EFFECTS OF POLYVINYLPYRROLIDONE ADDITIVE ON THE PERFORMANCE OF HOLLOW FIBER ION EXCHANGER MIXED MATRIX MEMBRANE FOR COPPER REMOVAL

KELVIN WONG JING ZHI

BACHELOR OF CHEMICAL ENGINEERING UNIVERSITI MALAYSIA PAHANG

©KELVIN WONG JING ZHI (2015)

Thesis Access Form

No		Location			
Author :					
Title :					
Status of a	ccess OPEN / RESTRICT	ED / CONFIDENTIAL			
Moratoriur	n period:	years, ending	/200		
Conditions	of access proved by (CA	PITALS): <u>DR SYED MOH</u>	ID SAUFI		
Supervisor (Signature)					
Faculty:					
Author's Declaration: I agree the following conditions:					
OPEN access work shall be made available in the Universiti Malaysia Pahang only and not allowed to reproduce for any purposes.					
The statement itself shall apply to ALL copies:					
This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.					
Restricted/confidential work: All access and any photocopying shall be strictly subject to written permission from the University Head of Department and any external sponsor, if any.					
Author's signatureDate:					
users declaration: for signature during any Moratorium period (Not Open work): <i>I undertake to uphold the above conditions:</i>					
Date	Name (CAPITALS)	Signature	Address		
	8	1	1		

EFFECT OF POLYVINYLPYRROLIDONE ADDITIVE ON THE PERFORMANCE OF HOLLOW FIBER ION EXCHANGER MIXED MATRIX MEMBRANE FOR COPPER REMOVAL

KELVIN WONG JING ZHI

Thesis submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Chemical Engineering

Faculty of Chemical & Natural Resources Engineering UNIVERSITI MALAYSIA PAHANG

JANUARY 2015

©KELVIN WONG JING ZHI (2015)

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Chemical Engineering.

Signature	:
Name of main supervisor	: DR. SYED MOHD SAUFI
Position	: SENIOR LECTURER
Date	:

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature:Name: KELVIN WONG JING ZHIID Number: KA12001Date:

Dedication

To my beloved parents for their support

ACKNOWLEDGEMENT

I would like to express my highest gratitude to my supervisor, Dr. Syed Mohd Saufi for the guidance through an effective well-arranged weekly meeting. It's impossible for me to complete this research without the assistance from him such as the equipment and knowledge obtained from my supervisor. It is a great opportunity to have him as my supervisor as he is a caring mentor.

I'm recognizing the valuable details provided by the fellow post-graduates under my supervisor in particular Miss Elfira, Miss Murni and Madam Norlisa.

In addition to that I would like to acknowledge my remarkable friends who have supported me throughout the my dissertation work especially Ng Teck Huai, Joshua Kau Mun Kit and Mah Kah Hong. They had helped me to develop my thesis.

I would like to show my admiration to my high school friends for the moral support as well as their professional opinion on my research with their expertise in various background particularly Benjamin Leong Kuan Woh, Lee Yung Sen, James Low, Lum Wai Kian, Wong Hoi Lai, Lim Wai Yuen, Low Kai Sein, Teh Sue Anne and Serene Choo Yin Xuan. It is my fortune to have them all this while.

On top, I would like to show my thankfulness to my research mates, Kiew Fong Fong and Teoh Boon Huey for their tolerance.

Besides that I would like to express my delight to the Technical Staff of FKKSA Lab especially Mr. Zaki, Mr. Khairul, Mr. Hisyam and Mr. Zul for their support in the completion of my dissertation.

ABSTRACT

The existence of copper in the environment is a concern due to the acute and long term toxicity. With the advantages of lower capital cost, easy operation process and high copper removal percentage, ion exchange technology offers the best treatment for copper removal but it has a drawback where it will cause a vast drop in pressure. In order to overcome this limitation, an ion exchanger mixed matrix membrane was produced in this study. Amberlite IR 120H cation exchanger was incorporated in the polyethersulfone (PES) based polymer solution. The effect of polyvinylpyrrolidone (PVP) pore forming additive in the PES dope solution was studied in the range of 0 to 10wt%. The hollow fiber membrane was synthesized using dry-wet spinning procedure. The pore structure of the membrane was characterized using Scanning Electron Microscope (SEM) and was found more porous as the concentration of PVP increases. The permeability was also increased as the concentration of PVP increases. The optimum concentration of PVP for the removal of copper is between 3wt% and 5wt%.

ABSTRAK

Kewujudan kuprum dalam alam sekitar adalah kebimbangan disebabkan oleh ketoksikan jangka akut dan panjang. Dengan kelebihan kos modal yang lebih rendah, proses operasi yang mudah dan tembaga tinggi peratusan penyingkiran, teknologi pertukaran ion menawarkan rawatan yang terbaik untuk penyingkiran kuprum tetapi ia mempunyai kelemahan di mana ia akan menyebabkan penurunan besar dalam tekanan. Dalam usaha untuk mengatasi had ini, ion membran penukar matriks bercampur dihasilkan dalam kajian ini. Amberlite IR 120H kation penukar diperbadankan pada polyethersulfone yang (PES) penyelesaian polimer berasaskan. Kesan polyvinylpyrrolidone (PVP) liang membentuk bahan tambahan dalam larutan PES telah dikaji dalam julat 0 hingga 10wt%. Membran gentian geronggang telah disintesis menggunakan prosedur berputar kering-basah. Struktur liang membran dicirikan menggunakan Mikroskop Imbasan Elektron (SEM) dan didapati lebih poros sebagai kepekatan kenaikan PVP. Kebolehtelapan ini juga meningkat kepekatan kenaikan PVP. Kepekatan optimum PVP untuk penyingkiran tembaga adalah antara 3wt% dan 5wt%.

TABLE OF CONTENTS

SUPERVISOR'S DECLARATION IV				
STUDENT'S DECLARATIONV				
Dedication	. VI			
ACKNOWLEDGEMENT	VII			
ABSTRACT				
	. IX			
	X			
	XII			
LIST OF STRIDULS	ΛV (\/			
	1			
1.1 Motivation and statement of problem	1			
1.2 Objective	2			
1.3 Scope of this research	2			
1.4 Main contribution of this work	2			
1.5 Organisation of this thesis	2			
2 LITERATURE REV/IEW	Λ			
2.1 Heavy Metals Pollution				
2.1.1 Copper	6			
2.2 Heavy Metals Removal Techniques	/			
2.2.1 Adsorption	7			
2.2.2 Chemical Precipitation	8			
2.2.3 Coagulation and flocculation	10			
2.2.4 Membrane	12			
2.2.5 Ion Exchange	16			
2.2.6 Comparison of the Heavy Metals Removal Techniques	16			
2.3 Ion Exchanger Mixed Matrix Memorane	19			
2.4 Opportunities of Copper Removal Mixed Matrix for Exchange	20			
2.5 Polvethersulfone	20			
2.6 Analysis Methods of Permeability and Adsorption of Membrane	21			
2.7 Summary	22			
3 METHODOLOGY	23			
2.2 Propagation of Dong Polymer Solution	23			
3.3 Hollow Fiber Dry-Wet Spinning Process	25			
	20			
3.4.3 Membrane Module Fabrication	27			
3.4.4 Scanning Electron Microscope	31			
3.4.5 Water Permeability	31 22			
3.4.0 Static Ausorption Capacity	ວ∠ ຊ≀			
3.4.8 Dynamic Conner Removal Test	34			
3.4.9 Elution Test	35			

4	RE	ESULTS AND DISCUSSION	37
	4.1	Synthesis of Hollow Fiber Membrane	37
	4.2	Scanning Electron Microscope (SEM) 3	39
	4.3	Static Adsorption Test 4	12
	4.4	Effect of pH 4	13
	4.5	Water Permeability 4	17
	4.6	Dynamic Copper Removal Test 4	8
	4.7	Elution Test5	50
5	Co	onclusions and Recommendation5	51
-	5.1	Conclusion	51
	5.2	Recommendations 5	52
	5.2	2.1 Study on the Static Adsorption5	52
	5.2	2.2 Study on the Effect of pH 5	52
	5.2	2.3 Study on the Water Permeability 5	53
	5.2	2.4 Study on the Dynamic Copper Removal	53
	5.2	2.5 Study on the Elution Recovery 5	53
R	EFRE	ENCES 5	54
AF	PPEN	NDICES	30

LIST OF FIGURES

Figure 2.1: Percentile Values of Cu (Copper) at all Sampling Stations (Department of Irrigation and Drainage, 2009)	f 6
Figure 2.2: Percentile Values of Cu (Copper) at all Sampling Stations continued (Department of Irrigation and Drainage, 2009)	6
Figure 2.3: The adsorption mechanism of Cu(II) on hydrous TiO ₂ (Barakat, 2005)	8
Figure 2.4: Processes of a conventional metals precipitation treatment plant (Wang, e al., 2005).	et . 10
Figure 2.5: Mechanism of Flocculation(Chemistry.TutorVista.com, 2014)	. 11
Figure 2.6: Mechanism of Coagulation (Chemistry.TutorVista.com, 2014)	.11
Figure 2.7: Coagulation and Flocculation Tank (Dynamic-des.com, 2014)	. 12
Figure 2.8: Schematic diagram of a two-phase separation system separated by a membrane.(Tin, 2005)	. 13
Figure 2.9: Pore Size of Membrane Processes (Radcliff & Zarnadze, 2004)	. 14
Figure 2.10: Flat Sheet Membrane(EC Plaza, 2013)	. 15
Figure 2.11: Structure of a Hollow Fiber Membrane (Hyfluxmembranes.com, 2008).	. 15
Figure 2.12: Mechanism of Binding of Copper ion to the Functional (Neunmann, 200)9) . 16
Figure 2.13: Schematic of Mixed Matrix Membrane (MMM)(Bastani, et al., 2013)	. 20
Figure 2.14: Molecular Structure Polyethersulfone (PES)	. 21
Figure 2.15: Molecular Structure of Polyvinylpyrrolidone (PVP)	. 21
Figure 3.1: Retsch Rottor Mill ZM200	. 23
Figure 3.2: Dope Solution Preparation	. 24
Figure 3.3: Dry-wet Spinning Process	. 25
Figure 3.4: Hollow fiber membrane produced at the take up drum	. 26
Figure 3.5: Storage bath of the hollow fiber membrane	. 26
Figure 3.6: Shell-side Hollow Fiber Module	. 27
Figure 3.7: Structure of lab-scale modular module (Li, et al., 2004)	. 28
Figure 3.8: Bundle preparation and module assembly(Li, et al., 2004)	. 29
Figure 3.9: Curing of the Epoxy Resin	. 29
Figure 3.10: Schematic Diagram of Membrane Module Setup	. 30
Figure 3.11: The Membrane Module Setup	. 30
Figure 3.12: Scanning Electron Microscope (SEM) at 400x Magnification	. 31
Figure 3.13: Perkin AAnalyst 400 Flame Atomic Absorption Spectrometer	. 33
Figure 4.1: Surface of the Membrane for 10wt% PVP dope solution	. 37
Figure 4.2: Surface of the Membrane for 0wt% PVP dope solution	. 38

