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ABSTRACT 

 

Polyurethane nanocomposite is one of the promising materials and attracts many 

researchers to explore its potential. This work is aimed to develop a series of 

polyurethanes (PUs) based on castor oil with polyols as a renewable resource 

incorporated with different types of nano-fillers (organic and inorganic) to study the 

improved physico-chemical behaviour of novel polyurethanes fabricated with 

organically modified clay and purified Multi-Walled Carbon Nanotubes (MWCNTs) 

nanofillers; forming nanocomposites film by an in-situ polymerization technique and 

assisted by ultrasonication mixed at various times. Toluene diisocyanate (TDI) and 

chain extender 1, 4-butane diol (BDO) were employed with polyols to produce COPUs- 

(Cloisite 30B / MWCNTs) nanocomposites. The amount of nanofillers was varied from 

0% to 5% wt for Cloisite 30B and for MWCNTs, the nanofillers range from 0% to 1% 

wt. The synthesized PU nanocomposites were characterized for different physical 

properties such as mechanical and morphology changes, oxidative thermal stability as 

well as sample purity and surface area studies using the Fourier Transform Infrared 

Spectroscopy (FTIR), the Field Emission Scanning Electron Microscopy (FESEM), X-

ray diffraction (XRD), Thermogravimetric analysis (TGA) and Differential Scanning 

Calorimetry (DSC). Surface area was studied using the Brunauer-Emmet-Teller (BET) 

technique and elemental ratios were investigated using energy dispersive X-ray analysis 

(EDX) with the attached equipment in FESEM spectroscopy. The barrier properties 

were investigated by looking at nitrogen permeability measurements using a membrane 

separation unit. The thermal and mechanical properties of the COPUs matrix were 

found significantly improved with the incorporation of organoclay and MWCNTs. The 

purified MWCNTs were proven to have higher compatibility compared to organoclay in 

polymer matrix at even low concentrations of MWCNTs (0.3%), as results achieved 

presented higher d spacing, mechanical and thermal properties as shown in different 

instrumental analyses compared to its counterpart, organoclay (3 wt %). Tensile 

properties showed an improvement of ~ 324% in tensile strength and a decrease of 

~74% in elongation at break with 5 wt% organoclay, while COPUs - MWCNTs 

nanocomposites depicted a massive development in tensile strength and lowering down 

of elongation at break with 1wt% (~640% and ~ 80%). Thermal properties depicted an 

increase of 10-30 
o
C in COPUs–C30B nanocomposites, while a significant increase of 

degradation temperature (~ 50 
o
C) was observed in 0.3 wt% of MWCNTs in the COPUs 

matrix. A major permeability reduction (~25 % and ~ 50%) was attained with 5 wt% of 

organoclay and 0.5 wt% MWCNTs loaded nanocomposites, compared to pure COPUs. 

The optimization study was conducted using a response surface methodology (RSM) 

which included the Central composite design (CCD) with three factors; temperature, 

time and the amount of nanofillers. An increase in temperature and nanofillers amount 

favoured the nanocomposites polymerization up to a certain extent.  The optimum 

tensile strength obtained was 1.997 MPa at temperature 90 
o
C and wt% 4.99% for clay 

and 2.207 MPa at temperature 90 
o
C and wt% 1% for MWCNTs respectively. 
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ABSTRAK 

 

 

Nanokomposit Poliuretana adalah salah satu daripada bahan-bahan yang berpotensi dan 

menarik ramai penyelidik untuk menyinkap potensinya. Usaha ini bertujuan untuk 

membangunkan satu siri poliuretana (PUs) berasaskan minyak jarak dengan poliol  

sebagai sumber yang boleh diperbaharui dengan menggabungkannya bersama pelbagai 

jenis pengisi nano (organik dan bukan organik) bagi mengkaji pertambah baikkan 

tingkah laku fiziko-kimia poliuretana baru yang difabrikkan bersama pengisi nano tanah 

liat organik yang telah diubahsuai dan tiub nano pelbagai-dinding yang telah di tulenkan 

