SYNTHESIS OF NOVEL HIGH PERFORMANCE POLYURETHANE NANOCOMPOSITES FROM CASTOR OIL AS RENEWABLE POLYOL: STUDY ON MECHANICAL, THERMAL AND BARRIER PROPERTIES

ALAA MASHJEL ALI

Thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy in Chemical Engineering (Advanced Materials)

Faculty of Chemical Engineering & Natural Resource UNIVERSITI MALAYSIA PAHANG

April 2015

ABSTRACT

Polyurethane nanocomposite is one of the promising materials and attracts many researchers to explore its potential. This work is aimed to develop a series of polyurethanes (PUs) based on castor oil with polyols as a renewable resource incorporated with different types of nano-fillers (organic and inorganic) to study the improved physico-chemical behaviour of novel polyurethanes fabricated with organically modified clay and purified Multi-Walled Carbon Nanotubes (MWCNTs) nanofillers; forming nanocomposites film by an in-situ polymerization technique and assisted by ultrasonication mixed at various times. Toluene diisocyanate (TDI) and chain extender 1, 4-butane diol (BDO) were employed with polyols to produce COPUs-(Cloisite 30B / MWCNTs) nanocomposites. The amount of nanofillers was varied from 0% to 5% wt for Cloisite 30B and for MWCNTs, the nanofillers range from 0% to 1% wt. The synthesized PU nanocomposites were characterized for different physical properties such as mechanical and morphology changes, oxidative thermal stability as well as sample purity and surface area studies using the Fourier Transform Infrared Spectroscopy (FTIR), the Field Emission Scanning Electron Microscopy (FESEM), Xray diffraction (XRD), Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC). Surface area was studied using the Brunauer-Emmet-Teller (BET) technique and elemental ratios were investigated using energy dispersive X-ray analysis (EDX) with the attached equipment in FESEM spectroscopy. The barrier properties were investigated by looking at nitrogen permeability measurements using a membrane separation unit. The thermal and mechanical properties of the COPUs matrix were found significantly improved with the incorporation of organoclay and MWCNTs. The purified MWCNTs were proven to have higher compatibility compared to organoclay in polymer matrix at even low concentrations of MWCNTs (0.3%), as results achieved presented higher d spacing, mechanical and thermal properties as shown in different instrumental analyses compared to its counterpart, organoclay (3 wt %). Tensile properties showed an improvement of $\sim 324\%$ in tensile strength and a decrease of ~74% in elongation at break with 5 wt% organoclay, while COPUs - MWCNTs nanocomposites depicted a massive development in tensile strength and lowering down of elongation at break with 1wt% (~640% and ~ 80%). Thermal properties depicted an increase of 10-30 °C in COPUs-C30B nanocomposites, while a significant increase of degradation temperature (~ 50 °C) was observed in 0.3 wt% of MWCNTs in the COPUs matrix. A major permeability reduction (~ 25 % and ~ 50 %) was attained with 5 wt% of organoclay and 0.5 wt% MWCNTs loaded nanocomposites, compared to pure COPUs. The optimization study was conducted using a response surface methodology (RSM) which included the Central composite design (CCD) with three factors; temperature, time and the amount of nanofillers. An increase in temperature and nanofillers amount favoured the nanocomposites polymerization up to a certain extent. The optimum tensile strength obtained was 1.997 MPa at temperature 90 °C and wt% 4.99% for clay and 2.207 MPa at temperature 90 °C and wt% 1% for MWCNTs respectively.

ABSTRAK

Nanokomposit Poliuretana adalah salah satu daripada bahan-bahan yang berpotensi dan menarik ramai penyelidik untuk menyinkap potensinya. Usaha ini bertujuan untuk membangunkan satu siri poliuretana (PUs) berasaskan minyak jarak dengan poliol sebagai sumber yang boleh diperbaharui dengan menggabungkannya bersama pelbagai jenis pengisi nano (organik dan bukan organik) bagi mengkaji pertambah baikkan tingkah laku fiziko-kimia poliuretana baru yang difabrikkan bersama pengisi nano tanah liat organik yang telah diubahsuai dan tiub nano pelbagai-dinding yang telah di tulenkan (MWCNTs); membentuk filem nanokomposit dengan teknik pempolimeran in-situ, dibantu oleh ultrasonikasi pada pelbagai masa. Toluena diisosianat (TDI) dan rantaian penyambung 1, 4-butana diol (BDO) digunakan dengan poliol untuk menghasilkan nanokomposit COPUs- (Cloisite 30B / MWCNTs). Jumlah pengisi nano diubah daripada 0% hingga 5% berat (Cloisite 30B) dan untuk MWCNTs julat dari 0% hingga 1% berat. Nanokomposit PUs yang disintesiskan telah dicirikan mengikut ciri-ciri fizikal yang berbeza seperti mekanikal, perubahan morfologi dan kestabilan terma oksidatif dan juga ketulenan sampel dan luas permukaan; dengan menggunakan Fourier Transform Infrared Spektroskopi (FTIR), Pancaran Medan Mikroskopi Elektron Pengimbasan (FESEM), pembelauan sinar-x (XRD), analisis termogravimetri (TGA) dan kalorimetri imbasan pembeza (DSC). Luas permukaan dikaji oleh teknik Brunauer-Emmet-Teller (BET) dan nisbah unsur telah disiasat oleh analisis tenaga serakan sinar-x (EDX) dengan peralatan yang digabungkan bersama FESEM. Ciri-ciri halangan telah disiasat oleh ukuran kebolehtelapan nitrogen menggunakan unit pemisahan membran. Pertambahbaikkan yang besar bagi sifat-sifat terma dan mekanikal matriks COPUs telah didapati dengan menggabungkannya bersama tanah liat organo dan MWCNTs. Keserasian MWCNTs tulen telah terbukti lebih tinggi berbanding keserasian tanah liat organo di dalam matriks polimer walaupun pada kepekatan MWCNTs yang rendah (0.3%) menunjukkan jarak d yang lebih tinggi, sifat mekanikal dan sifat haba seperti yang ditunjukkan dalam analisis memainkan peranan yang berbeza, berbanding tanah liat organo seumpamanya (3% berat). Sifat tegangan menunjukkan peningkatan sebanyak 324% ~ dalam kekuatan tegangan dan penurunan sebanyak ~ 74% dalam pemanjang memutus dengan 5% berat tanah liat organo, manakala nanokomposit COPUs - MWCNTs menunjukkan satu perkembangan besar dalam kekuatan tegangan dan menurunkan nilai pemanjangan memutus dengan 1% berat (~640% dan ~ 80%). Sifat haba menunjukkan peningkatan sebanyak 10-30 °C dalam COPUs - nanokomposit C30B, manakala peningkatan yang ketara suhu degradasi sebanyak (~ 50 °C) diperhatikan dengan 0.3% berat MWCNTs didalam matriks COPUs. Pengurangan nilai kebolehtelapan yang besar (~ 25% dan 50% ~) dicapai dengan 5% berat daripada tanah liat organo dan nanokomposit bermuatan 0.5% berat MWCNTs, dengan COPUs tulen. Kajian pengoptimuman telah dijalankan oleh kaedah gerak balas permukaan (RSM), termasuk reka bentuk komposit pusat (CCD) dengan tiga faktor; suhu, masa dan jumlah bahan pengisi nano. Peningkatan suhu dan jumlah bahan pengisi nano mempengaruhi pempolimeran nanokomposit sehingga ke tahap tertentu. Kekuatan tegangan optimum yang diperolehi ialah (1,997 MPa pada suhu 90 °C dan wt% 4.99%) untuk tanah liat dan (2,207 MPa pada suhu 90 °C dan wt% 1%) untuk MWCNTs.

