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ABSTRACT 

 

The present study was carried out to investigate the potential of palm oil decanter cake 

(PDC) as the new substrate for bio-oil production. Conversion of PDC into bio-oil was 

conducted through vacuum pyrolysis. Maximum bio-oil yield was 22.12% obtained at 

pyrolysis temperature of 500 ºC. The chemical characterisation of bio-oil was studied 

using 
1
H-NMR, FTIR, CHNS analyzer and GC–MS. The other properties like pH, 

calorific value and thermal volatilization were also determined. For comparison 

purpose, pyrolysis of palm kernel shell (PKS) was also conducted using the same 

method in PDC pyrolysis. The results indicate PDC bio-oil characteristic is better than 

that of PKS bio-oil in terms of lower oxygen content, higher pH and heating value. The 

pH value of PDC recorded to be 6.38, which is found to be higher as compared to that 

of other bio-oils. The calorific value of PDC bio-oil was found to be 36.79 MJ/kg, 

which is slightly lower than that of conventional liquid fuel such as gasoline and diesel 

fuel and much higher than that of bio-oils derived from lignocellulosic biomass. Fatty 

acid derived from decomposition of triglycerides dominated the composition of PDC 

bio-oils, while phenolic compounds were prominently found in PKS bio-oil. Effect of 

catalyst addition was studied by using single and dual stages of pyrolysis reactor. Single 

stage catalytic pyrolysis was conducted by mixing the catalyst with the biomass in a 

certain ratio prior to the experiment and was placed into the vacuum pyrolysis reactor. 

Catalytic reaction reduced the yield of PDC bio-oils, from 22.12 wt% to 15.22 – 17.09 

wt%. Catalytic activity of CaO and MgO enhanced the formation of methyl ester 

through the transesterification reaction of fatty acid, which was produced from 

decomposition of PDC. Generally, the oxygen content was decreased in presence of 

catalysts. H-ZSM5 provides better oxygen content reduction than that of other catalysts, 

both for PDC and PKS. The presence of catalysts slightly affected the pH value and 

HHV of bio-oils. Dual stage catalytic pyrolysis was conducted by placing the catalysts 

separately into a catalyst reactor bed to catalyse the upgrading of pyrolytic vapor 

occurred. Less bio-oil were produced by dual stages catalytic pyrolysis. However, the 

ratio of O/C decreased while the calorific value slightly increased in dual stage 

pyrolysis. Bio-oils produced from PDC catalytic pyrolysis has relatively high calorific 

value than that of other bio-oils, and comparable to the HHV of petroleum fuels. 

Therefore, PDC bio-oil can be considered as potential alternative fuel. Kinetic studies of 

PDC pyrolysis were conducted by using thermogravimetry data. Coats-Redfern 

approach was employed to describe the kinetic model of the PDC thermal 

decomposition. It was found that the major decomposition of PDC occurred at 220 – 

530 °C, represent for decomposition of hemicellulose, cellulose, lignin and triglycerides 

contained in PDC. Two stages of reaction were identified, first stage at 220 – 300 °C 

obeyed first order kinetic model, while second stage at 300 – 530 °C was best fit for 

second order kinetic model. Triglyceride decomposition dominated the whole pyrolysis 

reaction. As conclusion, decanter cake from palm oil milling plant has potential to be 

utilised as new substrate for the production of bio-oil through catalytic vacuum 

pyrolysis.    
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ABSTRAK 

 

Kajian ini telah dijalankan untuk menyelidik potensi kek penyiring minyak sawit (PDC) 

sebagai substrat baru untuk pengeluaran minyak-bio. Penukaran PDC kepada minyak-

bio dijalankan melalui pirolisis vakum. Hasil minyak-bio maksima 22.12% diperolehi 

pada suhu pirolisis 500 °C. Pencirian kimia minyak-bio dikaji menggunakan 
1
H-NMR, 

