on statistical design of experiment and 

least square error fitting. To create RS models, a computer program has been written in 

MATLAB language. The program has the capability of creating RS polynomials up to 10th 

order if sufficient data exist. All cross terms in the models can be taken into account. RS 

models can also be generated in terms of inverse of parameters. That is, xi can be replaced 

as 1/xi (i.e. inversely) in RS model if desired. RS models of varying orders from first order 

to third order are created and tested with the developed program. The data set consists of 

33=27 analysis results and corresponds to the combination of three-dimensional parameters 

affecting the warpage. Therefore, RS models generated describe warpage in terms of the 

dimensional parameters (X dimension (Xd), Y dimension (Yd), and Z dimension (Zd)). The 
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data set is divided into two parts; one part to create the model, other part to check the 

accuracy of the created model. 

Steps in creating a response surface model by RSM. 

1) Selection of Order of Polynomial Model 

2) Selection of Analysis Points by Design of Experiment Method 

3) Carrying out Analyses at Selected Points 

4) Model Fitting for Analysis Results 

 

Figure 3.5 Data from Finite Element in Minitab 14 
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Figure 3.6 Select Order of Polynomial 

 

 

3.6  DATA COLLECTING 

After all the process had been done, the data collected will then be studied and 

observed. So, comparison can be made to determine how the dimensional parameter 

effecting the warpage of plastic part. The data also can be described by plotting graph. 
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CHAPTER 4 

 

 

RESULT AND DISCUSSION 

 

 

 4.1  INTRODUCTION 

 

This chapter will discuss the whole of the project going on during analysis 

using MoldFlow and Response Surface Method.  The final result of differential 

between warpage values from FE analysis will be compare with prediction values 

from Response Surface Method and then using optimization method from Response 

Surface Method, the smallest values of warpage will be determined and the 

parameter which produce the value also can be determine. 

 

4.2  DATA PREPARATION  

 

This project is to determine optimum value of warpage using Response 

Surface Method.  By selecting the lowest value of warpage from optimization 

process using Response Surface Method, the optimum dimensional parameter for 

injection molding process is also determined. 

 

For this project, the input data set is generating using statistical design of 

experiments (DOE) or experimental design method.  Variable range is divided into 

levels/range between lowest and highest value in full factorial design method.  A 

three-full factorial design creates 3n input data, where n is the number of variable or 

parameter that using in this project.  Because of this project using three parameters 
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(X dimension, Y dimension, Z dimension), so 33=27 input data are generated. Table 

4.1 show the full factorial design that will be used for this project. 

 

Table 4.1: Three Level Full Factorial Designs 

 

Factor Level 
1 2 3 

X dimension 30 95 160 
Y dimension 5 45 85 
Z dimension 0.8 1.2 1.6 

 

Table 4.2: Full Factorial Design Training Data 

 

No of 
experiment X dimension (mm) Y dimension (mm) Z dimension 

(mm) 

1 95  5  0.8  
2 30  5  1.6  
3 160  45  0.8  
4 30  85  0.8  
5 95  45  1.6  
6 160  85  1.6  
7 160  5  1.2  
8 95  85  1.6  
9 160  85  0.8  
10 30  5  0.8  
11 160  45  1.6  
12 30  85  1.6  
13 30  5  1.2  
14 95  5  1.6  
15 30  85  1.2  
16 160  85  1.2  
17 95  5  1.2  
18 160  5  0.8  
19 30  45  1.2  
20 30  45  1.6  
21 95  45  1.2  
22 95  85  0.8  
23 95  45  0.8  
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Table 4.2: Continued 
 

No of 
experiment X dimension (mm) Y dimension (mm) Z dimension 

(mm) 

24 30  45  0.8  
25 160  5  1.6  
26 160  45  1.2  
27 95  85  1.2  

 

 

4.3  FINITE ELEMENT ANALYSIS 

 

Finite element analysis for the project is using MOLDFLOW Plastics Insight 

5.0 (MPI). To create this model, there are few steps that need to consider in MPI.  

Started with import the model from Solidwork, following by generate the mesh, 

select the material, set gate location, create runner system, set cooling system and 

finally start with the warpage analysis.  Using the data obtain from full factorial 

design, warpage analysis will be initialized.  