Figure 4.3: Cross Section of 0wt% and 3wt% PVP Membrane	. 39
Figure 4.4: Cross Section of 5wt% and 8wt% PVP Membrane	. 39
Figure 4.5: Cross Section of 10wt% PVP Membrane	. 39
Figure 4.6: Cross Section of 0wt% and 3wt% Membrane at 400x Magnification	. 40
Figure 4.7: Cross Section of 5wt% and 8wt% Membrane at 400x Magnification	. 40
Figure 4.8: Cross Section of 10wt% Membrane at 400x Magnification	. 40
Figure 4.9: Cross Section of 0wt% and 3wt% Membrane at 1000x Magnification	.41
Figure 4.10: Cross Section of 5wt% and 8wt% Membrane at 1000x Magnification	.41
Figure 4.11: Cross Section of 10wt%Membrane at 1000x Magnification	.41
Figure 4.12: Binding of Copper at Different Concentration of Co-polymer	. 42
Figure 4.13: Precipitation formed in pH12 and pH13 (Alkaline solution)	. 44
Figure 4.14: Effect of pH on the Binding of Copper	. 45
Figure 4.15: Binding of Copper at Low pH	. 47
Figure 4.16: Pure Water Permeability at Different PVP Concentration	. 48

LIST OF TABLES

Table 2.1: Parameter Limits of Effluent of Standards A and B (Department of Environment, 2000)	5
Table 2.2: Membrane separation process classified driving force	13
Table 2.3: Comparison of the Heavy Metals Removal Techniques	17
Table 3.1: Dope solution composition of hollow fiber membrane	24
Table 4.1: Results of the Static Adsorption of Different PVP Concentration Mem	brane 42
Table 4.2: Statistical Data for Different PVP Concentration	43
Table 4.3: pH Testing for Optimum pH condition for the Adsorption of the Meml	brane 44
Table 4.4: Concentration of Copper after Incubation	45
Table 4.5: Study of the Optimum Acidic pH condition	46
Table 4.6: Statistical Data of Different pH Static Adsoption	46
Table 4.7: Pure water permeability of Different PVP Concentration Membrane	48
Table 4.8: Dynamic Copper Removal Test Run 1	49
Table 4.9: Dynamic Copper Removal Test Run 2	49
Table 4.10: Average copper bound and rejection efficiency	49
Table 4.11: Statistical Data for Cross Flow	49
Table 4.12: Elution for the Run 1 Membrane	50
Table 4.13: Elution for the Run 2 Membrane	50

LIST OF SYMBOLS

Greek

|--|

Subscripts

8	gas
l	liquid
eff	effective

LIST OF ABBREVIATIONS

AAS	Atomic Absorption Spectrometry	
BOD	Biological Oxygen Demand	
COD	Chemical Oxygen Demand	
CuSO ₄ .5H ₂ O	Copper Sulphate Pentahydrate	
NMP	N-Methyl-2-pyrrolidone	
PAM	Polyacrylmide	
PAN	Polyacrylite	
PEG	Polyethylene glycol	
PES	Polyethersulfone	
PVDF	Polyvinyllidene fluoride	
PVP	Polyvinylpyrrolidone	
SEM	Spectrometry Electron Microscope	

1 INTRODUCTION

1.1 Motivation and statement of problem

Abundant of heavy metals waste water has been generated worldwide due to the industry activities such as mining, metals plating, electric device manufacturing, surface treatment and raw material for synthesis. Heavy metals such as copper, lead, mercury and chromium are toxic to human as it compromises acute and long term effect to our health(Farooq, et al., 2010).

Copper is vastly used as the major material of electronic industries. It is one of the most common metals be used in industries for the construction of structures as it has a relative high tensile strength (Kuhn & Medlin, 2000)

As a result of application of copper in electronic industries, it generates an environmental problem as the heavy metals are toxic, environment persistent and have the tendency to accumulate in the body tissues (Al-Rashidi, et al., 2013).

Membrane technology in the separation processes have became one of the emerging technologies which experienced a rapid growth of during the past decades. The membrane technology has been widely used in the gas separation where heat is not required or the mixture is an azeotrope (Hillmen, 2000). In the removal of heavy metals, membrane is not widely used as the dead end filtration is prone to fouling and concentration polarization (Zhang & Vecitis, 2014).

Several processes have been practiced for the removal of heavy metals. These methods include chemical precipitation, ion-exchange, membrane filtration, carbon adsorption, co-precipitation/adsorption and electrochemical removal (Babel & Kurniawan, 2003). Ion exchange processes mostly uses selective chelating resins contain anion functional group that have affinity towards the heavy metals ions. Besides that, the ion exchange resins causes a vast drop in pressure as the treated water passes through the ion exchange bed filled with resins (Stremovskii & Klyueva, 1974).

To date, the removal of heavy metals from wastewater using membrane are mostly flat sheet profile (Sato, et al., 2002). Microfiltration and nanofiltration are unique due to the

separation mechanism which is working based on size exclusion, charge repulsion and have a higher rejection of multivalent heavy metals ions as compared to UF membranes. (Gherasim, et al., 2013). Recently hollow fiber has become a progress due to the high total surface area as compare to flat sheet (Peng, et al., 2012).

1.2 Objective

The objective of this research is to study the effects of polyvinylpyrrolidone additive concentration on the performance of hollow fiber ion exchanger mixed matrix membrane for copper removal.

1.3 Scope of this research

The following are the scope of this research:

- To produce ion exchange hollow fiber MMM by incorporating cation resin, Amberlite IR120H into a polymer solution consist of PES, NMP and PVP.
- To study the effect of PVP additive concentration in the PES-Amberlite IR120H dope polymer solution from 0-10wt% on the performance of adsorptive MMM for copper removal.
- iii) To characterize the MMM in term of pore structure, water permeability and static adsorption properties for copper removal.
- iv) To study the effect of pH on the adsorption capacity of the membrane.

1.4 Main contribution of this work

The following are the contributions:

- 1) To provide an economic alternative for the removal of copper from the wastewater.
- 2) To provide a more efficient alternative for the removal of copper.
- To enhance the quality of water in order to reduce the pollution of the river caused by the electronic industries in Malaysia.

1.5 Organisation of this thesis

This thesis was distributed into five chapters. Following the introduction in Chapter 1,

Chapter 2 provides a description of the applications and general design features of ion exchanger mixed matrix membrane (MMM). A general description on the hollow fiber membrane, as well as the ion exchange and adsorptive membrane. This chapter also provides a brief discussion of the advanced experimental techniques available for copper removal, mentioning their applications and limitations for permeability and adsorption analysis. A summary of the previous experimental work on copper removal is also presented. A brief discussion on the characterisation methods for Ion Exchanger Mixed Matrix Membrane is also provided.

Chapter 3 is essential as it provides the information on the materials and methods of synthesizing and characterising the Ion Exchanger Mixed Matrix Membrane for Copper Removal. The performance of the Ion Exchanger Mixed Matrix Membrane (MMM) for Copper Removal with different concentration of Polyvinlypyrrolidone (PVP) additive range from 0-10wt% will be explained. The performance of the Ion Exchanger MMM was studied based on the permeability, adsorption and structure. The experimental data were compared to determine the optimum concentration of the PVP. Both static and dynamic adsorptions of the copper by the ion exchanger were studied.

Chapter 4 focused on the major findings of this research with relevant discussion. The first section will be discussing about the characterized membrane developed in this research using SEM and permeability. The effect of pH on the membrane was also discussed. The performance of the membrane is discussed based on the static and dynamic adsorption capacity and elution recovery. The analysis was done based on the data obtained.

Chapter 5 is focused on the conclusion and recommendation of the dissertation based on the results and discussion.

2 LITERATURE REVIEW

2.1 Heavy Metals Pollution

Heavy metals in industrial wastewater effluent are mainly from the heavy industries. Heavy metals are toxic and non-biodegradable and may have the continuity to exist in our water bodies. The release of heavy metal to the environment has effect on both aquatic and land organisms as heavy metals inhibits the activity of most biological body that resulting maybe acute or chronic effect to the health. Furthermore, heavy metals are not easily removed from the body. Hence a strict environmental regulation has been legislated to mitigate the heavy metals contamination especially in the discharge of industrial effluent that contains high concentration of heavy metals. The Table 2.1 shows the limits of Standards A and B that includes the limits for heavy metals. The heavy metal that is chosen to be studied is copper as it is common in our wastewater. The following Figure 2.1 and Figure 2.2 show the concentration of copper in the various sampling stations in Malaysia in year 2009. It is found out that only two of the station readings comply with the acceptable limits of Standard A for copper which are 0.20mg/L and 1.0mg/L. Whereas in compliance of Standard B, there are a few that did not comply with the reading as high 20.60mg/L which is four times the limit of 5.00mg/L of Standard B for Iron acceptance level.