(MWCNTs); membentuk filem nanokomposit dengan teknik pempolimeran in-situ, 

dibantu oleh ultrasonikasi pada pelbagai masa. Toluena diisosianat (TDI) dan rantaian 

penyambung 1, 4-butana diol (BDO) digunakan dengan poliol untuk menghasilkan 

nanokomposit COPUs- (Cloisite 30B / MWCNTs). Jumlah pengisi nano diubah 

daripada 0% hingga 5% berat (Cloisite 30B) dan untuk MWCNTs julat dari 0% hingga 

1% berat. Nanokomposit PUs yang disintesiskan telah dicirikan mengikut ciri-ciri 

fizikal yang berbeza seperti mekanikal, perubahan morfologi dan kestabilan terma 

oksidatif dan juga ketulenan sampel dan luas permukaan; dengan menggunakan Fourier 

Transform Infrared Spektroskopi (FTIR), Pancaran Medan Mikroskopi Elektron 

Pengimbasan (FESEM), pembelauan sinar-x (XRD), analisis termogravimetri (TGA) 

dan kalorimetri imbasan pembeza (DSC). Luas permukaan dikaji oleh teknik Brunauer-

Emmet-Teller (BET) dan nisbah unsur telah disiasat oleh analisis tenaga serakan sinar-x 

(EDX) dengan peralatan yang digabungkan bersama FESEM. Ciri-ciri halangan telah 

disiasat oleh ukuran kebolehtelapan nitrogen menggunakan unit pemisahan membran. 

Pertambahbaikkan yang besar bagi sifat-sifat terma dan mekanikal matriks COPUs telah 

didapati dengan menggabungkannya bersama tanah liat organo dan MWCNTs. 

Keserasian MWCNTs tulen telah terbukti lebih tinggi berbanding keserasian tanah liat 

organo di dalam matriks polimer walaupun pada kepekatan MWCNTs yang rendah 

(0.3%) menunjukkan jarak d yang lebih tinggi, sifat mekanikal dan sifat haba seperti 

yang ditunjukkan dalam analisis memainkan peranan yang berbeza, berbanding tanah 

liat organo seumpamanya (3% berat). Sifat tegangan menunjukkan peningkatan 

sebanyak 324% ~ dalam kekuatan tegangan dan penurunan sebanyak ~ 74% dalam 

pemanjang memutus dengan 5% berat tanah liat organo, manakala nanokomposit 

COPUs - MWCNTs menunjukkan satu perkembangan besar dalam kekuatan tegangan 

dan menurunkan nilai pemanjangan memutus dengan 1% berat (~640% dan ~ 80%). 

Sifat haba menunjukkan peningkatan sebanyak 10-30 ºC dalam COPUs - nanokomposit 

C30B, manakala peningkatan yang ketara suhu degradasi sebanyak (~ 50 ºC) 

diperhatikan dengan 0.3% berat MWCNTs didalam matriks COPUs. Pengurangan nilai 

kebolehtelapan yang besar (~ 25% dan 50% ~) dicapai dengan 5% berat daripada tanah 

liat organo dan nanokomposit bermuatan 0.5% berat MWCNTs, dengan COPUs tulen. 

Kajian pengoptimuman telah dijalankan oleh kaedah gerak balas permukaan (RSM), 

termasuk reka bentuk komposit pusat (CCD) dengan tiga faktor; suhu, masa dan jumlah 

bahan pengisi nano. Peningkatan suhu dan jumlah bahan pengisi nano mempengaruhi 

pempolimeran nanokomposit sehingga ke tahap tertentu. Kekuatan tegangan optimum 

yang diperolehi ialah (1,997 MPa pada suhu 90 ºC dan wt% 4.99%) untuk tanah liat dan 

(2,207 MPa pada suhu 90 ºC dan wt% 1%) untuk MWCNTs. 
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CHAPTER I 

 

 

INTRODUCTION 

  

1.1  MOTIVATION 

 

