MICROCONTROLLER BASED LIFT CONTROL SYSTEM

CHEAH SIEW HOON

This thesis is submitted as partial fulfillment of the requirements for the award of the Bachelor Degree of Electrical Engineering (Electronics)

Faculty of Electrical & Electronics Engineering Kolej Universiti Kejuruteraan & Teknologi Malaysia

ABSTRACT

Lift or elevator is transport devices that are used to move goods or peoples vertically. In this project, the Motorola MC68CH11 A1 microcontroller based lift control system is constructed to simulate as an actual lift in the real life. This project dissertation documents the findings and results of a research on a microcontroller based lift control system. It provides useful information to those who wish to carry out a lift control system research or project.

.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
		TITLE PAGE	i
		DECLARATION	ii
		DEDICATION	iii
		ACKNOWLEDGMENT	iv
		ABSTRAK	V
		ABSTRACT	vi
		TABLE OF CONTENTS	vii
		LIST OF FIGURES	xi
		LIST OF TABLES	xiii
		LIST OF ABBREVIATIONS	xiv
		LIST OF APPENDIXES	XV
1	INTI	RODUCTION	1
	1.1	Introduction	1
	1.2	Objective of Study and Scope	2
2	LITI	ERATURE REVIEW	3
	2.1	Elevator	3
		2.1.1 History of Elevator	3
	2.2	Microcontroller	5
		2.2.1 Microprocessor, Microcomputer and	5
		Microcontroller	

	2.3	Motoro	ola 68HC11 Family Overview	7
	2.4	Archite	ecture of Microcontroller 68HC11	8
	2.5	Pin Co	nfiguration and Its Function	11
		2.5.1	V_{DD} and V_{SS}	11
		2.5.2	RESET	12
		2.5.3	Crystal Driver and External Clock Input	12
			(XTALand EXTAL)	
		2.5.4	E-Clock Output (E)	13
		2.5.5	Interrupt Request (IRQ)	13
		2.5.6	Non-Maskable Interrupt (XIRQ/VPPE)	13
		2.5.7	MODA and MODB	13
		2.5.8	VRL and VRH	14
		2.5.9	STRA/AS	14
		2.5.10	STRB/R/W	15
		2.5.11	Port Signals	15
	2.6	On-Ch	ip Memory	15
		2.61	Internal Random Access Memory (RAM)	16
		2.62	Register	17
		2.63	Read Only Memory (ROM)	18
	2.7	On-Ch	ip Facilities	18
		2.7.1	Timer	18
		2.7.2	Analog to Digital Converter	19
		2.7.3	Serial Communications Interface (SCI)	19
		2.7.4	Serial Peripheral Interface (SPI)	19
		2.7.5	Pulse Width Modulation	20
3	METH	IODOI	LOGY	21
	3.1	Overvi	ew of Lift Control System	21
	3.2	Hardw	are Design	22

		3.2.1	Microcontroller Development Board	22
		3.2.2	Lift Control System	26
			3.2.2.1 Lift Service Request Circuit/Keypad	26
			3.2.2.2 Motor	29
			3.2.2.2.1 Stepper Motor	29
			3.2.2.2.2 DC Motor	36
			3.2.2.3 Sensors, Display and Buzzer Circuit	38
			3.2.2.3.1 Sensor	38
			3.2.2.3.2 Display	40
	3.3	Softw	are Design	43
		3.3.1	Required Specification	43
		3.3.2	The System Software Algorithm	44
		3.3.3	The System Program Flow Chart	45
4	RES	ULT AN	ND DISCUSSION	54
	4.1	Discus	ssion and Analysis	54
	4.2	Hardw	vare	54
		4.2.1	Microcontroller Main Board	54
		4.2.2	Motor Controller Circuit	56
		4.2.3	Sensor and Display Circuit	59
		4.2.4	Service Request Circuit/Keypad	60
		4.2.5	The Complete Lift Control System	61
	4.3	Softw	are	64
	4.4	Mode	I	64
5	CON	CI LICI	ON AND RECOMMENDATIONS	66
J	5.1	Concl		66
	5.2		nmendation	67
	5.4	TCCOII	michaelon	07