FTIR, penganalisis CHNS dan GC-MS. Sifat-sifat lain seperti pH, nilai kalori dan 

pemeruapan terma juga telah ditentukan. Bagi tujuan perbandingan, pirolisis tempurung 

isirong sawit (PKS) juga telah dijalankan dengan menggunakan kaedah yang sama 

dalam PDC pirolisis. Keputusan menunjukkan ciri minyak-bio PDC adalah lebih baik 

daripada minyak-bio PKS dari segi kandungan oksigen rendah, pH dan nilai pemanasan 

yang lebih tinggi. Nilai pH PDC direkodkan 6.38 didapati lebih tinggi berbanding 

dengan minyak-bio yang lain. Nilai kalori PDC minyak-bio didapati 36,79 MJ/kg, 

rendah sedikit daripada bahan api cecair konvensional seperti petrol dan minyak diesel. 

dan jauh lebih tinggi daripada minyak-bio yang dihasilkan daripada biojisim 

lignoselulosa. Asid lemak yang diperolehi daripada penguraian trigliserida menguasai 

komposisi PDC minyak-bio, manakala sebatian fenolik adalah jelas dominan dalam 

PKS minyak-bio. Kesan pemangkin telah dikaji dengan menggunakan reaktor pirolisis 

peringkat tunggal dan dwiperingkat. Pada pirolisis peringkat tunggal, pracampuran 

pemangkin dengan biojisim dalam nisbah tertentu diletakkan ke dalam reaktor pirolisis 

vakum. Tindak balas bermangkin mengurangkan hasil PDC bio-minyak, daripada 

22.12% berat untuk 15,22-17,09% berat. Aktiviti mangkin CaO dan MgO 

mempertingkatkan pembentukan metil ester melalui reaksi transesterificasi asid lemak, 

yang dihasilkan daripada penguraian PDC. Secara umumnya, kandungan oksigen 

menurun dalam penggunaan pemangkin. H-ZSM5 menyediakan pengurangan 

kandungan oksigen yang lebih baik daripada itu pemangkin lain, kedua-dua untuk PDC 

dan PKS. Kehadiran pemangkin sedikit memberi kesan kepada nilai pH dan HHV 

minyak-bio. . Pada pirolisis dwiperingkat, pemangkin diletakkan secara berasingan ke 

dalam reaktor lapisan tetap. Minyak-bio dihasilkan oleh pirolisis pemangkin 

dwiperingkat lebih sedikit berbanding dengan pirolisis pemangkin peringkat tunggal. 

Walau bagaimanapun, nisbah O/C menurun manakala nilai kalori menaik dalam 

pirolisis pemangkin dwiperingkat. Bio-minyak yang dihasilkan dari pirolisis pemangkin 

PDC mempunyai nilai kalori yang tinggi daripada minyak-bio yang lain, dan setanding 

dengan HHV bahan api petroleum. Oleh itu, PDC bio-minyak boleh dianggap memiliki 

potensi sebagai bahan api alternatif. Kajian kinetik PDC pirolisis telah dijalankan 

dengan menggunakan data termogravimetri. Pendekatan Coats-Redfern telah digunakan 

untuk menggambarkan model kinetik penguraian terma PDC. Ia telah mendapati 

bahawa penguraian utama PDC berlaku pada 220 – 530 °C, untuk mewakili penguraian 

hemiselulosa, selulosa, lignin dan trigliserida yang terkandung dalam PDC. Dua 

peringkat tindak balas telah dikenal pasti, peringkat pertama pada 220 – 300 °C 

mengikuti  model kinetik tertib pertama, manakala peringkat kedua pada 300 – 530 °C 

adalah paling sesuai untuk model kinetik tertib kedua. Penguraian trigliserida 

mendominasi reaksi pirolisis keseluruhan. Kesimpulannya, kek penyiring minyak sawit 

mempunyai potensi untuk digunakan sebagai substrat baru untuk pengeluaran minyak-

bio melalui pirolisis pemangkin vakum. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1  BACKGROUND 

 

 In the last three decades, world's energy consumption has been rapidly 

increasing due to the population growth and economic activities. Modern lifestyle 

which is required better health and environmental provision, accessibility and mobility, 

also contribute to energy consumption rising worldwide. The world primary energy 

demand increases by one-third from 2011 to 2035 as projected by International Energy 

Agency (IEA, 2013a). Oil demand (excluding biofuels) continues to grow steadily, 

reaching about 99 million barrels per day (mb/d) by 2035 — 15 mb/d higher than in 

2009, while global oil production reaches 96 mb/d by 2035 (IEA, 2013a). It is clearly 

stated that the unbalance between oil demand and production, also oil price uncertainty, 

encourage people to find the new energy source. In Malaysia case, energy demand  

rapidly increases from 143 mboe (million barrels of oil equivalent) in 1990 to 503 mboe 

in 2011, and will reach almost 870 mboe in 2035 with the annual growth rate of 2.3% 

(IEA, 2013b).  