 
 

Figure 4.1: The Finite element model 
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Figure 4.2: Finite element analyses 

 

The area with blue color shows that warpage at the smallest value.  While the 

red color shows warpage at the high value. From the figure 4.2 above, we can see 

that it starts to deflect at 0.0047 mm and end at 0.1428 mm.  

 

Table 4.3: Finite element analysis result 

 

Experiment 
number  

x dimension 
(mm) 

y dimension 
(mm) 

z dimension 
(mm) 

FE warpage 
(mm) 

1  30 5 0.8 0.0985 
2  30 5 1.2 0.1010  
3  30 5 1.6 0.1013 
4  30 45 0.8 0.1428  
5  30 45 1.2 0.1852 
6  30 45 1.6 0.1890  
7  30 85 0.8 0.2290  
8  30 85 1.2 0.2745 
9  30 85 1.6 0.2795 
10  95 5 0.8 0.1958 
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Table 4.3: Continued 
 

Experiment 
number 

x dimension 
(mm) 

y dimension 
(mm) 

z dimension 
(mm) 

FE warpage 
(mm) 

11  95 5 1.2 0.2555 
12  95 5 1.6 0.2715 
13  95 45 0.8 0.2713 
14  95 45 1.2 0.3052 
15  95 45 1.6 0.3214 
16  95 85 0.8 0.3170  
17  95 85 1.2 0.3728 
18  95 85 1.6 0.4113 
19  160 5 0.8 0.2514 
20  160 5 1.2 0.3890  
21  160 5 1.6 0.4719 
22  160 45 0.8 0.3813 
23  160 45 1.2 0.4558 
24  160 45 1.6 0.4927 
25  160 85 0.8 0.5411 
26  160 85 1.2 0.5578 
27  160 85 1.6 0.5699 

 

The table above shows the warpage values from finite element analysis. From all 

experiments done the warpage value is all below 0.6 mm, these shows that for this 

particular plastics part, the warpage occur are small. 

 

4.4  WARPAGE OPTIMIZATION USING RESPONSE SURFACE 

METHOD 

 

 Finite element method is not suitable to analyze a large number of repetitive 

analyses which are usually needed to perform an optimization process. In order to 

solve the problem, more efficient predictive model using response surface 

methodology (RSM) is used. RSM is a model building method based on statistical 

design of experiment and least square error fitting.  
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4.4.1  Prediction of Warpage Value Using Response Surface Method 

 

 In order to predict the warpage value using response surface method (RSM), 

the result from finite element is needed. From the result, the RSM model can be 

developed. Then from the model, the prediction of warpage value can be done. 

 

 

4.5 MODEL FOR WARPAGE 

 

 With reference to the response surface method, where the response variable 

is the warpage in this study, the relationship between the investigated 3 dimension 

parameters and the response can be represented by the following linear equation 

such Equation 4.1 below.  

 

                               ln W = A ln x + B ln y + C ln z                            (4.1) 

 

where W is the warpage (response), A, B, C,  are constants, while x,  y, and z the x 

dimension (mm), y dimension (mm), and z dimension (mm), respectively.  

 

Equation 4.1 can be written as Equation 4.2 below. 

 

                                  W= w − ε = β0x0 + β1x1 + β2x2 + β3x3                                 (4.2) 

 

where w is the warpage calculated value and W is the predicted value, while x0, x1, 

x2, x3, x4 and ε are dummy variable (x0 = 1), x dimension, y dimension, z 

dimension, and experimental error, respectively. β0, β1, β2, and β3 are the model 

parameters. In most cases, the response surface variables demonstrate some 

curvature in most ranges of the z dimension.  Therefore, it would be useful to 

consider also the second order model in this study. The second order model helps 

understand the second order effect of each factor separately and the two-way 
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interaction amongst these factors combined. This model can be represented by the 

following Equation 4.3. 

 

W" = β0x0 + β1x1 + β2x2 + β3x3 + β11x²1 + β22x²2+β33x²3 + β12x1x2 +β13x1x3 

+ β23x2x3                        (4.3)                                    

 

The parameters β0, β1, β2, β3, β11, β22, β33, β12, β13, and β23 appearing in 

Equation 4.3, are determined using the method of least squares. The calculations are 

performed using MINITAB.  

 

4.6 RESULT AND DISCUSSION 

 

4.6.1 Development of First Order Warpage Model (RSM Linear Model) 

 

To do the calculation of these parameters, the method of least squares is 

used with the aid of MINITAB. Table 4.4 shows estimated regression coefficients 

for warpage (mm) using data in uncoded units. 