In the past five decades, polymer/filler nanocomposites have attracted great 

interest, both in industry and academia for a wide range of applications due to its 

remarkable improvements in material properties at very fine level with low nano filler 

loading when compared to virgin polymer or conventional composites (Rajkumar et al., 

2013). Polymers filler composites have been widely used as a method of improving 

physico-chemical properties. These enhancements can include increased strength, heat 

resistance (Lahorija et al., 2010; Papageorgiou et al., 2013 and Rajkumar et al., 2011), 

and decreased gas permeability (Ruijian et al., 2003; Pradip et al., 2010 and Morteza et 

al., 2011). The main difficulty in the synthesis of polymer nanocomposites is the ability 

to achieve uniform dispersion of nanofillers in the polymer matrix (Behdad et al., 

2013). The three levels of dispersion are conventional composites, intercalated or 

partially exfoliated nanocomposites and fully exfoliated nanocomposites (Musa et al., 

2010). The field thrived after a research finding was presented by the Toyota Research 

Group (Kojima, 1993; Jeffrey and Tkashik, 1997 and Edcleide, 2011) in the 90s on 

unfamiliar physical property enhancements in a nylon 6/clay nanocomposite when 

integrated with minimal amount of filler loading. Light weight and economic 

competitiveness usage of only a minimal amount of reinforcing materials, usually below 

5 wt%, represent other key advantages of organic-inorganic nanocomposites (Samira et 

al., 2014). The ultimate polymer nanocomposites are shaped when nanofillers are 

completely dispersed into a polymer matrix and interact well between the polymer 

matrix and the surface of modified nanofillers. A high energy sonication process and 

mixing assisted by high energy shear force is an effective method to improve particle 

distribution (Kiliaris, 2010 and Daniel et al., 2013). This structure refers to the 
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exfoliated system which yields maximum improvement in properties. However, in 

many cases, the nanocomposites reported tend to become intercalated or partially 

exfoliated. Sometimes in an exfoliated structure, nanofillers are randomly dispersed in 

polymer chains to achieve improvements in physico-chemical properties (Onal et al., 

2006).    

 

In recent years, development of nanocomposites has been widened into almost 

every engineering polymer including polypropylene (Monica et al., 2010), polyethylene 

(Bergaya et al., 2005), polystyrene (Xaoan et al., 1999; Peter et al., 1999 and  Dirk et al 

2006), polyvinylchloride (Chaoying et al., 2003), acrylonitrile butadiene styrene 

(Modesti et al., 2007), polymetylmethacrylate (Utracki et al., 2010), polyethylene 

terephatalate (Guozhen et al., 2002), ethylene-vinyl acetate copolymer (Hyung et al., 

2007), polyacrylonitrile (Yagoub et al., 2012), polycarbonate (Saptarshi et al., 2012), 

polyethylene oxide (Burgaz, 2011), epoxy resin (Ole et al., 2002), polyimide (Chyi et 

al., 2003), polylactide (Barrau et al., 2011), polycaprolactone (Hongdan et al., 2010), 

phenolic resin (Shiao et al., 2006), poly p-phenylene vinylene (Anupama et al. 2010), 

polypyrrole (Zhanhu et al., 2009), rubber (Yiqing et al., 2005), polyurethane (Song et 

al., 2006; Yusoh, 2010 and Aranguren et al., 2012), urethane alkyd (Saravari et al., 

2013)and polystyrene (Huating et al., 2010).  

 

The transition from microparticles to nanoparticles can dramatically change the 

physical properties (Ryszkowska, 2008). A critical advantage of polymer 

nanocomposites over old-fashioned bulk composites is that the nano sized fillers lead to 

an intense increase in interfacial area, opening gateways to new applications (Schadler 

et al., 2007). Materials at the nano scale, exhibits diverse properties due to higher 

surface area and new quantum effects. Greater surface area to volume ratio with respect 

to conventional forms, lead to superior chemical reactivity and improved material 

mechanical performance (Lijie and Thomas, 2009). The results showed that 

nanostructured materials can have extensively diverse properties compared to a larger-

dimensional material of the similar composition (Hussain and Mehdi, 2006). The 

polymer nanocomposites types depend on its nanofillers, such as nanoparticles of 

organoclay, metal oxides, carbon nanotubes and graphene. Usually, the size and shape 
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of particles have a major effect on the final properties of its polymer/inorganic 

nanoparticle nanocomposites (Muhammad, 2013).  