 

 World primary energy source, until 2035, is still dominated by fossil fuels – oil, 

coal, and natural gas. However, the share of fossil fuels in the world’s energy mix will 

falls from 82% to 76%, while low-carbon energy sources (renewables and nuclear) meet 

around 40% of the growth in primary energy demand in 2035.Demand for the 

renewables raise the share of renewables from 13% in 2011 to 18% in 2035 (IEA, 

2013b). As shown in Figure 1.1, share of renewables to total energy demand is 

dominated by electricity generation followed by heat production and transportation fuel.  

Compared to the fossil fuels, renewable energy provides advantages on the more secure, 
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reliable and sustainable energy path. Moreover, utilisations of renewable energy in long 

term offers benefit in reducing CO2 emission and dependence on imported oil.  

 

 

Figure 1.1: Renewable energy share in total primary energy demand by category in 

2011 (actual) and 2035 (forecast) 

 

Adapted from: International Energy Agency (2013) 

 

 Among the other renewable energy, such as hydro, wind, and solar photovoltaic, 

biomass is widely utilised due to its local availability at relatively low price. Biomass is 

the third largest primary energy source in the world, after coal and oil. It remains the 

primary source of energy for more than half of the world’s population, and provides 

about 1250 million tons oil equivalent (Mtoe) of primary energy, which is about 14% of 
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make them competitive with fossil fuels. Government support is essential in application 

of bio-fuel. Globally, in 2012, an amount of US$ 101 billion was spent by worldwide 

government to support renewable-energy development, includes US$ 82 billion to those 

for electricity generation and US$ 19 billion to biofuels for transport. European Union 

recorded almost 60% of total global subsidies or equivalent to US$ 57 billion; followed 

by United States (US$ 21 billion) and China (US$ 7 billion) as illustrated in Figure 1.2. 

(IEA, 2013a). With abundant sources of biomass, particularly from palm oil industries 

and other agricultural based industry, Malaysia has supported the renewable 

developments through the 5th fuel policy. New source of renewable energy, particularly 

biomass such as palm oil waste, wood waste and rice husk are recommended to be 

utilised as energy sources to supplement the conventional energy supply (Shuit et al., 

2009). This policy has been implemented in Small Renewable Energy Power Program 

since 2004 (Sulaiman et al., 2011).  

 

 

 

Figure 1.2: Subsidies for renewables development in 2012 by country. 

 

Source: International Energy Agency (2012) 
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 World production of oils and fats stood at 179 million tonnes in 2011. As shown 

in Figure 1.3, Palm oil and palm kernel oil jointly accounted for 55.76 million tonnes 

(31%) of that to dominate the oil production; followed by soybean oil and rapeseed oil, 

contributed 41.75 million tonnes (23%) and 23.46 million tonnes (13%), respectively. 

Malaysia currently is the world’s second largest producer and exporter of palm oil with 

the production of 18.911 million tonnes of crude palm oil (CPO) in 2011 from 5.0 

million ha of plantation area.  From this industry, Malaysia received total revenue of 

80.4 billion RM in 2011, increased of about 34.60% from previous year revenue 

according to Malaysian Palm Oil Council. (MPOC, 2011) 

 

 

 

Figure 1.3: World’s oils and fats production in 2011 

 

Source: MPOC (2011) 
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From the processing of fresh fruit bunch (FFB), palm oil milling plant produces 

22.8 wt% as crude palm oil (CPO) and crude palm kernel oil (CPKO) while the rest is 

released into the environment and considered as by-product and waste (Chavalparit et 

al., 2006). The major solid phases generated from the milling operations are empty fruit 

bunches, palm fibre, and palm kernel shell. The other biomasses are generated from 

palm oil plantation in form of trunk, leaves and stalks. In average, one hectare of palm 

oil plantation produces about 50 – 70 tonnes biomass residue (Shuit et al., 2009), thus 

approximately 300 million tonne of biomass was generated from palm oil industry in 

2011.  