TABLE OF CONTENTS

	Page
SUPERVISORS' DECLARATION	ii
STUDENT'S DECLARATION	iii
ACKNOWLEDGEMENTS	v
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xiv
LIST OF FIGURES	xvii
LIST OF SYMBOLS	xxvii
GREEK SYMBOLS	xxvii
LIST OF ABBREVIATIONS	xxviii

CHAPTER I INTRODUCTION

1.1	Motivation	1
1.2	Problem statement	5
1.3	Research objectives	6
1.4	Scope of research	7
1.5	Novelty of the work	7
1.6	Research contribution	8
1.7	Summary of Chapters	9

CHAPTER II LITERATURE REVIEW

2.1	Introduc	ction	11
2.2	Polyure	thanes	13
	2.2.1	Properties of polyurethane	15
	2.2.2	Application of polyurethane	15
	2.2.3	Synthesis of polyurethane	16
	2.2.3.1	Based on petrochemical polyol	17

	2.2.3.2	Based on castor oil	19
2.3	Types o	f Isocyanate	21
	2.3.1	Reaction of isocyanate	24
	(i)	Primary reactions of isocyanates	24
	(ii)	Secondary reactions of isocyanates	25
2.4	Polymer	r Nanocomposites	26
2.5	Nanofil	lers	29
	2.5.1	Polyurethane Organoclay nanocomposites	30
	2.5.1.1	Structure and properties of layered silicate	31
	2.5.1.2	Modification techniques of layered silicates	34
	2.5.2	Carbon Nanotubes (CNTs)	36
	2.5.2.1	Properties of CNTs	37
	2.5.2.2	Modification technique of CNTs	40
	2.5.2.3	Carbon Nanotube-Polymer Nanocomposites	40
2.6	Structur	e of polymer nanocomposites	41
2.7	Preparat	tion methods of polymer nanocomposites	42
	2.7.1	Solution Intercalation	43
	2.7.2	Melt Intercalation	44
	2.7.3	In Situ Polymerization	46
	2.7.3.1	Organo-Clay	49
	2.7.3.2	Carbon Nanotubes	53
2.8	Mechan	ical properties of polyurethane nanocomposites	56
	2.8.1	Tensile Testing	59
2.9	Therma	ls properties of polyurethane nanocomposites	60
2.10	Barrier properties of polyurethane nanocomposites		
2.11	Optimiz	ation of the synthesis of polyurethane nanocomposites	64
2.12	Summa	ry	67

CHAPTER III METHODOLOGY

68

ix

3.2	Materia	ls	69
	3.2.1	Toluene Diisocyanate (TDI)	69
	3.2.2	Polyols	69
	3.2.3	Castor Oil	70
	3.2.4	Chain Extender	71
	3.2.5	Nanofillers	72
	(i)	Organo-Clays	72
	(ii)	Carbon Nanotubes (CNTs)	72
	3.2.6	Catalysts	73
3.3	Set up o	of synthesis rig	73
3.4	Synthes polyure nanocor	is of pure polyurethane, neat polyurethane based castor oil, thane - organoclay and polyurethane – MWCNTs mposites.	75
	3.4.1	Synthesis of pure polyurethane	75
	3.4.2	Synthesis of polyurethane based castor oil	75
	3.4.3	Synthesis of polyurethane organic clay nanocomposite	77
	3.4.4	Modification of MWCNTs	79
	3.4.5	Synthesis of polyurethane carbon nanotubes nanocomposites	81
3.5	Charact techniqu	erization of polyurethane nanocomposite and analytical ues	82
	3.5.1	Fourier Transform Infrared Spectroscopy (FT-IR) Analysis	83
	3.5.2	X-ray Diffraction (XRD) analysis	85
	3.5.3	Microscopy Techniques	87
	3.5.3.1	Scanning Electron Microscopy (SEM)	88
	3.5.3.2	Field Emission Scanning Electron Microscopy (FESEM)	89
	3.5.4	Thermal behaviour of polyurethane nanocomposite	91
	3.5.4.1	Thermogravimetric Analysis (TGA)	91
	3.5.4.2	Differential Scanning Calorimetry (DSC)	93
	3.5.5	Brunauer-Emmet-Teller (BET) surface area technique	94
	3.5.6	Mechanical testing	96
	3.5.6.1	Tensile testing	96
	3.5.7	Barrier properties of polyurethane nanocomposite	98