 

Table 4.4: Estimated Regression Coefficients for Warpage (mm) using data in 

uncoded units 

 

Term Coefficient 

Constant  -0.0767386  

X dimension (mm)  0.00211402  

Y dimension  (mm)  0.00196806  

Z dimension (mm) 0.0899583  
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Next, the first order equation (RSM linear model) for predicting the warpage 

can be expressed as Equation 4.4. 

 

W = -0.0767386 + 0.00211402Xd+ 0.00196806Yd+ 0.0899583Zd    (4.4) 

 

From this linear equation, one can easily notice that the response W (warpage) is 

affected significantly by the z dimension, x dimension and lastly, by y dimension. z 

dimension gives the most effect on the warpage because it has the largest coefficient 

value compared to others. Table 4.5 shows the warpage values from finite element 

analysis and the values predicted by the first order model (RSM linear model). 

 

Table 4.5: Comparison between finite element alaysis and predicted results 

generated by first order model (RSM linear model) 

 

x 

dimension 

(mm) 

y 

dimension 

(mm) 

z 

dimension 

(mm) 

FE 

warpage 

(mm) 

Predicted 

warpage 

(mm) 

Error (%) 

30 5 0.8 0.0985 0.0684889 30.46812183 
30 5 1.2 0.101 0.1044722 3.437821782 
30 5 1.6 0.1013 0.1404555 38.65301086 
30 45 0.8 0.1754 0.1472113 16.07109464 
30 45 1.2 0.1852 0.1831946 1.082829374 
30 45 1.6 0.189 0.2191779 15.96714286 
30 85 0.8 0.229 0.2259337 1.338995633 
30 85 1.2 0.2745 0.261917 4.583970856 
30 85 1.6 0.2795 0.2979003 6.583291592 
95 5 0.8 0.1958 0.18476 5.638406537 
95 5 1.2 0.2555 0.2207433 13.60340509 
95 5 1.6 0.2715 0.2567266 5.441399632 
95 45 0.8 0.2713 0.2634824 2.881533358 
95 45 1.2 0.3052 0.2994657 1.878866317 
95 45 1.6 0.3214 0.335449 4.37118855 
95 85 0.8 0.317 0.3422048 7.951041009 
95 85 1.2 0.3728 0.3781881 1.445305794 
95 85 1.6 0.4113 0.4141714 0.698127887 
160 5 0.8 0.2514 0.3433115 36.55986476 
160 5 1.2 0.389 0.3792948 2.494910026 
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Table 4.5: Continued 

 x 
dimension 

(mm) 

y 
dimension 

(mm) 

z 
dimension 

(mm) 

FE 
warpage 

(mm) 

Predicted 
warpage 

(mm) 
Error (%) 

160 5 1.6 0.4719 0.4152781 11.99870735 
160 45 0.8 0.3813 0.4220339 10.6829006 
160 45 1.2 0.4558 0.4580172 0.486441422 
160 45 1.6 0.4927 0.4940005 0.263953724 
160 85 0.8 0.5411 0.5007563 7.455867677 
160 85 1.2 0.5578 0.5367396 3.775618501 
160 85 1.6 0.5699 0.5727229 0.495332514 

 

It is clear that the predicted values are close to the calculated readings. This 

indicates that the obtained first order model (RSM linear model) is able to provide, 

to a great extent, accurate values of warpage.  

 

4.6.2 Development of Second Order Warpage Model (RSM Quadratic Model) 

 

 The second order equation (RSM Quadratic Model) was established to 

describe the effect of the three dimension parameters that affect the value of 

warpage. Table 4.6 shows the estimated regression coefficients for warpage (mm) 

using data in uncoded unit. 

 

Table 4.6: Estimated Regression Coefficients for Warpage (W) using data in 

uncoded units 

 

Term Coefficient 
Constant                               -0.104205  
x dimension (mm)  0.00107768  
y dimension (mm)  0.00207367  
z dimension (mm)  0.220810  
x dimension (mm)*x dimension (mm)  -1.08355E-06  
y dimension (mm)*y dimension (mm)  4.65972E-06  
z dimension (mm)*z dimension (mm)  -0.0778819  
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Table 4.6: Continued 

  Term Coefficient 
x dimension (mm)*y dimension (mm)  2.82281E-06  
x dimension (mm)*y dimension (mm)  0.000932241  
y dimension (mm)*z dimension (mm)  -6.53125E-04  

 

Next, the model is obtained using the Box–Behnken design and the Equation 4.6 

can be written as below. 