 

Nowadays, these solid wastes are currently considered as the by-product since 

they are used for economic purposes such as for solid fuels. The palm fibre and palm 

kernel shell are being used by nearly all palm oil milling plants as solid fuel to generate 

steam and electricity to be used by the mill. Traditionally, biomasses are being 

transformed into the fuel source by drying under the sun. However, direct combustion 

of palm oil biomasses potentially raises environmental issues related to the gas emission 

and particulate matters. Therefore, biomass is preferred to be transformed into other 

types of fuel, e.g. bio-ethanol, bio-oil, syn-gas, hydrocarbon or bio-char prior usage. 

Several reports on conversion of palm oil biomass into energy sources have been 

published in the two last decades. Conversion of the empty fruit bunch (EFB) into bio-

oil through the thermochemical process was successfully conducted in the fixed bed 

reactor (Lim and Andrésen, 2011; Misson et al., 2009) as well as fluidised bed reactor 

(Sulaiman and Abdullah, 2011; Abdullah and Gerhauser, 2008; Abdullah et al., 2010). 

Zin et al. (2012) reported the production of hydrogen from EFB bio-oil through steam 

reforming processes. Hydrogen-rich gas with a composition suitable for liquid fuel 

synthesis gas was successfully obtained by gasification of EFB (Ogi et al., 2010; 

Mohammed et al., 2011; Ismail et al., 2011; Inayat et al., 2012; Mohammed et al., 

2012a).Recently, biological processes were applied to utilise EFB as substrate in 

production of bio-ethanol (Piarpuzán et al., 2011; Kim and Ho, 2012), butanol 

(Noomtim and Cheirsilp, 2011) and bio gas (O-thong et al., 2012).  

 

 Palm kernel shell (PKS) accounts for 6 – 7 wt% of the total fresh fruit bunch 

(FFB) processed. PKS can be transformed into carbonaceous material by the 
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thermochemical process such as carbonization or torrefaction. Densification of 

carbonaceous PKS provides briquetted char with high gross calorific value of 

approximately 30 MJ kg
-1 

(Jamaluddin et al., 2013). This value is comparable to that of 

coal (31-34 MJ kg
-1

) (Channiwala and Parikh, 2002).  In addition, thermal degradation 

of PKS is also intended to produce bio-oil via pyrolysis (Asadullah et al., 2013; Kim et 

al., 2010) and hydrogen-rich gas through gasification (Khan et al., 2014a, 2014b; Yusup 

et al., 2014). Palm kernel shell was also utilised for non-energy purpose, including 

adsorbent (Jumasiah et al., 2005; Choong et al., 2006; Ismaiel et al., 2013) and building 

materials (Alengaram et al., 2013; Alengaram et al., 2011; Yew et al., 2014; Muntohar 

and Rahman, 2014).   

  

 Palm oil decanter cake (PDC) is a by-product from palm oil milling decantation 

process. In the last stage of the clarification process of crude palm oil, extracted palm 

oil is introduced into the decanter unit. Extracted palm oil is separated into three phases 

in the decanter; oil phase, aqueous phase, and solid phase. Oil phase in the top of 

decanter cake are collected as the product for further processing while the aqueous 

phase is discharged as palm oil milling effluent. The separated fine solid particles 

suspended in extracted palm oil are decanted after certain residence time. A screw 

conveyor in the bottom of the decanter discharges the decanter cake from the decanter 

unit. The production rate of the decanter cake amount to about 4 – 5 wt % of the fresh 

fruit bunch processed. The composition of decanter cake varies by plant site location. 

Its’ major constituents are carbon, hydrogen, oxygen, and nitrogen. Decanter cake may 

also contain phosphorus and magnesium (Chavalparit et al., 2006). The oil content of 

PDC was reported to be about 11.5 wt% (Maniam et al., 2013). 