3.6	Optimization of polyurethane nanocomposites using Response Surface Methodology (Rsm)		
	3.6.1	Experimental design with RSM	101
3.7	Summar	y	102

CHAPTER IV RESULTS AND DISCUSSION

4.1	Introduc	tion	104		
4.2	Physico- based ca	Physico-Chemical properties of pure polyurethane and polyurethane based castor oil			
	4.2.1	Morphological studies of pure PUs and COPUs	105		
	4.2.1.1	Fourier Transform Infrared Spectroscopy (FTIR) studies	105		
	4.2.1.2	X-ray diffraction (XRD) of polyurethane studies	106		
	4.2.1.3	Scanning Electron Microscope (SEM) studies	107		
	4.2.2	Synthesis mechanism	108		
	4.2.2.1	Synthesis mechanism of pure polyurethanes	108		
	4.2.2.2	Synthesis mechanism of castor oil based polyurethanes	109		
	4.2.3	Mechanical properties of polyurethane studies	110		
	4.2.4	Thermal stability studies	111		
	4.2.4.1	Thermogravimetric analysis (TGA)	111		
	4.2.4.2	Differential scanning calorimetry (DSC)	114		
4.3	Synthesi nanocom	Synthesis of polyurethane based castor oil organoclay nanocomposites			
	4.3.1	Morphologies studies of COPUs – C30B nanocomposites	115		
	4.3.1.1	Fourier Transform Infrared Spectroscopy (FTIR) studies	115		
	4.3.1.2	X-ray diffraction (XRD) of polyurethane-organoclay nanocomposites studies	120		
	4.3.1.3	Field emission scanning electron microscope (FESEM) studies	123		
	4.3.1.4	Element detection analysis studies	124		
	4.3.2	Synthesis mechanism of COPUs-CB30 nanocomposites	126		
	4.3.3	Mechanical properties of COPUs-C30B nanocomposites film	126		
	4.3.4	Thermal stability studies	128		

	4.3.4.1	Thermogravimetric analysis (TGA) studies	128
	4.3.4.2	Differential scanning calorimetry (DSC)	133
	4.3.5	Gas-barrier properties of COPUs-C30B nanocomposites	135
	4.3.6	BET surface analysis	137
4.4	Synthesi nanocom	s of polyurethane based castor oil-MWCNTs	138
	4.4.1	Purification of raw MWCNTs	138
	4.4.2	Morphologies studies of COPUs – MWCNTs nanocomposites	140
	4.4.2.1	Fourier Transform Infrared Spectroscopy (FTIR) studies	140
	4.4.2.2	X-ray Diffraction (XRD) studies	144
	4.4.2.3	Field Emission Scanning Electron Microscope (FESEM) studies	147
	4.4.2.4	Element detection analysis studies	149
	4.4.3	Synthesis mechanism	150
	4.4.4	Mechanical properties studies	151
	4.4.5	Thermal stability studies	152
	4.4.5.1	Thermogravimetric analysis (TGA) studies	152
	4.4.5.2	Differential scanning calorimetry (DSC)	158
	4.4.6	Gas-barrier properties studies	160
	4.4.7	BET surface analysis	162
4.5	Compara Nanotub Oil Base	ative Study of Organoclay and Multiwalled Carbon es (MWCNTs) on Physico-Chemical Behaviour of Castor d Polyurethanes	163
	4.5.1	Morphologies studies of COPUs-C30B and COPUs- MWCNTs nanocomposites	163
	4.5.1.1	Fourier Transform Infrared Spectroscopy (FTIR) studies	163
	4.5.1.2	X-ray Diffraction (XRD) studies	164
	4.5.1.3	Field Emission Scanning Electron Microscope (FESEM) studies	166
	4.5.2	Mechanical properties studies	167
	4.5.3	Thermogravimetric analysis (TGA) studies	169
4.6	Summar	у	170

CHAPTER V OPTIMIZATION

5.1	METHO)D	172
	5.1.1	Experimental design with RSM for COPUs - C30B nanocomposites	172
	5.1.2	Response Surface Method (RSM)	173
	5.1.2.1	Adequacy check of model	176
	5.1.2.2	Diagnostics of case studies	176
5.2	Optimiz	ation Condition for Response Surface Analysis	180
	5.2.1	Model validation and experimental confirmation	182
5.3	Experim	nental design with RSM for COPUs-MWCNTs nanocomposites	183
	5.3.1	Response Surface Method (RSM)	185
	5.3.1.1	Adequacy check of the model	187
	5.3.1.2	Diagnostics of the case studies	187
5.4	Optimiz	ation Condition for Response Surface Analysis	191
	5.4.1	Model validation and experimental confirmation	193
5.5	Summar	ТУ	194

CHAPTER VI CONCLUSION AND RECOMMENDATIONS

Conclusion	196
Recommendations for Future Research	199
References	201
Appendix A	237
Appendix B	246
	Conclusion Recommendations for Future Research References Appendix A Appendix B

LIST OF TABLES

Table No.	Title	Page
2.1	Common diisocyanates used for the production of polyurethanes	22
2.2	Clay mineral (phyllosilicate) classification	33
2.3	Chemical formula and characteristic parameter of commonly used 2:1 phyllosilicates	34
2.4	Theoretical and experimentally measured properties of CNTs	38
3.1	Physical properties of TDI	70
3.2	Properties of Polypropylene Glycol	70
3.3	Composition of castor seed oil /fatty acid chains	71
3.4	Physical properties of castor oil	71
3.5	Properties of 1-4-butanediol	72
3.6	Properties of Cloisite B30	73
3.7	Factors and respected ranges decided for the screening experiment	101
4.1	XRD data for pure PUs and COPUs	106
4.2	Results from TG and DTG curves of pure PUs and COPUs	113
4.3	Crystallinity percentages of pure PUs and COPUs	115
4.4	The characteristic bands in the IR spectra obtained of C30B	116
4.5	The characteristic bands in the IR- spectra obtained from COPUs	117
4.6	The characteristic bands in the IR- spectra obtained from COPU-C30B nanocomposites	117
4.7	XRD data for COPUs and COPU-C30B nanocomposites with different weight percentages of organoclays	121