Table 2.1: Parameter Limits of Effluent of Standards A and B (Department of

Enviroment, 2000)

	Parameter	Unit	St	andard
			Α	В
	(1)	(2)	(3)	(4)
(i)	Temperature	°C	40	40
(ii)	pH Value	-	6.0-9.0	5.5-9.0
(iii)	BOD at 20°C	mg/L	20	50
(iv)	Suspended Solids	mg/L	50	100
(v)	Mercury	mg/L	0.005	0.05
(vi)	Cadmium	mg/L	0.01	0.02
(vii)	Chromium, Hexavalent	mg/L	0.05	0.05
(viii)	Chromium, Trivalent	mg/L	0.20	1.0
(ix)	Arsenic	mg/L	0.05	0.10
(x)	Cyanide	mg/L	0.05	0.10
(xi)	Lead	mg/L	0.10	0.5
(xii)	Copper	mg/L	0.20	1.0
(xiii)	Manganese	mg/L	0.20	1.0
(xiv)	Nickel	mg/L	0.20	1.0
(xv)	Tin	mg/L	0.20	1.0
(xvi)	Zinc	mg/L	2.0	2.0
(xvii)	Boron	mg/L	1.0	4.0
(xviii)	Iron (Fe)	mg/L	1.0	5.0
(xix)	Silver	mg/L	0.1	1.0
(xx)	Aluminium	mg/L	10	15
(xxi)	Selenium	mg/L	0.02	0.5
(xxii)	Barium	mg/L	1.0	2.0
(xxiii)	Fluoride	mg/L	2.0	5.0
(xxiv)	Formaldehyde	mg/L	1.0	2.0
(xxv)	Phenol	mg/L	0.001	1.0
(xxvi)	Free Chlorine	mg/L	1.0	2.0
(xxvii)	Sulphide	mg/L	0.50	0.50
(xxviii)	Oil and Grease	mg/L	1.0	10
(xxix)	Ammoniacal Nitrogen	mg/L	10	20
(xxx)	Colour	ADMI*	100	200

ACCEPTABLE CONDITIONS FOR DISCHARGE OF INDUSTRIAL EFFLUENT OR MIXED EFFLUENT OF STANDARDS A AND B

*ADMI-American Dye Manufacturers Institute

Figure 2.1: Percentile Values of Cu (Copper) at all Sampling Stations (**Department of Irrigation and Drainage, 2009**)

Figure 2.2: Percentile Values of Cu (Copper) at all Sampling Stations continued (Department of Irrigation and Drainage, 2009)

2.1.1 Copper

Copper is a ductile metal with a very high electrical and thermal conductivity. It is used as a conductor of electricity and heat, parts of several metal alloys and construction material. It has been used for thousands of years. Copper compromises 50 parts per million in of the earth crust. Copper element can be found in the earth crust naturally and the Cu^{2+} ions are easily combine with sulphur and oxygen containing compounds such as hydroxides, oxides, carbonates and sulphides. Chalcopyrite and Chalcocite are the most common compound of copper found in nature. Copper (as Cu^{2+}) concentrations of 40 µg/litre can be detected by taste in distilled water. In mineralized spring water with total dissolved solids (TSS) content of 500 mg/litre, the taste threshold value was 0.12 mg/litre.

Copper is vital in human nutrition. The estimated of the minimum daily requirement for copper range from about 0.9 to 1.3 mg/day(FAO, 1988). The average lethal dose of copper is 10 mg/kg of body weight. Studies have shown that in excess of copper dosage can cause to tissue injury and disease. The oxidation potential of copper is responsible for some of its toxicity in excess ingestion cases that causes oxidative damage to the human body system that includes peroxidation of lipids and other macromolecules (Bremner, 1998). There's research that shows the significance of the excess of copper in the progression of Alzheimer's disease due to the accumulation of metal homeostasis disturbance that develops in individuals with Alzheimer's disease brains that possibly be damaging by the toxic buildup of amyloid beta in the brain (Bhattacharya, 2003).

2.2 Heavy Metals Removal Techniques

2.2.1 Adsorption

It is recognized as an economic and effective method of removing heavy method as it provides the flexibility of design and operation for the removal of heavy metals. In most cases, it is able to produce high quality treated heavy metals effluent. In addition, it is able to be regenerated through desorption process of the adsorbents. Activated carbon is the most widely used adsorbent to remove heavy metals. It is derived from carbonaceous source of material such as coconut husk, wood, coal and recently from biomass. It is produced through either chemical activation or physical activation. Activated carbon is extensively used in removal of heavy metals as it is highly porous and high surface are per volume. Langmuir and Freundlich are the two isotherms used to describe the application of water treatment. The Langmuir isotherm is

$$q = \frac{q_o c}{K + c}$$

In Langmuir isotherm, only a fixed number of active sites available for adsorption. It is also a reversible and reaches equilibrium.

The Freundlich isotherm is

$$q = Kc^n \tag{2.2}$$

In Freundlich isotherm, it explained the variation of adsorption with temperature. This isotherm is fails at higher pressure. The mechanism of adsorption is visualized in the Figure 2.3.

Figure 2.3: The adsorption mechanism of Cu(II) on hydrous TiO₂ (Barakat, 2005)

2.2.2 Chemical Precipitation

Chemical Precipitation the most widely used technique as it is inexpensive and relatively simple to operate (Ku & Jung, 2001). The chemicals react with heavy metals to form insoluble precipitates that will be then removed using filtration method. The chemicals widely used for precipitation are such as hydroxides and sulfides. Hydroxides are widely used as the pH control is easy (Huisman, et al., 2006). The range of the hydroxides is pH from 8.0-11.0. The metals hydroxides such as potassium hydroxides and sodium hydroxides can be removed using sedimentation and flocculation. In

addition, aluminum oxide and iron salts are being used to boost the removal of the heavy metals. The drawback of hydroxide precipitation is that it produces a large amount of sludge that poses disposal problems (Kongsricharoern & Polprasert, 1995).

Aside from metals hydroxides, sulfide precipitation is also an effective method to remove heavy metals. It is more preferred to be used due to the solubility of most sulfide compounds are less soluble as compare to hydroxides that provides a more effective removal of heavy metals. However, sulfide precipitation process is causing problems due to the hydrogen sulfide toxic fumes with the reaction of acidic conditions. Thus the process should be done in neutral or alkaline condition. Lastly, the sulfide precipitation is prone to form colloidal precipitates that causes problem in filtration and settling process.

Recently, chelating precipitants are used to precipitate heavy metals from the solution. The three widely used chelating precipitants for heavy metals removal are trimercaptotriazin, sodium dimethyl dithiocarbonate and potassium/sodium dimethyldithiocarbonate. Chelating precipitation is a particular method that ions and molecules bind metals ions to form precipitants and removed through filtration(Wang, et al., 2012). Chelating precipitation shows a remarkable result of reducing the concentration of heavy metals with an immediate reduction of the heavy metals but if the precipitate is not removed immediately, it will decompose and form by products such as tetramethylthiuram and thiram which are toxic to aquatic organisms (Atwood & Zaman, 2006). In Figure 2.4, shows the process of a conventional metals precipitation treatment plant.

Figure 2.4: Processes of a conventional metals precipitation treatment plant (Wang, et al., 2005).

2.2.3 Coagulation and flocculation

The processes before sedimentation are coagulation and flocculation. Coagulation is the process of destabilising the colloids by neutralising the forces that keep the colloids apart. Aluminium oxide and ferric chloride are the most widely used coagulant in the conventional wastewater treatment processes. Flocculation is the formation of bridges between the flocs and binds to form larger agglomerates. Suspended particles are flocculated into larger particles can be removed by filtration or floatation. Polyferric sulphate (PFS) and polyacrylamide (PAM) are the widely used flocculants. However, most of these flocculants and coagulants are not able to remove heavy metals (Chang & Wang, 2007). These processes require the support of other treatment to fully remove heavy metals. In order to overcome the limitation of coagulation, electrocoagulation technique had been introduced. Electrocoagulation involves the formation of coagulants in situ by dissolving electrically iron or aluminium ions from iron or aluminium

electrodes (Chen, 2004). The metals ions are formed at the anodes and hydrogen gas is released from the cathodes. The hydrogen gas that is released assists the floatation of the flocculated particles out of the water. The removal efficiency of heavy metals is able to achieve 99% (Mulligan, 2009). However the electrocoagulation technique requires a huge amount of energy to remove heavy metals (Kim, et al., 2014).

Figure 2.5: Mechanism of Flocculation(Chemistry.TutorVista.com, 2014)

Figure 2.6: Mechanism of Coagulation (Chemistry.TutorVista.com, 2014)

Figure 2.7: Coagulation and Flocculation Tank (Dynamic-des.com, 2014)

2.2.4 Membrane

Membrane is a thin barrier that allows certain constituents and retains other constituents found in the liquid based on the ionic charge and size of the constituents (Cheryan, 1998). The membrane is separated by one bulk phase with higher concentration of certain constituents and another lower concentration of it as shown in Figure 2.8 (Geankoplis, 2003). In terms of pressure or concentration gradient, the driving force initiates from the chemical potential gradient. Industrial membranes separation processes can be categorized into several groups based on the driving force that initiates the flow of the permeate through the membrane (Matsuura, 1994). In Table 2.2 the types of membrane separation process classified based on the driving force. In general membrane is prone to fouling and concentration polarization (Moreno-Villoslada, et al., 2005).

Driving Forces

Figure 2.8: Schematic diagram of a two-phase separation system separated by a membrane.(**Tin, 2005**)

Table 2.2: Membrane separation process classified driving force

Type of Driving Force	Separation Process		
Pressure difference	Reverse Osmosis		
	 Microfiltration 		
	 Ultrafiltration 		
	 Pervaporation 		
Concentration difference	 Forward Osmosis 		
	 Dialysis 		
Temperature difference	Membrane Distillation		
Electric potential difference	 Electrodialysis 		

The membranes that work on the pressure difference can be divided based on the pore size. The classification of the membranes based on the size exclusion of pressure differences are as the following Figure 2.9.

Figure 2.9: Pore Size of Membrane Processes (Radcliff & Zarnadze, 2004)

There are a few configurations of membrane which are namely flat sheet, tubular, spiral wound and hollow fiber.

2.2.4.1 Flat Sheet Configuration

Flat sheet membranes are typically synthesized to a filtration system that consists of stacks of modules with a quantity of sheets. Flat sheet has been used in the removal of heavy metals for decades. The cost of running flat sheet membrane will be higher as compared to other conventional techniques as it requires the high pressure application of 20 bars and the module is prone to fouling though it is able to remove heavy metals with the efficiency of more than 96% (Tanninen, et al., 2006). The Figure 2.10 shows the image of flat sheet membrane.