 

W" = -0.104205 + 0.00107768 X + 0.00207367 Y + 0.220810 Z + (-1.08355E-06) 

X2 + 4.65972E-06 Y2 + (-0.0778819) Z2 + 2.82281E-06 XY + 0.000932241 XZ +                      

(-6.53125E04) YZ                                                                                               (4.5) 

 

Z dimension gives the most effect on the warpage because it has the largest 

coefficient value compared to others. Z dimension also refers to the wall thickness 

of the model. Warpage is greatly influenced by wall thickness and mould surface 

temperature. It follows that major differences in wall thickness and unsuitable 

mould temperatures will cause the moulding to warp (R. Wilkinson, E.A. Poppe, K. 

Leidig and K. Schirmer). The warpage value obtained from finite element analysis 

and predicted values by this equation are shown in Table 4.7. 
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Table 4.7: Comparison between finite element warpage value and predicted results 

generated by second order model (RSM Quadratic Model) 

 

x 

dimension 

(mm) 

y 

dimension 

(mm) 

z 

dimension 

(mm) 

FE 

warpage 

(mm) 

Predicted 

warpage 

(mm) 

Error 

(%) 

30 5 0.8 0.0985 0.0846 14.087982 
30 5 1.2 0.101 0.1205 19.329168 
30 5 1.6 0.1013 0.1315 29.81182 
30 45 0.8 0.1754 0.1594 9.1351485 
30 45 1.2 0.1852 0.1848 0.2019052 
30 45 1.6 0.189 0.1854 1.9296373 
30 85 0.8 0.229 0.2490 8.751819 
30 85 1.2 0.2745 0.2640 3.8102778 
30 85 1.6 0.2795 0.2541 9.0813233 
95 5 0.8 0.1958 0.1953 0.2744438 
95 5 1.2 0.2555 0.2554 0.0391284 
95 5 1.6 0.2715 0.2906 7.0405919 
95 45 0.8 0.2713 0.2774 2.232052 
95 45 1.2 0.3052 0.3270 7.1569282 
95 45 1.6 0.3214 0.3518 9.4611465 
95 85 0.8 0.317 0.3744 18.094504 
95 85 1.2 0.3728 0.4136 10.943392 
95 85 1.6 0.4113 0.4279 4.0389368 
160 5 0.8 0.2514 0.2967 18.037368 
160 5 1.2 0.389 0.3811 2.0252964 
160 5 1.6 0.4719 0.4406 6.6380498 
160 45 0.8 0.3813 0.3862 1.2793514 
160 45 1.2 0.4558 0.4601 0.9442345 
160 45 1.6 0.4927 0.5091 3.3300725 
160 85 0.8 0.5411 0.4905 9.3473489 
160 85 1.2 0.5578 0.5540 0.6817589 
160 85 1.6 0.5699 0.5926 3.9744859 
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It can be concluded from the table that the equation can produce values close 

to finite element analysis. So, the second order polynomial model (RSM Quadratic 

Model) also can be used to predict the warpage value. 

 

From both first and second order model (RSM Linear and Quadratic Model), 

warpage values can be predicted and the values are almost the same as the values 

from finite element analysis. So, comparison between both first and second order 

models (RSM Linear and Quadratic Model) result and finite element analysis result 

need to be done to determine which model is more significant to predict the 

warpage value. The comparison of error percentage of both first and secondary 

order (RSM Linear and Quadratic Model) can be done to select the less error 

percentage as the predictive model. 

 

4.7 COMPARISON WARPAGE AND ERROR 

 

 The first and second order models (RSM Linear and Quadratic Model) were 

obtained from the effect of interaction between three dimension parameters x 

dimension, y dimension, z dimension and warpage response. Based on analysis 

before, it proves that the second order (RSM Quadratic Model) predicted result is 

very close to calculated result compared to first order (RSM Linear Model) 

predicted result as shown in Figure 4.3. Therefore in this thesis may conclude that 

second order model (RSM Quadratic Model) much accurate than first order model 

(RSM Linear Model). 
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Figure 4.3: Comparison warpage between the calculated and predicted results 

 

This situation happened because the average error for quadratic equation 

(RSM Quadratic Model) is 6.90% which is lower than linear equation to be 8.75% 

as shown in Table 4.8.  