4.8	EDX studies of different weight (%) of organo-clay in COPU matrix with elemental weight and atomic percentages	125
4.9	Weight loss % during thermal decomposition of neat COPUs and COPU-C30B nanocomposites with different C30B wt%	130
4.10	Results from TG and DTG curves of the COPUs and COPUs-C30B nanocomposites	131
4.11	Results from DSC curves of the soft segments and hard segment multiblock neat COPUs and COPU-C30B nanocomposites	134
4.12	Crystallinity percent of neat COPUs and COPU-C30B nanocomposites	135
4.13	The characteristic bands in the IR- spectra obtained from purified MWCNTs	140
4.14	The characteristic bands in the IR- spectra obtained of COPUs– MWCNTs nanocomposites	142
4.15	XRD data for neat COPUs and COPU-MWCNT nanocomposites with different percentages of MWCNTs	145
4.16	EDX studies of different weight% of MWCNTs in COPU matrix with elemental weight and atomic percentages	150
4.17	Decomposition and variation in temperatures for different weight (%) COPU-MWCNT nanocomposites	155
4.18	Weight loss during thermal decomposition of neat COPUs and COPU-MWCNTs nanocomposites with different MWCNT wt%	157
4.19	Results from DSC curves of the soft and hard segments for neat COPUs and COPU-MWCNT nanocomposites	160
4.20	Crystallinity percentages of neat COPUs and COPU-MWCNT nanocomposites	160
4.21	XRD data for neat COPUs, COPU-C30B and COPU-MWCNT nanocomposites	165
4.22	Stress and strain values of different nanocomposites	168
5.1	Factors and respected ranges decided for the screening experiment	172
5.2	Experimental results of dependent variable as polyurethanes-clay synthesis	174

5.3	Analysis of variance table exhibits individual as well as interaction effects	175
5.4	Statistical summary of screening results	175
5.5	Optimum condition obtained from RSM	183
5.6	Factors and respected ranges decided for the screening experiment	184
5.7	Experimental results of dependent variables as polyurethanes– CNT synthesis	185
5.8	Analysis of variance exhibits individual as well as interaction effects	186
5.9	Statistical summary of screening results	186
5.10	Optimum condition obtained from RSM	194

LIST OF FIGURES

Figure No.	Title	Page
2.1	Reaction mechanism of synthesis of polyurethanes using the prepolymer method	17
2.2	Schematic representation of a PU polymer chain with distinct hard (HS) and soft (SS) segments	18
2.3	Reaction mechanisms of different chemical reaction types of isocyanate	23
2.4	Reaction mechanisms of the resonance structures of the isocyanates	23
2.5	Reaction mechanisms of isocyanates with hydrogen active compounds	23
2.6	Reaction mechanism of polyurethane-links synthesis	24
2.7	Reaction mechanism of diisocyanates with amines	24
2.8	Reaction mechanism of diisocyanates with water	25
2.9	Secondary reaction mechanisms of isocyanates with hydrogen active atoms	25
2.10	Reaction mechanism of secondary reactions of self-polymerization isocyanates	26
2.11	Schematic diagram showing the three components involved for polymer nanocomposite fabrication	27
2.12	Structure of the 2:1 layered silicates	32
2.13	The cation-exchange process between alkylammonium ions and cations initially intercalated between the clay layers	35
2.14	Types of carbon nanotube	36
2.15	Schematic diagram of CNTs chirality from graphite sheet folding	39

2.16	Schematic diagrams of the three polymer modified layered silicate nanocomposites	42
2.17	The intercalation of polymers using the "solution" approach	43
2.18	The "melt intercalation" process	45
2.19	Schematic presentations of different steps of the "in-situ polymerisation" approach	47
2.20	Schematic representation of the in situ polymerization method	48
2.21	Nylon-6 nanocomposite formed through in-situ polymerization with ADA-MMT	48
2.22	Schematic representation of the (a) Chemical structure of organo- clay (Cloisite 30B) and (b) Hydrogen bonding of an organo-clay (Cloisite 30B) - tethered polyurethane chain	51
2.23	Studying the effects of (A) different dispersing agents (a) no dispersing agent, (b) BYK-985, (c) BYK-9076, (d) BYK-9077 (B) different mixing methods (a) stirring, and (b) ball milling	53
2.24	Scanning Electron micrographs (SEM) images of cross section of PU-MWNT composites: (a) PU-MWNT1, (b) PU-MWNT3, and (c) PU-MWNT2	54
2.25	Stress-strain curves for (a) the pure polyurethane and (b) as a polyurethane - clay nanocomposite prepared from C18A-SWy montmorillonite with 5 wt%	57
2.26	Stress-strain curves of PUs-organo hectorite clay nanocomposites	58
2.27	Tensile mechanical properties test sample according to ASTM D638-03 type I.	60
2.28	% mass conservation and derivative dependency on temperature for TPUs and TPUs nanocomposites	61
2.29	Thermograms of castor oil based chain extended polyurethane and polyurethane clay nanocomposites with varying percentages of clay	62
2.30	The Schematic representations of the 'tortuous path' through (a) a conventional composite and (b) a nanocomposite	63
3.1	Reactor assembly for in-situ polymerization synthesis	74