Figure 2.10: Flat Sheet Membrane(EC Plaza, 2013)

2.2.4.2 Hollow Fiber Configuration

Hollow fiber module membrane has gain rapid progress in the last 12 years in bioseparation, drinking water purification, wastewater treatment and gas phase separation as it has a high separation areas and selectivity compared to the conventional flat sheet module (Feng, et al., 2013). The excellent mass transfer properties of hollow fiber membrane configuration had lead to a number of industrial applications. The Hollow fiber element permits a higher surface area in small volumes that provide the configuration to adapt in the industry by using a minimal space as compared to the flat sheet module. Hollow fiber is able to reduce the fouling as the fluid flows from inside the hollow fiber and passes through the outer of the membrane (Li, et al., 2014). Figure **2.11** shows the structure of hollow fiber membrane.

Figure 2.11: Structure of a Hollow Fiber Membrane (Hyfluxmembranes.com, 2008)

The excellent mass transfer properties of hollow fiber configuration allows it to be used in various fields such as water desalination and purification, gas separation, azeotropic separation and medical usage.

2.2.5 Ion Exchange

Whenever an ion is removed from the aqueous solution and replaced by another ionic species is generally called as ion exchange. Ion exchange is normally used for food & chemical, petrochemical, semiconductor, beverages, water treatment and pharmaceutical industries. Mostly the application of ion exchange is to produce deionized water for such industries. Besides that, it is widely used to soften ground water by exchanging with calcium (Ca^{2+}) and magnesium (Mg^{2+}) ions with H^+ ions. Zeolite, clay and soil hummus are natural ion exchangers. In industry, commercialized ion exchangers are normally synthesized from polystyrene and polyacrylate that are consist of small, porous beads that are insoluble in water and organic solvents (Neunmann, 2009). Each of the monomer units of the polymer, functional groups are attached. Ions are either positively (cations) or negatively (anions) charged. The functional groups are charged that allows the interaction between ions and functional groups is exhibited through electrostatic forces. Positively charged functional groups such as sulfonic-, phosphoric- or carboxylic acid group will interact with cations. Whereas negatively charged groups such as quarternary amine group will interact with anions. The interaction of between the attached ions is relatively loose and can be reversed by another ion passing. This allows the ion exchange resins to be recharged for repetitively used. The mechanism of the ion exchange is visualized in Figure 2.12. The drawback of ion exchanger is that it will cause a vast drop in pressure(Moreno-Villoslada, et al., 2005). Ion exchange technology uses a very low amount of energy as compared to electrolysis process as electrocoagulation consumes very high amount of energy(Abdelwahab, et al., 2009).

Figure 2.12: Mechanism of Binding of Copper ion to the Functional

2.2.6 Comparison of the Heavy Metals Removal Techniques

In the development of heavy metals removal in the recent years, the following **Error! Not a valid bookmark self-reference.** shows the comparison of the several techniques that are normally used for the removal of heavy metals.

|--|

Heavy Metals Removal	Descriptions	References
Technique		
Adsorption	Effective and economic method for the removal of heavy metals	(Anwar, et al., 2009)
	Able to bind metals even from dilute solutions	(Volesky, 1990)
	Vast pressure drop after treatment of water	(Chahbani & Tondeur, 2001)
Chemical Precipitation	High reagent cost	(Javaid, et al., 2011)
	Requires further treatment of the wastewater such as filtration to remove the precipitated heavy metals	(Ku & Jung, 2001)
Coagulation and Flocculation	Removal of Arsenic and Iron through coagulation pH dependent as most reagents are not soluble in condition that is too alkaline or acidic.	(Mohan & Pittman, 2007)
	Disposal problem as it generates a huge amount of sludge	(Lakshmanan, et al., 2010)
	More economical and effective compare to ion exchange and adsorption	(Ghurye, et al., 2004)

	Complex system as it requires the correct continuous dosing amount of	(Lakshmanan, et al., 2009)
	reagent dosage and pH correction	
	Requires the need of other equipment such as filtration to further	(Han, et al., 2002)
	increase the efficiency of heavy metals removal	
Membrane	Fouling is limiting the potential of the membrane that increases the cost	(Shi, et al., 2014)
	of operation	
	High efficiency of heavy metals removal	(Radcliff & Zarnadze, 2004)
	Low retention time	(Wallace, et al., 2006)
	Require small space of operation	(Kurniawan, et al., 2006)
	Concentration polarization but can be decreased with increase of feed	(Sablani, 2007),
	flowrate	(Gherasim & Mikulášek, 2014)
	Hollow fiber geometry reduces the cost of operation with the high	(Di Luccio, et al., 2002)
	surface area and reduction in fouling and concentration polarization	
Ion Exchange	Low cost of operation with regeneration ability	(Cummings, et al., 2007)
	High pressure drop of treated water	(Barragán & Pastuschuk, 2014)
	Achieving low concentration of metals ion	(Burns & Gregory, 1995)
	Able to operate at low level of metals ion in the solution	(Sun, et al., 2012)

2.3 Ion Exchanger Mixed Matrix Membrane

In the advancement of membrane, various types of membranes have been developed for the use of ultrafiltration, reverse osmosis, microfiltration, electrodialysis and pervaporation. Among the membranes developed, Ion Exchange Membranes are one of the most advanced separation membranes as it incorporates both membrane and ion exchange technology in it and it has potential applications as a new generation of membrane for the separation processes. Ion exchange membranes have been recently used in protein, sugar, dye and demineralization processing (Nagarale, et al., 2006). In the removal of heavy metals, not much commercialized membrane was using the ion exchange membrane. Ion exchange mixed matrix membrane is able to overcome the limitations of both ion exchange and membrane technology. Ion exchange mixed matrix membrane is synthesis by adding ion exchange resin into the dope solution and form a mixed matrix structure as shown in Figure 2.13. With the increased of ionic functionality, mixed matrix membrane is able to enhance the selectivity of the membrane for the removal of heavy metals. The introduction of resins into the membrane requires a careful control of the pore size as the functionality of the mixed matrix depends on the porosity of the membrane. The loading capacity of the resin must be monitored to ensure that the mechanical strength of the mixed matrix membrane is not compromised as the introduction of resin reduces its mechanical properties such as tensile strength. Aside from higher performance, Ion Exchanger Mixed Matrix Membrane will also allow the Hollow Fiber module to be regenerated by using strong acid such hydrochloric or sulfuric acids to regenerate the cation part of the resin with H⁺ charge. This allows the cost of operation and maintenance of the hollow fiber membrane to be lower as hollow fiber membrane is known for its limited cleaning due to the structure of it.

Figure 2.13: Schematic of Mixed Matrix Membrane (MMM)(Bastani, et al., 2013)

2.4 Opportunities of Copper Removal Mixed Matrix Ion Exchange Membrane

The current research is based on the greater opportunity of turning the studied product into a potential separation unit in industries. In regards to its energy efficiency, heavy metals removal using mixed matrix ion exchange membrane has its potential as compare to other technologies as being discussed for its high mechanical properties, removal efficiency of heavy metals, low energy consumption, low maintenance since the fouling limitations of membrane can be reduced with introduction of ion exchange in its matrix. According to Malaysian External Trade Development Corporation (MATRADE), Electrical & Electronics industry is one of the leading industries that contributes 24.5 percent of the manufacturing sector in the Malaysia's Gross Domestic Product (GDP)(MATRADE, 2013). About 60% of the copper produced are used in electrical wires and electronic applications.

2.5 Polyethersulfone

Polymeric material such as Polyvinlydenefluoride (PVDF), Polyacrylite (PAN) and Polypropylene (PP) are the most commonly used material for the production of membrane (Michael, et al., 2003). Polyethersulfone is a thermoplastic that is known for
its toughness, stability at high temperature and hydrostatic pressure. The disadvantage of PES is that it is hydrophobic and its one of the factor of fouling in membranes (Zhao, et al., 2013). However, by blending the PES with additives such as PVP and PEG can reduce the hydrophobic characteristic of PES (Zhao, et al., 2013).

Figure 2.14: Molecular Structure Polyethersulfone (PES)

The introduction of additive into the membrane dope solution also affects the coagulation bath and the formation of the inner and outer surfaces of the hollow fiber membrane. It was demonstrated by Kong and Li that the addition of additive to the dope solution resulted a higher porosity of membrane (Kong & Li, 2001). The permeation flux of the membrane will be increased with the use of additive(Wang, et al., 1999).

Figure 2.15: Molecular Structure of Polyvinylpyrrolidone (PVP)

2.6 Analysis Methods of Permeability and Adsorption of Membrane

Membrane acts as a filter to separate one or more heavy metals from a feed mixture. In general, there are two characteristics that dictate the membrane performance in the current study, which are permeability and adsorption. Permeability is the flux of a fluid through the membrane. The permeability of the membrane is important as it is needed to allow water to pass through it to ensure that the pressure drop can be minimized(Loh & Wang, 2012). The permeability can be studied using the pure water permeability (PWP) test that will be discussed in the methodology. The relationship between permeability, diffusivity and solubility can be represented by Equation. (3). Adsorption

is the adhesion of ions or molecules of gas, liquid or dissolved solids to a surface which is generally solid. The adsorption of the membrane can be explained by the equation developed by Lagmuir in 1916 or Freundlich.

$$P = DS$$

(2.3)

Where;

P is the permeability coefficient $(cm^3 (STP) cm^{-2} s^{-1} cm Hg^{-1})$ or refers to the measure of the flux of membrane.

D is the diffusivity coefficient $(cm^2 s^{-1})$ or a measure of the mobility of molecules within the membrane and *S* is the solubility coefficient $(cm^3 (STP) cm Hg^{-1})$

2.7 Summary

Ion Exchanger Mixed Matrix Membrane has the potential for the removal of copper from wastewater based on the past studies done. Separation of copper from wastewater is crucial as it cause harmful effect to our health. Hollow fiber module is a trend in the removal of heavy metals industry because of the low occurrence of fouling compare to the flat sheet system. Besides that, hollow fiber configuration also can reduce the pressure drop that is posed by the resin technology. The factor that will be studied in this research will be the concentration of the additive on the performance of the membrane in terms of permeability, adsorption capacity and the pore structure. However, other parameters such as the take up speed, air gap height and depth of dope solution are not studied due to the limitation of time given to complete this undergraduate research project

3 METHODOLOGY

3.1 Chemicals

Polyethersulfone Radel@ from Solvay Advance were used as the base membrane polymer. NMP, PVP and copper (II) sulphate pentahydrate and Amberlite IR120H cation resin are purchased from Sigma-Aldrich.