 

Table 4.8: Average error between linear equation and quadratic equation 

 

  Model 

 Linear Equation Quadratic Equation 

    Average error (%) 8.75 6.90 

 

Therefore, we can conclude that second order model (RSM Quadratic 

Model) has a smooth pattern compare to first order model which it has rough 

pattern. To be clear, Figure 4.4 shows the error comparison between linear equation 

model and quadratic equation model (RSM Linear and Quadratic Model). 
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Figure 4.4: Error comparison between linear equation model and quadratic 

equation model  

 

4.8  OPTIMIZATION USING RESPONSE SURFACE METHOD 

The warpage optimization using RSM is done in Minitab 14. After select the 

minimum option, the low and top limit is set. Then the result show that the 

dimension parameters that provide the smallest value are X=30 mm Y=5 mm Z=0.8 

mm with predicted warpage value of 0.0846mm. 
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CHAPTER 5 

 

 

CONCLUSION AND RECOMMENDATIONS 

 

 

5.1 CONCLUSION 

In this study, an efficient optimization method using RSM was introduced in 

minimizing warpage of injection-molded plastic part. To minimize the warpage, the 

appropriate dimensional parameters were determined. X dimension, Y dimension and Z 

dimension were selected as dimensional parameters. Finite element analysis using 

MoldFlow was performed based on full factorial experimental design. Predictive model for 

warpage was created based on the three dimensional parameters selected earlier by using 

RSM. The second model (quadratic) of RSM is suitable to predict the warpage of thin shell 

plastic part based on the comparison graph and percentage error graph. The critical factor 

that effect the warpage of thin shell plastic part is the Z dimension (wall thickness) based 

on regression coefficient. Warpage is greatly influenced by wall thickness and mould 

surface temperature. It follows that major differences in wall thickness and unsuitable 

mould temperatures will cause the moulding to warp (R. Wilkinson, E.A. Poppe, K. Leidig 

and K. Schirmer). RSM was used to determine the optimum dimensional parameter that 

had minimum value of warpage. The dimensional parameters of the thin shell plastic part 

with the minimum warpage is X=30 mm Y=5 mm Z=0.8 mm with predicted warpage value 

of 0.0846mm. 
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5.2 RECOMMENDATIONS 

1. The effect of dimension parameter on warpage can be explored more using different 

model of plastic part and different analysis approach such as Artificial Neural 

Network (ANN), Taguchi or etc. 

2. Genetic Algorithm (GA) can be used as warpage optimization method in future 

study. 
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Appendix B 

 

 

Response Surface Regression: warpage (mm) versus x dimension , y dimension , ..  
 
The analysis was done using coded units. 
 
Estimated Regression Coefficients for warpage (mm) 
 
Term                 Coef   SE Coef       T      P 
Constant          0.32061  0.006053  52.963  0.000 
x dimension (mm)  0.13741  0.007370  18.644  0.000 
y dimension (mm)  0.07872  0.007399  10.639  0.000 
z dimension (mm)  0.03598  0.007399   4.863  0.000 
 
 
S = 0.0313927  PRESS = 0.0344058 
R-Sq = 95.47%  R-Sq(pred) = 93.12%  R-Sq(adj) = 94.88% 
 
 
Analysis of Variance for warpage (mm) 
 
Source          DF    Seq SS    Adj SS    Adj MS       F      P 
Regression       3  0.477412  0.477412  0.159137  161.48  0.000 
  Linear         3  0.477412  0.477412  0.159137  161.48  0.000 
Residual Error  23  0.022667  0.022667  0.000986 
Total           26  0.500078 
 
 
Estimated Regression Coefficients for warpage (mm) using data in uncoded units 
 
Term                    Coef 
Constant          -0.0767386 
x dimension (mm)  0.00211402 
y dimension (mm)  0.00196806 
z dimension (mm)   0.0899583 
 
 
Predicted Response for New Design Points Using Model for warpage (mm) 
 