3.2	Set up of the curing of film by vacuum oven	76
3.3	Prepared COPU thin film	77
3.4	Dispersed of nanofillers in polyol by ultrasonication bath set up	78
3.5	Prepared COPUs/organo-clay nanocomposites thin film	79
3.6	MWCNTs purified via stirring acid treatment	80
3.7	High rpm centrifuged machine	81
3.8	Prepared COPU-MWCNT nanocomposite thin film	82
3.9	(a) The FTIR spectra were recorded using an FTIRSpectrophotometer (Nicolet 5DX FT- IR, USA) in the UMP Lab,(b) Schematic representation of a FTIR spectrometer	84
3.10	(a) The X-ray diffraction (XRD) patterns were recorded using an X-ray diffractometer (Rigaku Miniflex II, Japan) employing graphite monochromator and CuK α radiation ($\lambda = 0.15406$ nm) in the UMP Lab, (b) Schematic principle of X- ray Diffractometer	86
3.11	The Scanning Electron Microscope (SEM)	88
3.12	(a) The Field emission scanning electron microscope (FESEM) in UMP Lab, (b) Schematic of Field emission scanning electron microscope (FE-SEM), showing optical path of light	90
3.13	(a) The Thermogravimetric analysis (TGA) in UMP Lab, (b) Schematic representation of Thermogravimetry (TG) technique: instrumentation and working	92
3.14	Differential Scanning Calorimetry (DSC)	94
3.15	(a) Surface Analysis (ASAP 2020, Micromeritics, USA), (b) Schematic representation of BET surface area studies: technique, instrumentation and working	95
3.16	Tensile test specimen according to ASTM D-638-M-3	97
3.17	(a) Universal tensile testing machine in the UMP lab, (b) Tensile test specimen during a test	97
3.18	Mechanism of the barrier properties (a) before the addition of nanofillers and (b) after the addition of nanofillers	99
3.19	Image for gas permeability measurement shows the sample before testing	99

3.20	(a) Image for the gas permeability measurement system in the UMP Lab, (b) Diagram of gas permeability measurement	99
4.1	Comparative FTIR spectra for PUs (pure PPG & PPG and castor oil)	106
4.2	Comparative XRD graph for pure PUs and COPUs	107
4.3	SEM for PUs (a) without, and (b) with Castor Oil	108
4.1	Schematic representation of pure PUs synthesis mechanism using pre-polymer technique	109
4.2	Schematic representation of synthesis mechanism of neat COPUs using pre-polymer technique	109
4.4	Stress-strain curves for pure PUs and COPUs	110
4.5	Tensile strength of pure PUs and COPUs with 15wt% of castor oil	111
4.6	Comparative TGA graph for PUs (pure PPG & PPG and castor oil)	112
4.7	DTG curves of COPUs and pure PUs	113
4.8	DSC heating curves of pure PUs and COPUs	114
4.9	FTIR spectra of organoclay (Closite 30B) and COPUs	116
4.10	FTIR spectra of COPUs and COPU-C30B nanocomposite with different percentages of organoclays	118
4.11	Comparative FTIR spectra of COPUs and COPU-C30B nanocomposites (1, 3, and 5 %) organoclays, with a wavelength range of 1250 to 1800 cm^{-1}	119
4.3	The interference of organoclay layers on hydrogen bonding in polyurethane composites	119
4.12	XRD of C30B, neat COPUs and COPU-C30B nanocomposites with varying wt % of organoclay loading	121
4.13	XRD of organoclay (C30B), neat COPUs and COPU-C30B nanocomposites with varying percentages of organoclay	122
4.14	Machine originated graph for 5wt% COPU-C30B nanocomposites	122

4.15	The surface FESEM images of pristine COPUs and nanocomposites in different weight percentages of 1, 3 and 5 wt% organoclay (Cloisite 30B)	123
4.16	EDX analysis of COPUs/organo-clay nanocomposites	125
4.4	Schematic representation of the synthesis of COPU-C30B nanocomposites using in-situ polymerization	126
4.17	Stress strain curves for pure COPUs and COPU-C30B nanocomposites with varying percentages of organoclay loading	127
4.18	Tensile strength of COPUs and COPU-C30B nanocomposites with 1, 3 and 5 wt% organoclay	128
4.19	TGA spectrum of castor oil based polyurethanes, both pure and COPUs with changing wt% of organoclay (Cloisite 30B) nanocomposites	129
4.20	DTG curves of COPUs and COPU-C30B nanocomposites with varying % of organoclay loading	132
4.21	Weight loss percentage of neat COPUs and COPU-C30B nanocomposites with different C30B wt% at 400 $^{\rm o}{\rm C}$	133
4.22	DSC heating curves of neat COPUs and COPU-C30B nanocomposites films	134
4.23	Nitrogen permeability percentage rate vs organoclay wt%	136
4.24	Hypothetical model describing the path of diffusing N_2 gas through the COPU-organoclay nanocomposite. (d) Actual distance travelled in the absence of fillers, (d') tortuous path length in the presence of fillers	137
4.25	Nitrogen adsorption-desorption isotherms of 5 wt% COPU- organoclay	138
4.26	FTIR spectrum of raw MWCNTs and purified MWCNTs	139