 

The first study of mechanical properties enhancements by Okada et al., 

originated from in-situ polymerized hybrid organic and inorganic nanocomposites 

(Okada and Usuki, 1995; Giannelis, 1996 and Ogawa and Kuroda, 1997). The main 

issue is the important chemical and physical interactions that are directed by surfaces 

and surface properties. Nanostructured material can have substantially dissimilar 

properties from larger-dimension materials of the same composition (Mohammed, 

2012). Polymer composite performances can be enhanced such as increase in tensile 

strength and decrease in gas permeability and tear strength without losing elasticity can 

be enhanced depending on the type and amount of fillers as well as the level of 

intercalation or exfoliation of fillers in polymer matrix (Nanying et al., 2008 and Paul et 

al., 2013). The use of nanofillers has become abundant in polymeric synthesis. Carbon 

nanotubes (CNTs) and organoclay are the most widely used material in academia and 

industrial laboratories all over the world to formulate polymer nanocomposites 

(Christopher et al., 2013 and Yong et al., 2013).  Polyurethanes (PUs) are among the 

most important polymeric materials, with distinctive physical and chemical properties 

that are flexible, highly mechanical, and have thermal and chemical resistances (Yusoh 

2010 and Akintayo, 2013). PUs can be tailored to meet the diversified demands of 

various applications such as rigid insulations, coatings, footwear adhesives (Saraswathy, 

2009 and Jessica and Jose, 2011), thermoplastic elastomers and foams, as well as 

medical devices (Golaz et al., 2011; Liqiang et al., 2014 and Xuefeng et al., 2014). A 

wide range of fillers, modified clays and CNTs with structural modifications are used in 

the synthesis of polymer - fillers nanocomposites (Chattopadhyay et al., 2007).  

 

Recently, a large number of polymer nanocomposite matrices have been 

synthesized and significant enhancements in composite properties have been reported 

(Dilini et al., 2012). The first polymer-clay nanocomposite was reported in 1961, when 

Blumstein polymerized vinyl monomers intercalated in Montmorillonite (MMT) 

(Blumstein, 1961 and Dirk, 2006). Oriakhi in 1998 stated that ‘Nature is a master 

chemist with incredible talent’, showing that by using natural reagents and polymers 

such as carbohydrates, lipids, and proteins (Oriakhi, 1998), nature makes strong 



 

 

 

CHAPTER III 

 

 

METHODOLOGY 

 

 

3.1 INTRODUCTION  

 

 This chapter focuses primarily on the synthesis of polyurethanes for pure as well 

as with nanofillers (modified organoclay and MWCNTs) integrated in the PUs matrix to 

form nanocomposites. In the other half of the chapter, a brief and comprehensive 

description of analytical instruments which were employed in a comparative study of 

physicochemical properties of pure PUs and filler incorporated polymer-filler 

nanocomposites is discussed. Nanocomposites of PUs have heightened importance in 

wide scale applications during the last decade due to their improved properties over 

conventional composites. Due to the large consumption of PUs and the negative 

environmental impacts from petroleum based polyols, renewable resources as 

alternative materials are now of great interest to researchers. Castor oil, one of the major 

non-edible vegetable oils is an interesting renewable resource that contains a hydroxyl 

group (-OH) and unsaturated double bonds (C=C) in its organic chain, and is able to 

produce new polyurethane materials. The synthesis methodology encompass three 

different syntheses, which includes pure PUs with no fillers incorporated, 

PU/organoclay (Cloisite B30) nanocomposites and new PU/multi-walled carbon 

nanotube (MWCNT) nanocomposites which employs a mixture ratio of polypropylene 

glycol and castor oil as polyols.     