3.2 Preparation of Dope Polymer Solution

Amberlite IR120H washed with deionized water to remove any impurities and dried in a conventional oven at 80°C for 24 hours. The dried resin is grinded with an ultra centrifuge grinder (Retsch Rottor Mill ZM200). The ground resin further sieved using 45µm test sieve.

Figure 3.1: Retsch Rottor Mill ZM200

Different types of dope polymer solution will be prepared according to Table **3.1**. The PES was kept constant at 18wt% with the PVP concentration varied from 0 to 10wt%. PES and PVP dissolved in NMP under continuous stirring at 60°C for six hours at 800rpm as shown in Figure **3.2**. Ground Amberlite IR120H mixed into the prepared PES polymer solution at 20wt% cation loading relative to the amount of PES for four hours.

Dope	Dope solution composition		Bore fluid composition
no.			
1	PES/NMP	18:82	H ₂ O
2	PES/NMP/PVP	18:79:3	H ₂ O
3	PES/NMP/PVP	18:77:5	H ₂ O
4	PES/NMP/PVP	18:74:8	H ₂ O
5	PES/NMP/PVP	18:72:10	H ₂ O

Table 3.1: Dope solution composition of hollow fiber membrane

Figure 3.2: Dope Solution Preparation

3.3 Hollow Fiber Dry-Wet Spinning Process

The dry-wet spinning technique is used to synthesize the hollow fiber membrane. The other parameters such as weight ratio of the resin, the applied pressure, bore fluid flow rate set at 1 bar pressure and fiber take up speed set at 31 revolutions per minute. The Figure 3.3 shows the preparation of the hollow fiber membrane. The Figure 3.4 shows the hollow fiber membrane produced at the take up drum. The synthesized membrane was dip in water bath as shown in Figure 3.5 to allow the membrane to settle further.

Figure 3.3: Dry-wet Spinning Process

Figure 3.4: Hollow fiber membrane produced at the take up drum

Figure 3.5: Storage bath of the hollow fiber membrane

3.4.3 Membrane Module Fabrication

Module fabrication has constantly been treated as proprietary know-how. Systematic teaching and scientific research on the module fabrication and design are not widely available in the academic journals(Li, et al., 2004). Hollow fiber modules may have different configurations to meet the requirements of various applications. The most general one is the shell-side feeding hollow fiber module and visualised in Figure 3.6. It can be seen that there are two epoxy tube sheets that holds the hollow fiber ends in place. At one end, it is an open end that allows the permeate to flow out, whereas the other end is a dead end and allows the retentate to flow out. The flow pattern inside the module is cross-flow. This type of configuration of membrane is used in the research as the submerged unconfined hollow fiber module is highly recommended for the application of dissolved solid-containing water treatment such as the removal of copper(Fame, et al., 2002).

Figure 3.6: Shell-side Hollow Fiber Module

In general, small modules are made of 10-20 pieces of hollow fibers and tested for performance evaluation. The diameter of commercial modules are ranged from 1 to 12 in. with the diameter between 2 to 8 in. as the most common one. For lab-scale modules, a suitable diameter is suggested to be 1/2 to 3/4 in. with the consideration of material and operational cost (Li, et al., 2004).

Figure 3.7: Structure of lab-scale modular module (**Li, et al., 2004**) The module is prepare as the following steps:

- a) 15 hollow fiber membranes were selected and it is cut into the desired length and the visibly defective fibers (creases, collapses and uneven thickness) are removed.
- b) Parafilm barrier film is used to wrap the bundled membrane as shown in Figure3.8B to hold the membrane in place. This is done for both ends
- c) A small amount of fast curing epoxy resin is used to cure the open end and is left for 20 minutes before placing the bundle into the module.
- d) The module shell is vertically placed on a retort stand and membrane is then inserted into the module shell as shown in Figure 3.8E.
- e) Both of the ends are inserted with a hose as the mold for the epoxy resin tube sheet casting.
- f) The hose mold is then covered with Parafilm to avoid the flowing of the epoxy resin.
- g) The curing epoxy is then injected to the mold using a 10mL syringe.
- h) The mold is then wrapped with Parafilm again to close the hole caused by the syringe and is left for 24 hours as shown in the Figure 3.9 to allow the epoxy resin to be fully cured.

i) The solidified resin located outside the module tube sheets is removed using a handsaw and cut clean cross-section using blade.

Figure 3.8: Bundle preparation and module assembly(Li, et al., 2004)

Figure 3.9: Curing of the Epoxy Resin

The constructed membrane module will be setup as shown in Figure 3.10 and Figure 3.11.

Figure 3.10: Schematic Diagram of Membrane Module Setup

Figure 3.11: The Membrane Module Setup

3.4.4 Scanning Electron Microscope

The structure of hollow fiber is characterized using scanning electron microscope (SEM). Hollow fiber membrane is immersed and fractured in liquid nitrogen for the sample preparation. The samples are then coated with platinum before being observed under SEM. The cross section of the hollow fiber membrane is observed at 40x, 50x 200x, 400x and 1000x magnification. The example of hollow fiber membrane under SEM is shown in Figure 3.12

Figure 3.12: Scanning Electron Microscope (SEM) at 400x Magnification

3.4.5 Water Permeability

Each set of the different membranes tested for the permeability of the membrane. The tested membranes are 0, 3, 5, and 8wt% of PVP as the 10wt% PVP membrane has a low mechanical property that caused the fabrication of the module to be difficult. Wang et al., (2011) suggested that the pure water permeability (PWP) tested using the deionised water under a transmembrane of 1 bar and calculated using the following equation (Wang, et al., 2011):

$$PWP = \frac{Q}{A\Delta P}$$

(3.1)

Where: Q is the water volumetric flow rate at the permeate side (L/h) A is the effective filtration area (m²) ΔP is the transmembrane pressure (bar,1bar = 0.1Mpa).

A=πDLn Where: D=Diameter of the hollow fiber L=Length of the hollow fiber n=Number of Hollow Fiber

3.4.6 Static Adsorption Capacity

A solution of containing 1000ppm copper is prepared using copper sulphate pentahydrate (CuSO₄.5H₂O). The calculation of the 1000ppm of Cu solution is done using the equation (3.2) and (3.3).

$$1g \ of \ copper = \frac{\frac{249.7g}{mol} CuSO_4.5H_2}{\frac{63.5g}{mol} Cu} = 3.9322gCuSO_4.5H_2O$$

$$1000ppm \ Cu = \frac{1mg}{L} Cu = \frac{1000g}{L} Cu$$
(3.2)
(3.3)

To prepare 1000ppm of copper ion in a liter, 3.9322g of CuSO₄.5H₂O is required. The preparation of the 1000ppm (1g/L) copper ion solution is done by using the dilution flask. To prepare 500ppm of copper ion in 1L, 1.9661g of CuSO₄.5H₂O is required.

The membrane incubated with a known concentration of copper solution of 500ppm using a centrifugal machine for 24 hours. After binding the remaining copper concentration will be determined using AAS (Perkin AAnalyst 400 Flame Atomic Absorption Spectrometer) as shown in Figure 3.13. A set of standard solution is prepared from 0ppm to 5 ppm of Cu^{2+} in order to obtain the calibration curve. Then a solution with 3ppm of Cu^{2+} is tested to verify the calibration curve. With the calibration curve verified, the treated water concentration is tested to determine the final concentration of the Cu^{2+} . Before being tested, the solution is diluted for 200 times as the maximum detection limit of the AAS is 4ppm. The dilution of the treated copper solution is done by using a micro-pipette with the sensitivity of 1µL and centrifuged container.

Figure 3.13: Perkin AAnalyst 400 Flame Atomic Absorption Spectrometer

The 50 μ L (0.05mL) of the treated solution is being extracted using a micro-pipette and being placed into the centrifudge container. Then the container is the added with distilled water up to the 12.00mL limit as it is the required volume for the dilution of 200 times using 50 μ L of solution. This is

 $\frac{12.00ml}{0.05ml} = 200 \ times$

(3.4)

Amount of Copper Bound
$$(mg) = \frac{(C_o - C_e)V}{1000}$$

(3.5)

Where

 C_0 = Initial concentration of copper (ppm)

C_e= Final copper concentration (ppm)

V= Initial Volume of solution (mL)

C_{AAS}= Concentration of Sample by AAS

$$C_e = C_{AAS} \times Dilution Factor$$

3.4.7 Effect of pH

The effect of pH is studied by employing the static adsorption technique by introducing a set of different pH of copper solution from pH 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 5.5, 7.0, 12.0 and 13.0 with 10mL of volume. The different pH solution of acidic solutions were prepared by using 1% Hydrochloric acid and tested using the Mettler Toledo Seven Easy pH meter. Whereas the alkaline solutions using 0.1M Sodium Hydroxide and tested using the Mettler Toledo Seven Easy pH Meter. The solutions are incubated with three 5cm of 8wt% PVP membranes for 24 hours using the centrifuge. The 8wt% PVP membrane was used as the amount synthesized is the most. The samples is then diluted 250 times before being analysed under AAS.

3.4.8 Dynamic Copper Removal Test

The dynamic copper removal test is done under the cross-flow configuration setup after the Pure Water Permeability test. The tested membrane are 0, 3, 5 and 8wt% PVP Mixed Matrix Membrane Module. The 10wt% were not tested as the module could not be casted due to the low mechanical strength of the membrane that make the fabrication of the module to be difficult.

In the copper removal test, the copper ion solution used is 1000ppm in concentration and 500mL of volume. The retentate is recycled and the permeate is collected at the permeate tank.

The system is allowed to stabilise and after 30 minutes, the operation of the cross flow is stopped. The permeate and retentate are collected. The collected samples are then diluted 500 times and is tested using the AAS. The procedure is repeated for the replication of the second sample with a different module.