 

In recent years, some researchers have been trying to create and develop value 

added by-products from PDC. At many palm oil mills, decanter cake is usually mixed 

with other biomass wastes together with some chemical base plant nutrient and sent 

back to the plantation as fertilizer. The advantage of PDC as fertilizer was studied in 

lady’s finger plant (Embrandiri et al., 2013).  Composting of PDC mixed with other 

biomass wastes was considered as good practice as it will be helpful in recycling useful 

plant nutrients (Singh et al., 2010; Nutongkaew et al., 2013; Yahya et al., 2010). 

Currently, palm oil decanter cake (PDC) has attracted researchers’ attention to utilise it 
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as substrates for valuable by-products. Biological process of PDC has been conducted to 

produce cellulase and polyose (Zanirun et al., 2013; Nafis et al., 2012). PDC was also 

investigated as the substrate for bio-surfactant (Noparat et al., 2014), bio-butanol 

(Loyarkat et al., 2013), and bio-diesel production (Maniam et al., 2013). The capability 

of decanter cake as adsorbent for heavy metal and organic pollutant removal from 

aqueous solution have also been investigated (Dewayanto et al., 2009; Sahad et al., 

2012). 

 

 Conversion of biomass into energy sources has been practiced from long time 

ago. Direct combustion of biomass, historically, has been the primary source of energy 

throughout the world, particularly for residential activity and small industry in the rural 

area. Unfortunately, direct burning of loose biomass in conventional grate is always 

associated with low energy efficiency and contributes adverse impact to the 

environment, particularly the air quality. Modern technology which offers clean and 

efficient energy conversion is required to improve the attractiveness of biomass 

utilisation as energy sources. Many techniques have been developed to transform 

biomass into energy. Hernandez (2011) classified the conversion process into two 

categories biochemical and thermochemical. Biochemical usually consists of two 

processes: gasification or hydrolysis followed by fermentation to form ethanol. 

Thermochemical processes required relatively high temperature and sometimes high 

pressure to decompose biomass into the smaller molecular weight compound that can be 

converted into hydrocarbons, alcohols or aromatics via the catalytic process.  

 

 There are two main pathways in the thermochemical process of biomass 

conversion: pyrolysis and gasification. Pyrolysis is thermal decomposition of biomass in 

the absence of oxygen. Main products of pyrolysis are bio-oil or pyrolytic liquid, solid 

char and gas. Bio-oil produced from biomass contains high oxygenated compounds. 

This causes problem of the instability of the oil during storage, where viscosity, 

calorific value, and density all are affected. Therefore, utilisation of the oil requires a 

general decrease in the oxygen content in order to separate the organic product from the 

water, increase the heating value, and increase the stability (Mortensen et al., 2011). 

Hydrodeoxygenation, a catalytic reaction between bio-oil and hydrogen becomes the 

most common bio-oil upgrading process. In this process, oxygen is eliminated from bio-
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oil as water. Otherwise, the bio-oil can be upgraded by hydrocracking, where the 

chemical compounds in the bio-oil were cracked into smaller molecules. Feasibility of 

co-processing of bio-oil upgrading in a Fluid Catalytic Cracking (FCC) facilities of 

crude oil refinery were also investigated (Mante et al. 2012; Fogassy et al. 2011; 

Stefanidis et al. 2011). Instead of catalytic upgrading of bio-oil, the addition of catalyst 

during the pyrolysis process was proposed as the alternative pathway to enhance the 

bio-oil properties. The direct use of catalysts could decrease the pyrolysis temperature, 

increase the conversion of biomass and the yield of bio-oil, and change the distribution 

of the pyrolytic liquid products then improve the quality of the bio-oil obtained (Aho et 

al., 2011; Stefanidis et al., 2011; Torri et al., 2010; Abu Bakar and Titiloye, 2013). 

 

1.2 PROBLEM STATEMENT 

 

Even though the palm oil industry contributes major income for Malaysia, it 

raises environmental concern due to the waste generated. From the processing of fresh 

fruit bunch (FFB), palm oil milling plant produces 22.8 wt% as crude palm oil (CPO) 

and crude palm kernel oil (CPKO) while the rest is released into the environment and 

considered as by-product and waste (Chavalparit et al., 2006). Recent study also 

reported that palm oil biomass residue has potential energy value of RM 6.379 billion 

annually (Sulaiman et al., 2011). One of the solid phases generated from the milling 

operations is palm oil decanter cake with the production rate about 4 – 5 wt % of the 

fresh fruit bunch processed. Currently, the decanter cake from palm oil milling plant is 

usually mixed with other biomass wastes together with some chemical base plant 

nutrient and sent back to the plantation as fertilizer. Therefore, PDC is still under-

utilisation as an added value by product. 