 

 The crystal structure was studied using X-ray diffraction (XRD). The XRD 

patterns were recorded using an X-ray diffractometer (Rigaku Mini Flex II, Japan) 

which employs graphite monochromator and CuKα radiation (λ = 0.15406 nm). The 
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morphology was examined using Scanning electron microscopy (SEM) on the JEOL 

6300F (Japan) machine at an acceleration voltage of 5KV and field emission scanning 

electron microscopy (FESEM, JEOL EVO-50, Japan). Infrared absorption spectroscopy 

(IR) spectrum was measured at room temperature using a Fourier transform infrared 

(FTIR) spectrometer (Nicolet 5DX FT-IR, USA). Thermal stability was tested 

usingThermo-gravimetric analysis (TGA) on a thermal analyzer (Mettler Toledo, 

TGA/DSC1) at a rate of 10 
o
C min

−1 
and on a Differential Scanning Calorimetry (DSC) 

model of TA- Instrument DSC/Q 1000 (V9.6, Build 290). BET surface area of the 

composite was studied using gas adsorption studies (ASAP 2020, Micromeritics, USA). 

Atomic percentages of elements in neat COPUs, organoclay and MWCNTs were 

calculated using Energy Dispersive X-ray spectroscopy (EDX) attached within FE-

SEM. The study of mechanical properties (tensile strength and elongation at break) 

were carried out using an Instron model 4505 universal testing machine at 25 ºC with a 

load cell of 5 KN, followed by ASTM D 638. Crosshead speed was set to 2 mm/min. 

Samples were cut into dumbbell shapes using ASTM D 638 (type V).   

 

3.2 MATERIALS  

 

Major building-blocks for the synthesis of renewable polyurethanes are: 

 

3.2.1 Toluene Diisocyanate (TDI) 

 

In this research, Toluene diisocyanate (TDI) was used for the preparation of PU 

samples. TDI used as received was supplied from SIGMA-Aldrich Company. Its 

physical properties are shown in Table 3.1. TDI is an aromatic diisocyanvate.  

 

3.2.2 Polyols 

 

 Polyols are defined as chemical compounds that contain more than one hydroxyl 

group (diol). Polyols are separated into two categories, which are low molecular weight 

and high molecular weight polyols. High molecular weight polyols called oligo-polyols, 

are one of the main building blocks that represents the soft segment in the formation of 

polyurethane.  
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Table 3.1: Physical properties of TDI. 

 

Constituent value 

Commercial name Toluene Diisocyanate (TDI) 

Molecular formula C9H6N2O2 

Molecular weight 174.2 

Appearance White or pale yellow solid 

Density 1.214 g/cm
3
, liquid 

Melting point 21.8 °C (295 K) 

Boiling point 251 °C (524 K) 

Solubility in water Reacts 

 

 

 In this research, a polyether polyol ) Polypropylene Glycol, Molecular weight = 

4000) was supplied by Sigma-Aldrich Company and was selected as the soft segment. 

The details are shown in Table 3.2. 

      

Table 3.2: Properties of Polypropylene Glycol. 

 

Constituent value 

Commercial name P 4000 

Appearance Colorless liquid 

Molecular weight 4000 

OHV 28 mg KOH/g 

Viscosity (25 
o
C) 1300 mPa.s 

Functionality 1.7 

Structure 

 

 

   

3.2.3 Castor Oil  

 

 In this work, castor oil was used as an alternative to petrochemical based polyols 

and as a renewed resource that can potentially reduce cost in polyethane production. In 

this research, pure castor oil was purchased from Chengdu Organic Chemicals, China 

and polymerized directly without modifications. Table 3.3 shows the composition of 

castor oil, while Table 3.4 shows the properties of castor oil.    

http://en.wikipedia.org/wiki/Density
http://en.wikipedia.org/wiki/Melting_point
http://en.wikipedia.org/wiki/Boiling_point
http://en.wikipedia.org/wiki/Solubility
http://en.wikipedia.org/wiki/Water
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