The amount of copper bounded on the membrane were calculated as the following equations:

Copper Bound (mg)

= Initial amount of Copper – Permeate amount of Copper – Retentate amount of Copper

(3.7)

Initial amount of Copper (mg) =
$$\frac{C_o V_o}{1000}$$

where; C_o=1000ppm V_o=500mL

Permeate amount of Copper
$$(mg) = \frac{C_P V_P}{1000}$$
(3.9)

where;

 $C_p = C_{PAAS}D_F (mg/L)$ $C_{PAAS} = AAS$ concentration of Permeate $D_F = Dilution$ Factor (500) $V_P = Permeate$ volume (mL)

Retentate amount of Copper
$$(mg) = \frac{C_R V_R}{1000}$$
(3.10)

where;

 $C_R = C_{R AAS}D_F (mg/L)$ $D_F = Dilution Factor (500)$ $C_{R AAS} = AAS concentration of Retentate$ $V_R = Retentate Volume (mL) = Initial Feed Volume (mL) - Permeate Volume (mL)$

The derivation of the above equations forms the below equation:

Copper Bound
$$(mg) = \frac{C_o V_o}{1000} - \frac{C_P V_P}{1000} - \frac{C_R V_R}{1000}$$
 (3.11)

3.4.9 Elution Test

After the removal of the copper, the membrane module is being tested for the elution to recover the copper from the membrane. This procedure is the regeneration procedure of the membrane. In the elution process, 10% 250mL of Hydrochloric Acid were used to regenerate the membrane as suggested by Sigma Aldrich that acidic medium should be employ to regenerate the Amberlite IR120H resins. The system is allowed to run for 30

minutes. The eluted permeate and retentate are collected and diluted 500 times for the analysis of AAS to determine the recovery of copper.

The recovery of the copper is calculated as the following equations:

The initial feed volume is 250mL

Total copper eluted (mg)

Copper eluted in Permeate =
$$\frac{C_P V_P}{1000}$$
 (3.12)
(3.13)

where;

 $C_p = C_{P AAS}D_F (mg/L)$ $C_{P AAS} = AAS$ concentration of Permeate $D_F = Dilution$ Factor (500) $V_P = Permeate$ volume (mL)

Copper eluted in Retentate = $\frac{C_R V_R}{1000}$

(3.14)

where;

 $C_R = C_{R AAS} D_F (mg/L)$

 $C_{R AAS}$ = AAS concentration of Permeate

D_F=Dilution Factor (500)

V_R=Retentate volume (mL)

The total amount of copper eluted is then used to calculate the recovery percentage of the membrane as shown in

$$Recovery Percentage = \frac{Copper Bound (mg)}{Copper eluted (mg)} \times 100\%$$
(3.15)

4 RESULTS AND DISCUSSION

4.1 Synthesis of Hollow Fiber Membrane

The synthesis of the fiber membrane were done when the dope solution was prepared. In the first phase of the research, two sets of samples namely 0 and 10 wt% of PVP dope solution were used to prepare the hollow fiber. In the 10wt% of PVP dope solution, it is found out that the structure of the membrane is seen to be more porous as compared to the one without any PVP added into it. The images of the membranes synthesised are shown in Figure 4.1 and Figure 4.2. The occurrence can be due to the effect of PVP that allows the membrane structure to be more porous that eventually will increase the water flux (Lan & Wang, 2012). During the synthesis, the dope solution pressure was set at 2 bars and 4 bars. It is found out that the synthesis of the hollow fiber membrane is easier for dope pressure with 4 bars as the size of the fiber diameter produced is higher compared to 2 bars. The suggested pressure for PES hollow fiber membrane is around 3.0 ± 0.1 bars (Ismail, et al., 2006).

Figure 4.1: Surface of the Membrane for 10wt% PVP dope solution

Figure 4.2: Surface of the Membrane for 0wt% PVP dope solution

The take up speed of the membrane synthesis is found to be optimum around 28-32 rpm. When the take up speed is lower than 28rpm, it is found out that the fiber produced does not form hollow tubing. On the other hand, when the take up speed is higher than 32 rpm, the fiber is easily snapped before it managed to solidify properly and settle. In addition, it is also found out that the air gap is 14 cm. When the air gap is less than 14cm, it is found that the formation of the membrane to be flat. Whereas when the air gap is more than 14cm, the inner tubular membrane is found to be less in diameter.

In the second phase of the synthesis of membrane, 3, 5 and 8wt% of PVP dope solution were used to prepare the membrane.

The prepared membrane is found to be more porous through the naked eye as the concentration of the PVP of the dope solution used. The introduction of dope solution increases the hold up of water during the phase inversion process of the dry-wet spinning of the membrane that causes the membrane to be more porous(Rahimpour & Madaeni, 2010).

4.2 Scanning Electron Microscope (SEM)

After the membrane was synthesized, each of the membrane were sent for Scanning Electron Microscope for the structure analysis.

The scanning of the membrane at different magnifications are as the following figures:

Full Cross Section of the Membrane

Figure 4.3: Cross Section of 0wt% and 3wt% PVP Membrane

Figure 4.4: Cross Section of 5wt% and 8wt% PVP Membrane

Figure 4.5: Cross Section of 10wt% PVP Membrane

Cross Section of the Membrane at 400x Magnification

Figure 4.6: Cross Section of 0wt% and 3wt% Membrane at 400x Magnification

Figure 4.7: Cross Section of 5wt% and 8wt% Membrane at 400x Magnification

Figure 4.8: Cross Section of 10wt% Membrane at 400x Magnification

Cross Section of the Membrane at 1000x Magnification

Figure 4.9: Cross Section of Owt% and 3wt% Membrane at 1000x Magnification

Figure 4.10: Cross Section of 5wt% and 8wt% Membrane at 1000x Magnification

Figure 4.11: Cross Section of 10wt% Membrane at 1000x Magnification

From the images above, it's found out that the structure of the 10wt% is slightly deformed as compared to others. The increase of the concentration of the co-polymer increases the porosity of the membrane that causes the structure to be deformed when the concentration of the co-polymer is high(Tang, et al., 2010). It is also found out that the porosity of the membrane increases as the concentration of the PVP increases. The

porosity of the membrane increases as the concentration of PVP increases as PVP is a hygroscopic co-polymer that can holds water up to 40wt% of water and causes the structure of the membrane to be more porous during the dry-wet spinning process(Rahimpour & Madaeni, 2010).

4.3 Static Adsorption Test

In order to test the performance of the Mixed Matrix Membrane, the static adsorption is being carried out. Static adsorption is done by preparing a known concentration of a simulated water containing 500 ppm of copper. Each of the membrane were tested for three replications. The results of the static adsorption test is as the following table:

Table 4.1: Results of the Static Adsorption of Different PVP Concentration Membrane

PVP	Copper Adsorb	Copper Adsorb	Copper Adsorb	Average
concentration	Sample A	Sample B	Sample C	Copper Adsorb
wt%	(mg)	(mg)	(mg)	(mg)
0	6.732	6.822	6.723	6.759
3	7.154	7.050	7.113	7.106
5	7.120	7.241	7.056	7.166
8	7.155	7.226	7.244	7.208
10	7.382	7.424	7.397	7.401
3 5 8 10	7.154 7.120 7.155 7.382	7.050 7.241 7.226 7.424	7.113 7.056 7.244 7.397	7.106 7.166 7.208 7.401

Figure 4.12: Binding of Copper at Different Concentration of Co-polymer

Anova: Single Factor						
SUMMARY						
Groups	Count	Sum	Average	Variance		
PVP 0wt%	3	20.277	6.7590	0.0030		
PVP 3wt%	3	21.3165	7.1055	0.0027		
PVP 5wt%	3	21.4965	7.1655	0.0094		
PVP 8wt%	3	21.624	7.2080	0.0022		
PVP 10wt%	3	22.2015	7.4005	0.0005		
ANOVA						
Source of						
Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.656188	4	0.164047	46.18245	2.05E-06	3.47805
Within Groups	0.035522	10	0.003552			
Total	0.691709	14				

Table 4.2: Statistical Data for Different PVP Concentration

From Figure 4.12, it is found that the increase of the concentration of the co-polymer, PVP increases the binding capacity of the membrane. The increase of co-polymer concentration increases the porosity of the membrane that allows the membrane to adsorb more copper ion (Ismail & Hassan, 2007). The statistical data from Table 4.2 suggest that the results are reproducible as the p-value is less than 0.5.

4.4 Effect of pH

The solution is then prepared into a few pH condition to study the effect of pH on the adsorption capacity of the Mixed Matrix Membrane containing Amberlite IR120H resin. As a preliminary to determine the suitable pH for the adsorption of copper by the membrane, the following solutions at different pH is prepared. The membrane used for the preliminary testing to determine the optimum pH for the adsorption of the mixed matrix membrane.

pH Testing								
Sample	pH	Length of Membrane	Number of					
		(cm)	Membrane					
Ι	2.0	5.0	3					
II	3.0	5.0	3					
III	3.5	5.0	3					
IV	4.0	5.0	3					
V	4.5	5.0	3					
VI	5.0	5.0	3					
VII	5.5	5.0	3					
VIII	12.0	5.0	3					
IX	13.0	5.0	3					

Table 4.3: pH Testing for Optimum pH condition for the Adsorption of the Membrane

From the initial preparation of the solution at different pH value, it is found out that precipitate is formed when the solution is alkaline which is at pH12 after the incubation is done. This should be due to the double decomposition caused by the sodium hydroxide solution to prepare the base solution which is a blue precipitate but the formed precipitate is black in colour as shown in **Figure 4.13**. This should be due to the formation of copper (II) oxide (Cudennec & Lecerf, 2003). The study of pH at base condition is eliminated as there's precipitation being formed. Besides that, the basic condition of solution will hinder the cation activity of the resin as cation resin works with the presence of hydrogen ions (H^+)(Sigma-Aldrich, 2013).