REFERENCES	68
APPENDIX	70
APPENDIX A - Lift Model	70
APPENDIX B - Firmware of Lift Control System	73
APPENDIX C - Pin Assignment M68HC11A1	77
APPENDIX D - Port signal Function for M68HC11	78
A Series	
APPENDIX E - 2 MHz from Microcontroller	79
Main Board	
APPENDIX F - Manual to Get .s19 File Using ASM11	80
APPENDIX G - Manual to Use JBUG11	82
APPENDIX H - Data Sheets	87

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	The Difference between Microprocessor and Microcontroller	6
2.2	Simplified System Block Diagram of 68HC11	9
2.3	Functional block Diagram of M68HC11	10
2.4	Pin Assignment for 48-pin SDIP	11
2.5	Connection of the Crystal to the MCU	12
2.6	Memory Map for MC68HC11	16
2.7	Block Diagram of Register	17
3.1	Block Diagram of Project Overview	23
3.2	The Complete Circuit for the Lift Control System	24
3.3	The Circuit for Microcontroller Development Board	25
3.4	Basic Design for Service Request Circuit	27
3.5	Car Call Circuit Design	28
3.6	Stepper Motor Operating System	30
3.7	Model and specification of Stepper Motor	31
3.8	Internal Connection of Stepper Motor	31
3.9	The motor Driver Circuit Design	33
3.10	Stepper Motor Circuit Design	35
3.11	Car Door Circuit Design	37
3.12	Direct Sensing Method	38
3.13	Sensor and Display Circuit Design	42
3.14	Flow Chart for Lift Initialization	46
3.15 (a)	Flow Chart for Lift Traffic Management (a)	47

3.15 (b)	Flow Chart for Lift Traffic Management (b)	48
3.15 (c)	Flow Chart of Lift Traffic Management (c)	49
3.15 (d)	Flow Chart of Lift Traffic Management (d)	50
3.15 (e)	Flow Chart of Lift Traffic Management (e)	51
3.15 (f)	Flow Chart of Lift Traffic Management (f)	52
3.16	Flow Chart of Lift Car Door Routine	53
4.1	The Utilization of the Port for the lift Control System	62
4.2	Lift Model	65

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Comparison features of MC68HC11 Family Members	8
2.2	Modes of the MC68HC11	14
3.1	The Operating Sequence of Stepper Motor	32
3.2	The Functional Table for DC Motor	36
4.1	Summary of the Port Used in Lift Control System	63

LIST OF ABBREVIATION

MCU - Microcontroller Unit

MicroC - Microcontroller

MicroP - Microprocessor

CPU - Central Processing Unit

ROM - Read-Only Memory

RAM - Random Access Memory

ADC - Analog-to-Digital Converter

HCMOS - High-Density Complementary Metal-Oxide Semiconductor

CMOS - Complementary Metal-Oxide Semiconductor

EEPROM - Electrically Erasable Programmable ROM

CCR - Condition Code Register

I/O - Input output

SFR - Special Function Register

SCI - Serial Communications Interface

SPI - Serial Peripheral Interface

CLK - Clock

LCD - Liquid Crystal DisplayPWM - Pulse Width Modulation

IC - Integrated Chip

DC - Direct Current

IR - Infra-red

PC - Personal Computer

NRZ - non-return-to zero

LED - Light Emitting Diodes

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	The Lift Model	70
В	Firmware of Lift Control System	73
C	Pin Assignment M68HC11A1	77
D	Port signal Function for MC68HC11 A Series	78
E	2 MHz from Microcontroller Development Board	79
F	Manual to Get .s19 File Using ASM11	80
G	Manual to Use JBUG11	82
Н	Data Sheets	87