4.27	XRD spectra graph of raw MWCNTs and purified MWCNTs	139
4.28	FTIR spectra of purified MWCNTs and COPUs	141
4.29	FTIR spectra of pure COPUs and COPU-MWNT nanocomposites, with varying 0.1, 0.2, 0.3, 0.4, 0.5, and 1 wt% MWCNT loadings	142
4.30	FTIR spectra of COPUs and (COPUs-MWCNTs) nanocomposite with different percentages of MWCNTs, wavelength ranges from $1450 \text{ to } 1800 \text{ cm}^{-1}$	143
4.5	Hydrogen bonding within polyurethane purified MWCNT nanocomposites	144
4.31	X-ray diffraction patterns of COPUs and the purified MWCNTs	145
4.32	Powder X-ray diffraction patterns of pure COPUs and the COPU- MWCNT nanocomposites with virgin 0.1, 0.2, 0.3, 0.4, 0.5 and 1 wt% MWCNTs loadings	146
4.33	FESEM images of fractured surface of (a) 0% MWCNTs, (b) 0.2% MWCNTs, and (c) 0.3% MWCNTs in COPUs matrix	148
4.34	FESEM images of fractured surface of (a) 0.5% MWCNTs, and (b) 1% MWCNTs, in COPUs matrix	148
4.35	EDX analysis of COPU-MWCNT nanocomposites	149
4.6	Schematics representation of synthesis mechanism of COPU- MWCNT nanocomposites' with in situ polymerization method	150
4.36	Stress-strain curves of pure COPUs and COPU-MWCNT nanocomposites with various 0.3, 0.5, and 1 wt% MWCNT loadings	151
4.37	Tensile strength of COPUs and COPU-MWCNT nanocomposites with varying 0.3, 0.5, and 1 wt% MWCNT loadings	152
4.38	TGA spectrum of pure COPUs and COPU-MWCNT nanocomposites with varying degrees of MWCNT wt% (0.1, 0.2, 0.3, 0.4, 0.5, and 1)	151
4.39	TGA spectrum of pure COPUs and COPU-MWCNT nanocomposites with varying MWCNT wt% (0.1, 0.2 and 0.3)	154

4.40	TGA spectrum of pure COPUs and COPU-MWCNT nanocomposites with varying MWCNT wt% (0.4, 0.5 and 1)	154
4.41	DTG curves of COPUs and COPU-MWCNT nanocomposites with varying % of MWCNTs 0, 0.1, 0.2 and 0.3 wt%	156
4.42	DTG curves of COPUs and COPU-MWCNT nanocomposites with varying % of MWCNTs 0.4, 0.5 and 1 wt%	156
4.43	Weight loss percentage of neat COPUs and COPU–MWCNT nanocomposites with different MWCNT wt% at 400 $^{\rm o}C$	158
4.44	DSC heating curves of neat COPUs and COPU-MWCNT nanocomposites films	159
4.45	Nitrogen permeability rates in different MWCNT weight percentages	161
4.46	Hypothetical model describing the path of the diffusing N_2 gas through the COPU-MWCNTs nanocomposite. (d) Actual distance travelled in the absence of fillers, (d') tortuous path length in the presence of fillers	163
4.47	Nitrogen adsorption-desorption isotherms of 0.5 wt% COPU- MWCNTs	163
4.48	FTIR spectra of neat COPUs, COPU-C30B nanocomposites at 3wt%, and COPU-MWCNT nanocomposites at 0.3wt%	164
4.49	X- ray diffraction plots of COPUs, COPU-C30B nanocomposites at 3wt% and COPU-MWCNT nanocomposites at 0.3wt%	165
4.50	The FESEM images of the surfaces of COPUs and COPU-C30B nanocomposites at 3wt% and COPU-MWCNT nanocomposites with 0.3wt%	167
4.51	Stress strain curves for COPUs, COPUs - C30B nanocomposite with 3wt% and COPUs - MWCNTs nanocomposite with 0.3wt%.	168
4.52	TGA spectrum of castor oil based on polyurethanes neat COPUs, COPUs - C30B nanocomposite with 3wt% and COPUs – MWCNTs nanocomposite with 0.3wt%	169

4.53	DTG curves of COPUs and COPUs - C30B nanocomposites with 3% and COPUs - MWCNTs with 0.3% nanocomposites loading	170
5.1	Normal plot of residuals generated from the model	177
5.2	Dignostic plot generated from the model for plot of Residual vs Predicted	178
5.3	Dignostic plot generated from the model for plot of Residual vs Run Number	178
5.4	Design-expert plot; predicted vs. actual values plot for tensile strength	179
5.5	Box-Cox plot for power transforms	179
5.6	3D plot - Interaction of clay amount and time	180
5.7	3D plot - Interaction of clay amount and temperature	181
5.8	3D plot - Interaction of time and temperature	182
5.9	Normal plot of residuals generated from the model	188
5.10	Dignostic plot of residual vs predicted	189
5.11	Dignostic plot of residual vs run number	189
5.12	predicted vs. actual values plot	190
5.13	Box-Cox plot for power transforms	190
5.14	3D plot - Interaction of CNTs amount and time	191
5.15	3D plot - Interaction of CNTs amount and temperature	192
5.16	3D plot - Interaction of time and temperature	193

NOMENCLATURES

List of Symbols

Symbol	Meaning
K	Kelvin
°C	Degree Celsius
HS	Hard segments
SS	Soft segments
NL	Nitrolignin
Pa	Pascal
Tg	glass transition temperature
CEC	Cation exchange capacity
D	Interlayer spacing
MPa	Mega Pascal
ASTM	American Society for Testing and Materials
GA	genetic algorithms
DMF	Dimethyl formamide
X _c	Crystallinity index
ΔH_{f}	Heat of fusion of the sample
F	Force
Å	Angstrom

Greek Symbols

Meaning
Length
Strain
Stress
Tortuosity
Aspect ratio
Wavelength
Angle
The residual term.
Bath difference
extension

LIST OF ABBREVIATIONS

CNTs	Carbon nanotubes
Pus	Polyurethanes
MMT	Montmorillonite
СО	Castor oil
COPU	Castor oil based polyurethane
COPUs	Castor oil based polyurethanes
C30B	Cloisite B30
MWCNTs	Multi-Walled Carbon Nanotubes
TDI	Toluene diisocyanate
Rpm	Revolutions per minute
EPUs	Epoxy-terminated polyurethanes prepolymers
HDI	Hexamethylene diisocyanate HDI
COFPL	Castor oil-based flame retardant polyols
MDI	Diphenylmethane diisocyanate
TPU	Thermoplastic polyurethane
PPG	Polypropylene glycol
PEG	Polyethylene glycol
PEI	Poly ethylene imine
SWCNT	Single walled carbon nanotube
TGA	Thermo-gravimetric analysis
BET	Brunauer-Emmet-Teller
RSM	Response surface methodology
EDX	Energy Dispersive X-ray spectroscopy

xxviii

XRD	X-ray diffraction
DSC	Differential scanning calorimetry
FESEM	Field Emission Scanning Electron Microscopy
SEM	Scanning Electron Microscope
NTs	Nanotubes
ADA	Aminododecanoic acid
PC-PUs	Polycarbonate-based polyurethanes
PCL	Poly (ε-caprolactone)
BDO	Butane diol
PS	polystyrene