 

A thermochemical process by means pyrolysis seems to be promising option in 

converting biomass into biofuel. The pyrolysis process may convert almost of all 

biomass components such as cellulose, hemicellulose and lignin into biofuel. Bio-oil 

produced from pyrolysis becomes an attractive option due to its advantages. Bio-oil is 

considered as the lowest-cost liquid biofuel, and categorised as green energy since its 

combustion is having a net zero carbon footprint (Chiaramonti et al., 2007). 

Furthermore, bio-oil has high-energy density compared to fuel gases produced by 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1  BACKGROUND 

 

 In the last three decades, world's energy consumption has been rapidly 

increasing due to the population growth and economic activities. Modern lifestyle 

which is required better health and environmental provision, accessibility and mobility, 

also contribute to energy consumption rising worldwide. The world primary energy 

demand increases by one-third from 2011 to 2035 as projected by International Energy 

Agency (IEA, 2013a). Oil demand (excluding biofuels) continues to grow steadily, 

reaching about 99 million barrels per day (mb/d) by 2035 — 15 mb/d higher than in 

2009, while global oil production reaches 96 mb/d by 2035 (IEA, 2013a). It is clearly 

stated that the unbalance between oil demand and production, also oil price uncertainty, 

encourage people to find the new energy source. In Malaysia case, energy demand  

rapidly increases from 143 mboe (million barrels of oil equivalent) in 1990 to 503 mboe 

in 2011, and will reach almost 870 mboe in 2035 with the annual growth rate of 2.3% 

(IEA, 2013b).  

 

 World primary energy source, until 2035, is still dominated by fossil fuels – oil, 

coal, and natural gas. However, the share of fossil fuels in the world’s energy mix will 

falls from 82% to 76%, while low-carbon energy sources (renewables and nuclear) meet 

around 40% of the growth in primary energy demand in 2035.Demand for the 

renewables raise the share of renewables from 13% in 2011 to 18% in 2035 (IEA, 

2013b). As shown in Figure 1.1, share of renewables to total energy demand is 

dominated by electricity generation followed by heat production and transportation fuel.  

Compared to the fossil fuels, renewable energy provides advantages on the more secure, 
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reliable and sustainable energy path. Moreover, utilisations of renewable energy in long 

term offers benefit in reducing CO2 emission and dependence on imported oil.  

 

 

Figure 1.1: Renewable energy share in total primary energy demand by category in 

2011 (actual) and 2035 (forecast) 

 

Adapted from: International Energy Agency (2013) 
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biomass is widely utilised due to its local availability at relatively low price. Biomass is 

the third largest primary energy source in the world, after coal and oil. It remains the 

primary source of energy for more than half of the world’s population, and provides 

about 1250 million tons oil equivalent (Mtoe) of primary energy, which is about 14% of 

the world’s annual energy consumption (Chen et al., 2009).  

 

 Even though the technology of conversion of biomass into alternative fuels is 

becoming mature, but the production cost of bio-fuel is still higher than that of 
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make them competitive with fossil fuels. Government support is essential in application 

of bio-fuel. Globally, in 2012, an amount of US$ 101 billion was spent by worldwide 

government to support renewable-energy development, includes US$ 82 billion to those 

for electricity generation and US$ 19 billion to biofuels for transport. European Union 

recorded almost 60% of total global subsidies or equivalent to US$ 57 billion; followed 

by United States (US$ 21 billion) and China (US$ 7 billion) as illustrated in Figure 1.2. 

(IEA, 2013a). With abundant sources of biomass, particularly from palm oil industries 

and other agricultural based industry, Malaysia has supported the renewable 

developments through the 5th fuel policy. New source of renewable energy, particularly 

biomass such as palm oil waste, wood waste and rice husk are recommended to be 

utilised as energy sources to supplement the conventional energy supply (Shuit et al., 

2009). This policy has been implemented in Small Renewable Energy Power Program 

since 2004 (Sulaiman et al., 2011).  