Figure 4.13: Precipitation formed in pH12 and pH13 (Alkaline solution)

As a preparation for the adsorption capacity, the standard copper ions were detected using AAS. A set of standard solutions ranged from 0ppm to 4ppm. The AAS is only able to detect copper ions at the maximum concentration of 4ppm precisely and the maximum detection is 10ppm, thus dilution of the treated water need to be done before using the AAS. The simulated wastewater is prepared at a constant concentration of Cu^{2+} ions of 1000ppm, thus it requires the treated water to be diluted with the factor of 125 parts to enable the AAS to detect the Cu^{2+} ions maximum at 8ppm The studies of optimum pH was done as the follows:

								Initial
		Co	C AAS		С	Binding	Copper	Copper
Sample	pН	(ppm)	(ppm)	Dilution	(ppm)	(ppm)	Bound(mg)	(mg)
Ι	2.0	1000	6.8040	125	850.50	149.50	1.4950	10
II	3.0	1000	5.9360	125	742.00	258.00	2.5800	10
III	3.5	1000	3.2940	125	411.75	588.25	5.8825	10
IV	4.0	1000	3.1890	125	398.63	601.38	6.0138	10
V	4.5	1000	3.7250	125	465.63	534.38	5.3438	10
VI	5.0	1000	4.3330	125	541.63	458.38	4.5838	10
VII	5.5	1000	5.5900	125	698.75	301.25	3.0125	10
VIII	12.0	1000	4.6410	125	580.13	419.88	4.1988	10
IX	13.0	1000	0.0253	125	3.16	996.84	9.9684	10

Table 4.4: Concentration of Copper after Incubation

Figure 4.14: Effect of pH on the Binding of Copper

It is found that the optimum pH for the binding of the copper is below pH5.5 as the condition is found to be acidic. The adsorption of copper is at its optimum when the

condition of the solution is acidic as the acidic condition allows ions in the Amberlite IR120H resin to be exchanged with the copper ion in the solution but when the pH is too low, the adsorption capacity of the membrane reduces as the membrane need to compete with the hydrogen ions of the acid solution to compete with the copper ion to be exchanged in the Amberlite IR120H resin(Jha, et al., 2009). In order to obtain the optimum pH of the copper binding, the study of the pH has been narrowed down to pH 3.0, 3.5, 4.0 and 4.5.

The volume of the copper solution used is 10mL and the concentration used is 1000ppm with dilution factor of 250 times.

The results of the narrowed down studies is as the following table:

Tuele net brudy	or the optimum r	ierare pri contantio		
pН	Copper Bound	Copper Bound	Copper Bound	Average
	Sample A	Sample B	Sample C	Copper Bound
	(mg)	(mg)	(mg)	(mg)
3.0	5.773	5.173	5.378	5.441
3.5	6.193	5.273	5.353	5.606
4.0	5.405	5.620	5.398	5.808
4.5	5.095	5.325	5.348	5.256

Table 4.5: Study of the Optimum Acidic pH condition

Table 4.6: Statistical Data of Different pH Static Adsoption

Anova: Single						
Factor						
SUMMARY						
Groups	Count	Sum	Average	Variance		
pH 3.0	3	16.3225	5.4408	0.0930		
рН 3.5	3	16.8175	5.6058	0.2597		
pH 4.0	3	17.4225	5.8075	0.2726		
pH 4.5	3	15.7675	5.2558	0.0195		
ANOVA						
Source of						
Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.49755	3	0.16585	1.028687	0.430007	4.066181
Within Groups	1.2898	8	0.161225			
Total	1.78735	11				

Figure 4.15: Binding of Copper at Low pH

In the study of the binding of copper at low pH , it is found out that pH 4.0 is the optimum pH for the adsorption of the copper at low pH. At pH 4.0, the competition between the copper ions with the hydrogen ions in the acid solution is lesser causes the adsorption capacity of the membrane containing Amberlite IR120H to increase(Nabi, et al., 2005). The statistical data from Table 4.6 suggest that the results are reproducible as the p-value is less than 0.5.

4.5 Water Permeability

The permeability of water were done when the membrane module were fabricated. All membranes were tested for water permeability except for 10wt% as the membrane has a low mechanical property that causes it difficult to be fabricated into the module.

The pure water permeability were calculated based on the Equation (4.1)

$$PWP(L/m^2.h.bar) = \frac{Q}{PA}$$

(4.1)

Where;

Q =flow rate of the water (L/h)

P = pressure of the trans-membrane, in this case its 1bar

A= Effective filtration area of the module (m^2)

PVP	Diameter	Length	Number of	Effective	Flowrate	Flowrate	Pure water
wt%	(m)	(m)	membranes	Area	(mL/min)	(L/h)	Permeability
				(m^2)			(L/m ² .h.bar)
0	0.0013	0.2	15	0.0123	1.0	0.060	4.895
3	0.0017	0.2	15	0.0160	1.4	0.084	5.264
5	0.0013	0.2	15	0.0128	1.6	0.096	7.542
8	0.0011	0.2	15	0.0105	1.5	0.090	8.591

Table 4.7: Pure water permeability of Different PVP Concentration Membrane

Figure 4.16: Pure Water Permeability at Different PVP Concentration It is found out that the water permeability increases as the concentration of the PVP. The increase of PVP concentration increases the instantenous demixing that increases the diffusional exchange rate of solvent and non solvent during the phase inversion that eventually increases the permeability of the membrane to certain point(Al Malek, et al., 2012).

4.6 Dynamic Copper Removal Test

The dynamic copper removal test is to test the removal of copper from the solution in a continuous flow of solution. In this research, the cross-flow configuration was being used. The tested membrane were 0, 3, 5 and 8wt% PVP membrane at pH 4.0. Two sets of module were used for each of the membrane category to replicate the data. The data of the experiment carried is shown in the tables below:

PVP wt%	Feed Volume (mL)	Feed Concentration (mg/L)	Feed Copper Mass (mg)	Permeate Volume (mL)	Permeate Concentration (mg/L)	Permeate Copper Mass (mg)	Retentate Volume (mL)	Retentate Concentration (mg/L)	Retentate Copper Mass (mg)	Copper Bound (mg)
0	500	1000	500	42	375.00	15.750	458	479.50	219.611	264.639
3	500	1000	500	34	476.00	16.184	466	520.00	242.320	241.496
5	500	1000	500	40	285.50	11.420	460	456.50	209.990	278.590
8	500	1000	500	43	425.00	18.275	457	475.00	217.075	264.650

Table 4.8: Dynamic Copper Removal Test Run 1

Table 4.9: Dynamic Copper Removal Test Run 2

PVP wt%	Feed Volume (mL)	Feed Concentration (mg/L)	Feed Copper Mass (mg)	Permeate Volume (mL)	Permeate Concentration (mg/L)	Permeate Copper Mass (mg)	Retentate Volume (mL)	Retentate Concentration (mg/L)	Retentate Copper Mass (mg)	Copper Bound (mg)
0	500	1000	500	45	440.50	19.823	455	483.00	219.765	260.412
3	500	1000	500	31	371.00	11.501	469	522.00	244.818	243.681
5	500	1000	500	42	358.50	15.057	458	161.67	161.674	323.269
8	500	1000	500	44	476.00	20.944	456	413.00	188.328	290.728

Table 4.10: Average copper bound and rejection efficiency

PVP wt%	Average Copper Bound (mg)	Average Copper Bound per Area	Average Rejection Efficiency (%)	
		(mg/m^2)	• • •	
0	262.5275	21,171.75	52.51	
3	242.5885	15,230.06	48.52	
5	300.9295	25,255.39	60.19	
8	277.6890	27,688.38	55.54	

Table 4.11: Statistical Data for Cross Flow

Anova: Single Factor

SUMMARY

bennin itt i						
Groups	Count	Sum	Average	Variance		
PVP 0wt%	2	525.0515	262.5258	8.931651		
PVP 3wt%	2	485.177	242.5885	2.387112		
PVP 5wt%	2	601.859	300.9295	998.1065		
PVP 8wt%	2	555.378	277.689	340.031		
ANOVA						
Source of						
Variation	SS	$d\!f$	MS	F	P-value	F crit
Between Groups	3639.052	3	1213.017	3.595574	0.124128	6.591382
Within Groups	1349.456	4	337.3641			
Total	4988.508	7				

It is found out that the rejection of copper at 1000ppm concentration is the highest when the PVP concentration of the dope solution is 5wt% as the increase of pore size increases the adsorption capacity of the membrane to remove the copper from the solution. The rejection capacity of the membrane reduces when the concentration of PVP is 8wt%. This is due to the effect of PVP that increases the viscosity of the dope solution that causes the membrane to become a sponge-like structure that causes the permeate flow to decrease and eventually decrease the rejection rate(Al Malek, et al., 2012). The statistical data from Table 4.11 suggest that the results are reproducible as the p-value is less than 0.5.

4.7 Elution Test

The elution test is done to determine the recovery rate of the membrane by the treatment of acidic solution. The elution was done using 250mL of 10% Hydrochloric Acid. The data of the elution process is shown in the table below:

PVP	Permeate	Permeate	Permeate	Retentate	Retentate	Retentate	Copper	Recovery
wt%	Volume	Concentration	Copper	Volume	Concentration	Copper	Eluted	(%)
	(mL)	(mg/L)	Mass	(mL)	(mg/L)	Mass	(mg)	
			(mg)			(mg)		
0	75	250.0	18.75	175	184.5	32.29	51.04	19.3
3	60	586.5	35.19	190	214.0	40.66	75.85	31.4
5	61	275.0	16.78	189	60.5	11.43	28.21	10.1
8	53	151.5	8.03	197	85.0	16.75	24.77	9.4

Table 4.12: Elution for the Run 1 Membrane

Table 4.13: Elution for the Run 2 Membrane

PVP	Permeate	Permeate	Permeate	Retentate	Retentate	Retentate	Copper	Recovery
wt%	Volume	Concentration	Copper	Volume	Concentration	Copper	Eluted	(%)
	(mL)	(mg/L)	Mass	(mL)	(mg/L)	Mass	(mg)	
			(mg)			(mg)		
0	72	411.5	29.63	178	137.0	24.39	54.01	20.7
3	58	561.5	32.57	192	198.5	38.11	70.68	29.0
5	60	255.0	15.30	190	90.5	17.20	32.50	10.1
8	48	439.0	21.07	202	83.0	16.77	37.84	13.0

It is found that the elution recovery of the membrane is the highest at 3wt% PVP and starts to drop at 5wt% PVP. The elution recovery is highest at 3wt% because of the hydrophilic effect of the PVP that causes the elution of copper to increase(Yin, et al., 2012). The elution of copper in higher concentration of PVP decreases the copper recovery due to the blockage of the pores of the membrane due to the increase of the viscosity of the dope solution that causes blockage in the pores though the porosity of the membrane increases causing the recovery to be hindered(Yin, et al., 2012)

5 Conclusions and Recommendation

5.1 Conclusion

Currently the removal of copper are mainly done by the application of resin and coagulation. This study was intended to look in the probable alternative removal of copper from the water. This research is a game changer that changes the membrane technology to a new frontier by combining the technology of adsorption and ion exchange with membrane. In general, membrane is known for its tendency to fouling that increases the cost of the operation. In this research, the effect of PVP as the copolymer for the PES Mixed Matrix Membrane in terms of the adsorption capacity, permeability and elution as PVP is a known co-polymer to reduce the fouling of the membrane.