CHAPTER I

INTRODUCTION

1.1 MOTIVATION

In the past five decades, polymer/filler nanocomposites have attracted great interest, both in industry and academia for a wide range of applications due to its remarkable improvements in material properties at very fine level with low nano filler loading when compared to virgin polymer or conventional composites (Rajkumar et al., 2013). Polymers filler composites have been widely used as a method of improving physico-chemical properties. These enhancements can include increased strength, heat resistance (Lahorija et al., 2010; Papageorgiou et al., 2013 and Rajkumar et al., 2011), and decreased gas permeability (Ruijian et al., 2003; Pradip et al., 2010 and Morteza et al., 2011). The main difficulty in the synthesis of polymer nanocomposites is the ability to achieve uniform dispersion of nanofillers in the polymer matrix (Behdad et al., 2013). The three levels of dispersion are conventional composites, intercalated or partially exfoliated nanocomposites and fully exfoliated nanocomposites (Musa et al., 2010). The field thrived after a research finding was presented by the Toyota Research Group (Kojima, 1993; Jeffrey and Tkashik, 1997 and Edcleide, 2011) in the 90s on unfamiliar physical property enhancements in a nylon 6/clay nanocomposite when integrated with minimal amount of filler loading. Light weight and economic competitiveness usage of only a minimal amount of reinforcing materials, usually below 5 wt%, represent other key advantages of organic-inorganic nanocomposites (Samira et al., 2014). The ultimate polymer nanocomposites are shaped when nanofillers are completely dispersed into a polymer matrix and interact well between the polymer matrix and the surface of modified nanofillers. A high energy sonication process and mixing assisted by high energy shear force is an effective method to improve particle distribution (Kiliaris, 2010 and Daniel et al., 2013). This structure refers to the

exfoliated system which yields maximum improvement in properties. However, in many cases, the nanocomposites reported tend to become intercalated or partially exfoliated. Sometimes in an exfoliated structure, nanofillers are randomly dispersed in polymer chains to achieve improvements in physico-chemical properties (Onal *et al.*, 2006).

In recent years, development of nanocomposites has been widened into almost every engineering polymer including polypropylene (Monica *et al.*, 2010), polyethylene (Bergaya *et al.*, 2005), polystyrene (Xaoan *et al.*, 1999; Peter *et al.*, 1999 and Dirk *et al* 2006), polyvinylchloride (Chaoying *et al.*, 2003), acrylonitrile butadiene styrene (Modesti *et al.*, 2007), polymetylmethacrylate (Utracki *et al.*, 2010), polyethylene terephatalate (Guozhen *et al.*, 2002), ethylene-vinyl acetate copolymer (Hyung *et al.*, 2007), polyacrylonitrile (Yagoub *et al.*, 2012), polycarbonate (Saptarshi *et al.*, 2012), polyethylene oxide (Burgaz, 2011), epoxy resin (Ole *et al.*, 2002), polyimide (Chyi *et al.*, 2003), polylactide (Barrau *et al.*, 2011), polycaprolactone (Hongdan *et al.*, 2010), phenolic resin (Shiao *et al.*, 2006), poly p-phenylene vinylene (Anupama *et al.* 2010), polypyrrole (Zhanhu *et al.*, 2009), rubber (Yiqing *et al.*, 2005), polyurethane (Song *et al.*, 2006; Yusoh, 2010 and Aranguren *et al.*, 2012), urethane alkyd (Saravari *et al.*, 2013)and polystyrene (Huating *et al.*, 2010).

The transition from microparticles to nanoparticles can dramatically change the physical properties (Ryszkowska, 2008). A critical advantage of polymer nanocomposites over old-fashioned bulk composites is that the nano sized fillers lead to an intense increase in interfacial area, opening gateways to new applications (Schadler *et al.*, 2007). Materials at the nano scale, exhibits diverse properties due to higher surface area and new quantum effects. Greater surface area to volume ratio with respect to conventional forms, lead to superior chemical reactivity and improved material mechanical performance (Lijie and Thomas, 2009). The results showed that nanostructured materials can have extensively diverse properties compared to a larger-dimensional material of the similar composition (Hussain and Mehdi, 2006). The polymer nanocomposites types depend on its nanofillers, such as nanoparticles of organoclay, metal oxides, carbon nanotubes and graphene. Usually, the size and shape

of particles have a major effect on the final properties of its polymer/inorganic nanoparticle nanocomposites (Muhammad, 2013).

The first study of mechanical properties enhancements by Okada et al., originated from in-situ polymerized hybrid organic and inorganic nanocomposites (Okada and Usuki, 1995; Giannelis, 1996 and Ogawa and Kuroda, 1997). The main issue is the important chemical and physical interactions that are directed by surfaces and surface properties. Nanostructured material can have substantially dissimilar properties from larger-dimension materials of the same composition (Mohammed, 2012). Polymer composite performances can be enhanced such as increase in tensile strength and decrease in gas permeability and tear strength without losing elasticity can be enhanced depending on the type and amount of fillers as well as the level of intercalation or exfoliation of fillers in polymer matrix (Nanying et al., 2008 and Paul et al., 2013). The use of nanofillers has become abundant in polymeric synthesis. Carbon nanotubes (CNTs) and organoclay are the most widely used material in academia and industrial laboratories all over the world to formulate polymer nanocomposites (Christopher et al., 2013 and Yong et al., 2013). Polyurethanes (PUs) are among the most important polymeric materials, with distinctive physical and chemical properties that are flexible, highly mechanical, and have thermal and chemical resistances (Yusoh 2010 and Akintayo, 2013). PUs can be tailored to meet the diversified demands of various applications such as rigid insulations, coatings, footwear adhesives (Saraswathy, 2009 and Jessica and Jose, 2011), thermoplastic elastomers and foams, as well as medical devices (Golaz et al., 2011; Liqiang et al., 2014 and Xuefeng et al., 2014). A wide range of fillers, modified clays and CNTs with structural modifications are used in the synthesis of polymer - fillers nanocomposites (Chattopadhyay et al., 2007).