Point       Fit     SE Fit         95% CI                 95% PI 
    1  0.068489  0.0139604  (0.039610, 0.097368)  (-0.002584, 0.139562) 
    2  0.104472  0.0118382  (0.079983, 0.128962)  ( 0.035068, 0.173877) 
    3  0.140456  0.0139604  (0.111576, 0.169335)  ( 0.069383, 0.211528) 
    4  0.147211  0.0118382  (0.122722, 0.171700)  ( 0.077806, 0.216616) 
    5  0.183195  0.0092408  (0.164078, 0.202311)  ( 0.115499, 0.250890) 
    6  0.219178  0.0118382  (0.194689, 0.243667)  ( 0.149773, 0.288583) 
    7  0.225933  0.0139604  (0.197054, 0.254813)  ( 0.154861, 0.297006) 
    8  0.261917  0.0118382  (0.237428, 0.286406)  ( 0.192512, 0.331322) 
    9  0.297900  0.0139604  (0.269021, 0.326779)  ( 0.226827, 0.368973) 
   10  0.184760  0.0121067  (0.159716, 0.209805)  ( 0.115158, 0.254363) 
   11  0.220744  0.0095824  (0.200921, 0.240566)  ( 0.152845, 0.288642) 
   12  0.256727  0.0121067  (0.231682, 0.281771)  ( 0.187124, 0.326330) 
   13  0.263482  0.0095824  (0.243660, 0.283305)  ( 0.195584, 0.331381) 
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   14  0.299466  0.0060886  (0.286870, 0.312061)  ( 0.233315, 0.365617) 
   15  0.335449  0.0095824  (0.315626, 0.355272)  ( 0.267550, 0.403348) 
   16  0.342205  0.0121067  (0.317160, 0.367249)  ( 0.272602, 0.411807) 
   17  0.378188  0.0095824  (0.358365, 0.398011)  ( 0.310289, 0.446087) 
   18  0.414171  0.0121067  (0.389127, 0.439216)  ( 0.344569, 0.483774) 
   19  0.343312  0.0143540  (0.313618, 0.373005)  ( 0.271905, 0.414719) 
   20  0.379295  0.0122998  (0.353851, 0.404739)  ( 0.309548, 0.449043) 
   21  0.415279  0.0143540  (0.385585, 0.444972)  ( 0.343871, 0.486686) 
   22  0.422034  0.0122998  (0.396590, 0.447478)  ( 0.352287, 0.491782) 
   23  0.458017  0.0098253  (0.437692, 0.478343)  ( 0.389970, 0.526065) 
   24  0.494001  0.0122998  (0.468557, 0.519445)  ( 0.424253, 0.563748) 
   25  0.500756  0.0143540  (0.471063, 0.530450)  ( 0.429349, 0.572164) 
   26  0.536740  0.0122998  (0.511296, 0.562184)  ( 0.466992, 0.606487) 
   27  0.572723  0.0143540  (0.543030, 0.602416)  ( 0.501316, 0.644130) 
 
  
Normplot of Residuals for warpage (mm)  
 
  
Response Surface Regression: warpage (mm) versus x dimension , y dimension , ..  
 
The analysis was done using coded units. 
 
Estimated Regression Coefficients for warpage (mm) 
 
Term                                    Coef   SE Coef       T      P 
Constant                            0.327043  0.013828  23.651  0.000 
x dimension (mm)                    0.137639  0.006318  21.785  0.000 
y dimension (mm)                    0.079099  0.006330  12.495  0.000 
z dimension (mm)                    0.037226  0.006330   5.881  0.000 
x dimension (mm)*x dimension (mm)  -0.004578  0.011253  -0.407  0.689 
y dimension (mm)*y dimension (mm)   0.007456  0.010943   0.681  0.505 
z dimension (mm)*z dimension (mm)  -0.012461  0.010943  -1.139  0.271 
x dimension (mm)*y dimension (mm)   0.007339  0.007708   0.952  0.354 
x dimension (mm)*z dimension (mm)   0.024238  0.007708   3.145  0.006 
y dimension (mm)*z dimension (mm)  -0.010450  0.007738  -1.350  0.195 
 
 
S = 0.0268054  PRESS = 0.0441275 
R-Sq = 97.56%  R-Sq(pred) = 91.18%  R-Sq(adj) = 96.26% 
 
 
Analysis of Variance for warpage (mm) 
 
Source          DF    Seq SS    Adj SS    Adj MS       F      P 
Regression       9  0.487863  0.487863  0.054207   75.44  0.000 
  Linear         3  0.477412  0.478027  0.159342  221.76  0.000 
  Square         3  0.001384  0.001384  0.000461    0.64  0.598 
  Interaction    3  0.009067  0.009067  0.003022    4.21  0.021 
Residual Error  17  0.012215  0.012215  0.000719 
Total           26  0.500078 
 