 

 

 

Figure 1.2: Subsidies for renewables development in 2012 by country. 

 

Source: International Energy Agency (2012) 
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CHAPTER 3 

 

METHODOLOGY 

 

 

3.1 MATERIALS 

 

 Overall, material used in this research can be divided into three categories: 

biomass, catalyst and supported materials. This section provides useful information 

about the material’s preparation and their pre-treatment prior to the experimental works. 

Origin of the materials and their technical specification is also described here if the 

information is available.   

 

3.1.1 Decanter cake 

 

 Palm oil decanter cake (PDC) is semi-solid waste generated from the 

purification process of crude palm oil in milling plant. In this work, fresh PDC and palm 

kernel shell (PKS) were obtained from local palm oil milling plant LKPP Corporation, 

Sdn. Bhd. located in Kompleks Kilang LKPP Lepar, KM 43.5 Lebuhraya Tun Razak, 

26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia. Preparation of raw 

materials prior to the experiments is summarised in Figure 3.1. In fresh condition, PDC 

contains more than 70 wt% of moisture, while moisture content of fresh PKS is around 

14 – 20 wt%. Drying process was conducted in laboratory oven (Memmert) at 105 °C 

for 18 hours to obtain the final moisture content of 5 – 8 %. Prior to the experiments, 

dried PDC was ground and sieved to obtain the particle size of decanter cake within the 

range of 0.8 – 2.0 mm. 
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Figure 3.1: Schematic diagram of decanter cake preparation. 

 

 

3.1.2 Catalyst 

 

 Four types of catalyst were employed in this study: calcium oxide (CaO), 

magnesium oxide (MgO), H-ZSM5 and gamma alumina (γ-Al2O3). Cao and MgO 

(reagent grade) were purchased from Sigma-Aldrich, while γ-Al2O3 (analytical grade) 

was purchased from Merck. H-ZSM5 (Si/Al = 30) was supplied by Zeolyst 

International. All of the catalysts were calcined at 550 ºC for 3 h prior to the 

experiments, except CaO was at 900 ºC. These calcination temperatures were chosen 

based on TGA plot of catalysts as shown in Figure 3.2. It clearly indicates that there was 

no weight loss at above calcination temperature. The catalyst was characterised by X-

ray diffraction (Rigaku) with Cu Kα as a source at a tube voltage of 30 kV and a current 

of 15 mA. The diffractogram patterns were collected in 2θ range from 0° to 80° with 

step sizes of 0.02° and at a scanning speed of 1°/min. Thermal properties of catalysts 

were examined by using a Mettler Toledo TGA/DSC. Amount of 5 mg sample was 

placed into the thermogravimetry analyser and heating up from 25 °C to 1000 °C at 

heating rate of 10 °C/min in N2 environment. The surface area of catalysts was 

determined from the adsorption isotherms of nitrogen at –196 °C onto the catalyst using 

Micromeritics ASAP 2000. All the samples were degassed at 105 °C prior to the 

Fresh Decanter Cake/ 

Palm Kernel Shell 

Drying in oven at  
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particle size 0.8 -2.0 mm 
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analysis and the adsorption of N2 was measured at -196 °C. Brunauer–Emmett–Teller 

(BET) equation was employed to calculate the specific surface area. 

 

 

 

Figure 3.2: TGA plots of catalyst used to determine calcination temperature of  

   catalysts. 

 

3.1.3 Gases and chemicals 

 

 Some gases and chemicals were also utilised in the experiments, particularly for 

analysis purposes. High purity of oxygen (99.9 %) used in bomb calorimeter analysis 

was purchased from MOX-Linde. Helium, hydrogen and compressed air for GC-MS 

analysis were also supplied by MOX-Linde. Hexane (chromatography grade) and KBr 

(IR spectroscopy grade) were purchased from Merck Millipore. 

 

3.2 EQUIPMENTS 

 

 In this work, pyrolysis of PDC was conducted in fixed bed under the vacuum 

pressure to produce bio-oils. This section describes the equipment used in the 

experiments; include the reactor design and apparatus arrangement for single and dual 

stage catalytic pyrolysis. 

 