Recently, a large number of polymer nanocomposite matrices have been synthesized and significant enhancements in composite properties have been reported (Dilini *et al.*, 2012). The first polymer-clay nanocomposite was reported in 1961, when Blumstein polymerized vinyl monomers intercalated in Montmorillonite (MMT) (Blumstein, 1961 and Dirk, 2006). Oriakhi in 1998 stated that 'Nature is a master chemist with incredible talent', showing that by using natural reagents and polymers such as carbohydrates, lipids, and proteins (Oriakhi, 1998), nature makes strong

CHAPTER III

METHODOLOGY

3.1 INTRODUCTION

This chapter focuses primarily on the synthesis of polyurethanes for pure as well as with nanofillers (modified organoclay and MWCNTs) integrated in the PUs matrix to form nanocomposites. In the other half of the chapter, a brief and comprehensive description of analytical instruments which were employed in a comparative study of physicochemical properties of pure PUs and filler incorporated polymer-filler nanocomposites is discussed. Nanocomposites of PUs have heightened importance in wide scale applications during the last decade due to their improved properties over conventional composites. Due to the large consumption of PUs and the negative environmental impacts from petroleum based polyols, renewable resources as alternative materials are now of great interest to researchers. Castor oil, one of the major non-edible vegetable oils is an interesting renewable resource that contains a hydroxyl group (-OH) and unsaturated double bonds (C=C) in its organic chain, and is able to produce new polyurethane materials. The synthesis methodology encompass three different syntheses, which includes pure PUs with no fillers incorporated, PU/organoclay (Cloisite B30) nanocomposites and new PU/multi-walled carbon nanotube (MWCNT) nanocomposites which employs a mixture ratio of polypropylene glycol and castor oil as polyols.

The crystal structure was studied using X-ray diffraction (XRD). The XRD patterns were recorded using an X-ray diffractometer (*Rigaku* Mini Flex II, Japan) which employs graphite monochromator and CuK α radiation ($\lambda = 0.15406$ nm). The

morphology was examined using Scanning electron microscopy (SEM) on the JEOL 6300F (Japan) machine at an acceleration voltage of 5KV and field emission scanning electron microscopy (FESEM, *JEOL EVO-50, Japan*). Infrared absorption spectroscopy (IR) spectrum was measured at room temperature using a Fourier transform infrared (FTIR) spectrometer (*Nicolet* 5DX FT-IR, USA). Thermal stability was tested usingThermo-gravimetric analysis (TGA) on a thermal analyzer (*Mettler Toledo*, TGA/DSC1) at a rate of 10 °C min⁻¹ and on a Differential Scanning Calorimetry (DSC) model of TA- Instrument DSC/Q 1000 (V9.6, Build 290). BET surface area of the composite was studied using gas adsorption studies (ASAP 2020, *Micromeritics*, USA). Atomic percentages of elements in neat COPUs, organoclay and MWCNTs were calculated using Energy Dispersive X-ray spectroscopy (EDX) attached within FE-SEM. The study of mechanical properties (tensile strength and elongation at break) were carried out using an Instron model 4505 universal testing machine at 25 °C with a load cell of 5 KN, followed by ASTM D 638. Crosshead speed was set to 2 mm/min. Samples were cut into dumbbell shapes using ASTM D 638 (type V).

3.2 MATERIALS

Major building-blocks for the synthesis of renewable polyurethanes are:

3.2.1 Toluene Diisocyanate (TDI)

In this research, Toluene diisocyanate (TDI) was used for the preparation of PU samples. TDI used as received was supplied from SIGMA-Aldrich Company. Its physical properties are shown in Table 3.1. TDI is an aromatic diisocyanvate.

3.2.2 Polyols

Polyols are defined as chemical compounds that contain more than one hydroxyl group (diol). Polyols are separated into two categories, which are low molecular weight and high molecular weight polyols. High molecular weight polyols called oligo-polyols, are one of the main building blocks that represents the soft segment in the formation of polyurethane.

Constituent	value
Commercial name	Toluene Diisocyanate (TDI)
Molecular formula	$C_9H_6N_2O_2$
Molecular weight	174.2
Appearance	White or pale yellow solid
Density	1.214 g/cm ³ , liquid
Melting point	21.8 °C (295 K)
Boiling point	251 °C (524 K)
Solubility in water	Reacts

Table 3.1: Physical properties of TDI.

In this research, a polyether polyol (Polypropylene Glycol, Molecular weight = 4000) was supplied by Sigma-Aldrich Company and was selected as the soft segment. The details are shown in Table 3.2.

Constituent	value
Commercial name	P 4000
Appearance	Colorless liquid
Molecular weight	4000
OHV	28 mg KOH/g
Viscosity (25 °C)	1300 mPa.s
Functionality	1.7
	CH ₂ - [O –CH ₂ – CH (CH ₃)] _m – CH ₂ CH ₂ - OH
Structure	 CH ₂ - [O –CH ₂ – CH (CH ₃)] _n – CH ₂ CH ₂ – OH
	I СН₂ - [О –СН₂ – СН (СН₃)]₁– СН₂СН₂ – ОН

Table 3.2: Properties of Polypropylene Glycol.

3.2.3 Castor Oil

In this work, castor oil was used as an alternative to petrochemical based polyols and as a renewed resource that can potentially reduce cost in polyethane production. In this research, pure castor oil was purchased from Chengdu Organic Chemicals, China and polymerized directly without modifications. Table 3.3 shows the composition of castor oil, while Table 3.4 shows the properties of castor oil.