 
Estimated Regression Coefficients for warpage (mm) using data in uncoded units 
 
Term                                       Coef 
Constant                              -0.104205 
x dimension (mm)                     0.00107768 
y dimension (mm)                     0.00207367 
z dimension (mm)                       0.220810 
x dimension (mm)*x dimension (mm)  -1.08355E-06 
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y dimension (mm)*y dimension (mm)   4.65972E-06 
z dimension (mm)*z dimension (mm)    -0.0778819 
x dimension (mm)*y dimension (mm)   2.82281E-06 
x dimension (mm)*z dimension (mm)   0.000932241 
y dimension (mm)*z dimension (mm)  -6.53125E-04 
 
 
Predicted Response for New Design Points Using Model for warpage (mm) 
 
Point       Fit     SE Fit         95% CI                95% PI 
    1  0.084623  0.0187911  (0.044977, 0.124269)  (0.015557, 0.153690) 
    2  0.120522  0.0154841  (0.087854, 0.153191)  (0.055210, 0.185834) 
    3  0.131499  0.0187911  (0.091853, 0.171145)  (0.062433, 0.200566) 
    4  0.159377  0.0154841  (0.126708, 0.192045)  (0.094065, 0.224689) 
    5  0.184826  0.0136486  (0.156030, 0.213622)  (0.121362, 0.248289) 
    6  0.185353  0.0154841  (0.152684, 0.218021)  (0.120041, 0.250665) 
    7  0.249042  0.0187911  (0.209396, 0.288687)  (0.179975, 0.318108) 
    8  0.264041  0.0154841  (0.231372, 0.296709)  (0.198729, 0.329353) 
    9  0.254118  0.0187911  (0.214472, 0.293763)  (0.185051, 0.323184) 
   10  0.178837  0.0157293  (0.145651, 0.212023)  (0.113265, 0.244409) 
   11  0.235245  0.0136715  (0.206401, 0.264090)  (0.171760, 0.298731) 
   12  0.266732  0.0157293  (0.233546, 0.299918)  (0.201159, 0.332304) 
   13  0.259801  0.0136715  (0.230956, 0.288645)  (0.196315, 0.323286) 
   14  0.305759  0.0136486  (0.276963, 0.334555)  (0.242296, 0.369223) 
   15  0.326796  0.0136715  (0.297951, 0.355640)  (0.263310, 0.390281) 
   16  0.355676  0.0157293  (0.322490, 0.388862)  (0.290104, 0.421248) 
   17  0.391184  0.0136715  (0.362340, 0.420029)  (0.327699, 0.454670) 
   18  0.401771  0.0157293  (0.368585, 0.434957)  (0.336198, 0.467343) 
   19  0.296746  0.0194288  (0.255754, 0.337737)  (0.226898, 0.366593) 
   20  0.381121  0.0158727  (0.347633, 0.414610)  (0.315396, 0.446847) 
   21  0.440575  0.0194288  (0.399584, 0.481566)  (0.370727, 0.510422) 
   22  0.386178  0.0158727  (0.352690, 0.419667)  (0.320452, 0.451904) 
   23  0.460104  0.0136486  (0.431308, 0.488900)  (0.396640, 0.523567) 
   24  0.509107  0.0158727  (0.475619, 0.542596)  (0.443381, 0.574833) 
   25  0.490521  0.0194288  (0.449530, 0.531513)  (0.420674, 0.560369) 
   26  0.553997  0.0158727  (0.520509, 0.587486)  (0.488271, 0.619723) 
   27  0.592551  0.0194288  (0.551559, 0.633542)  (0.522703, 0.662398) 
 
  
Normplot of Residuals for warpage (mm)  
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Response Optimization  
 
Parameters 
 
              Goal     Lower  Target  Upper  Weight  Import 
warpage (mm)  Minimum      0       0    0.5       1       1 
 
 
Starting Point 
 
x dimension    =    95 
y dimension    =    45 
z dimension    =   1.2 
 
 
Global Solution 
 
x dimension    =    30 
y dimension    =     5 
z dimension    =   0.8 
 
 
Predicted Responses 
 
warpage (mm)   =   0.0846230  ,   desirability =   0.830754 
 
 
Composite Desirability = 0.830754 
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