Phase inversion technique is used by using the dry-wet spinning method to synthesis the hollow fiber membrane. It is found that the porosity of the membrane increases as the concentration of the co-polymer increases as the ability of the PVP to hold water up to 40wt% of its mass that causes the membrane to form pores during the spinning process.

The membranes were tested for the significance of the effect of pH and it is found that the optimum pH for the operation of the membrane is pH 4.0 as at this pH the copper ion does not need to compete with the hydrogen ions in the acid to be exchanged with the resin.

When the solution is basic, the adsorption capacity could not be tested accurately as the formation of precipitate when the solution is added with sodium hydroxide due to the double decomposition reaction that occur. The precipitate formed causes the reading of the AAS to be inaccurate as there's is some possibility that the copper ion is removed by the 0.45µm filter before injecting to the AAS.

In this finding, the permeability of the membrane increases as the concentration of the PVP increases due to the hydrophilic nature of PVP that increases the permeability of the membrane. At the concentration of 8wt% PVP, the permeability is found to be $8.59L/m^2$.h.bar as compared to $4.90L/m^2$.h.bar of the membrane without PVP added.

In addition to that, the increase of PVP concentration increases the rejection efficiency to a certain point before it drops at 8wt% of PVP. The rejection efficiency of 5wt% PVP is found to be as high as 60.19%.

In terms of elution recovery, the 3wt% PVP membrane perform better than higher concentration of PVP membranes as this might be due to the blockage of the pores due to the increase of PVP concentration that increases the viscosity of the dope solution that causes the membrane to be sponge-like structure that unable to remove the adsorb copper efficiently.

5.2 Recommendations

As this study achieved its objectives, several recommendations were proposed to improve the quality of the work and to generate better results. The recommendations are listed below.

5.2.1 Study on the Static Adsorption

In the study of the static adsorption, the number of membranes that are incubated plays a role in the performance of the adsorption. The increase in the number of the membrane incubated increases the adsorption rate of the copper. In is suggested that in the future, the study should include the number of membrane as one of the parameters in the studies.

5.2.2 Study on the Effect of pH

Effect of the pH has been studied using hydrochloric acid as acidic solution and sodium hydroxide as base solution. It is found that the formation of copper hydroxide when sodium hydroxide is used due to the double decomposition reaction that occur between sodium hydroxide and copper sulphate that causes black precipitate. It is suggested that in the future, the study of the alkaline condition should be done using non metallic base solution such as ammonium hydroxide to ensure that the study of the alkaline condition can be done properly.

5.2.3 Study on the Water Permeability

The pressure of the permeate and the retentate outlets should be take into consideration in the future to obtain a more precise result although in this system, the role of pressure is not significant.

5.2.4 Study on the Dynamic Copper Removal

The study should include the treatment time and the concentration of the feed solution as the adsorption efficiency changes accordingly to the concentration of the solution and the time of treatment.

5.2.5 Study on the Elution Recovery

The study on the concentration of acid used should be included in the future as the concentration of acids plays a role in the elution of copper from the membrane due to the availability of the hydrogen ion to be exchanged with the copper with the resin. Besides that, the type of acid should be studied as different types of acids has different disassociation of hydrogen ions to be exchanged with the resin.

REFRENCES

Abdelwahab, O., Amin, N. & El-Ashtoukhy, 2009. Electrochemical removal of phenol from oil refinery wastewater. *Journal Of Hazardous Materials*, Volume 163, pp. 711-716.

Al Malek, S., Abu Seman, M., Johnson, D. & Hilal, N., 2012. Formation and characterization of polyethersulfone membranes using different concentrations of polyvinylpyrrolidone. *Desalination*, Volume 288, pp. 31-39.

Al-Rashidi, B., Johnson, D. & Hilal, N., 2013. Removal of heavy metal ions by nanofiltration. *Desalination*, Volume 97, p. 99.

Anwar, J. et al., 2009. Removal of chromium (III) by using coal as adsorbent. *Journal Of Hazardous Materials*, Volume 171, pp. 797-801.

Atwood, D. & Zaman, M. K., 2006. Mercury removal from water. In: *Structure Bond*. s.l.:s.n., pp. 163-182.

Babel, S. & Kurniawan, T. A., 2003. Low-cost adsorbents for heavy metals uptake from contaminated water: a review. *Journal Of Hazardous Material*, Volume 97, pp. 219-243.

Barakat, M., 2005. Adsorption behavior of copper and cyanide ions at TiO2–solution interface. *Journal Of Colloid and Interface Science*, Volume 291, pp. 345-352.

Barragán, V. M. & Pastuschuk, E., 2014. Viscoelastic deformation of sulfonated polymeric cation-exchange membranes exposed to a pressure gradient. *Material Chemistry and Physics*, Volume 146, pp. 65-72.

Bastani, D., Esmaeili, N. & Asadollahi, M., 2013. Polymeric mixed matrix membranes containing zeolites as a filler for gas. *Journal of Industrial and Engineering Chemistry*, Volume 19, pp. 375-393.

Bey, S. et al., 2011. Hydrophilic PEEK-WC hollow fibre membrane contactors for chromium (Vi) removal. *Desalination*, Volume 283, pp. 16-24.

Bhattacharya, S., 2003. *NewScientist*. [Online] Available at: <u>http://www.newscientist.com/article/dn4045-copper-link-to-alzheimers-disease.html</u> [Accessed 11 November 2014]

[Accessed 11 November 2014].

Bothwell, T. H., Charlton, R. W., Cook, J. D. & Finch, C. A., 1979. *Iron metabolism in man.* Oxford: Blackwell.

Bremner, I., 1998. Manifestations of copper excess. *The American Journal of Clinical Nutrition*, Volume 67, pp. 1069-1073.

Burns, D. & Gregory, R., 1995. *The UCARSEP:Process for on-line removal of nondegradable salts from amine units*. Norman, Laurence Reid Gas Conditioning Conference.

Chahbani, M. H. & Tondeur, D., 2001. Pressure drop in fixed-bed adsorbers. *Chemical Engineering Journal*, Volume 81, pp. 23-34.

Chang, Q. & Wang, G., 2007. Study on the macromolecular coagulant PEX which traps heavy metals. *Chemical Engineering Science*, Volume 62, pp. 4636-4643.

Chemistry.TutorVista.com, 2014. *Chemistry Tutor Vista*. [Online] Available at: <u>http://images.tutorvista.com/cms/images/38/coagulation.png</u> [Accessed 6 May 2014].

Chemistry.TutorVista.com, 2014. *Chemistry.TutorVista.com*. [Online] Available at: <u>http://images.tutorvista.com/cms/images/44/flocculation-basin.PNG</u> [Accessed 6 May 2014].

Chen, G., 2004. Electrochemical technologies in wastewater treatment. *Separation and Purification Technology*, Volume 38, pp. 11-41.

Cheryan, M., 1998. *Ultrafiltration and Microfiltration Handbook*. Lancaster: Technonomic Publisher Co..

Cudennec, Y. & Lecerf, A., 2003. The transformation of Cu(OH)2 into CuO. *Solid State Sciences*, Volume 5, pp. 1471-1474.

Cummings, A., Smith, G. & Nelsen, D., 2007. Advances in amine reclaiminge why there's no excuse to operate a dirty amine system. Texas, Laurence Reid Gas Conditioning Conference.

Department of Environment, 2000. ENVIRONMENTAL QUALITY (SEWAGE AND INDUSTRIAL EFFLUENTS) REGULATIONS, 1979. Putrajaya: Ministry of Natural Resources and Environment.

Department of Irrigation and Drainage, 2009. *Study on the River Water QualittyTrends and Indexes in Peninsular Malaysia*, Putrajaya: Ministry of Natural Resources and Environment Malaysia.

Di Luccio, ,. M. et al., 2002. Evaluation of flat sheet and hollow fiber supported liquid membranes for fructose pertraction from a mixture of sugars. *Desalination*, Volume 148, pp. 213-220.

Dynamic-des.com, 2014. *Dynamic-des.com*. [Online] Available at: <u>http://www.dynamic-des.com/product/16/9/2010031542410.jpg</u> [Accessed 6 May 2014].

EC Plaza, 2013. *Ec Plaza*. [Online] Available at: <u>http://www.ecplaza.net/trade-leads-seller/mbr-flat-sheet-membrane-component--7381278.html</u> [Accessed 25 May 2014].

Fame, A., Chang, S. & Chardon, E., 2002. Submerged hollow fibre membrane moduledesign options and operational considerations. *Desalination*, Volume 146, pp. 231-236.

FAO, 1988. Requirements of vitamin A, iron, folate and vitamin B12, Rome: FAO UN.

Farooq, U., Kozinski, J. A., Khan, M. A. & Athar, M., 2010. Biosorption of heavy metal ions using wheat based bioadsorbents- a review of the recent literature. *Bioresources Technology*, Volume 101, pp. 5043-5053.

Feng, C. Y., Khulbe, K. C., Matsuura, T. & Ismail, A. F., 2013. Recent progresses in polymeric hollow fiber membrane preparation, characterization and applications. *Journal Of Separation and Purification Technology*, Volume 111, pp. 43-71.

Geankoplis, C. J., 2003. *Transport processes and separation process principles*. 4th ed. s.l.:Prentice Hall.

Gherasim, C.-V., Cuhorka, J. & Mikula'sek, P., 2013. Analysis of lead(II) retention from single salt and binary aqueous solutions by a polyamide nanofiltration membrane: Experimental result sand modelling. *Journal Of Membrane Science*, Volume 436, pp. 132-144.

Gherasim, C.-V. & Mikulášek, P., 2014. Influence of operating variables on the removal of heavy metal ions from aqueous solutions by nanofiltration. *Desalination*, Volume 343, pp. 67-74.

Ghurye, G., Clifford, D. A. & Tripp, A. R., 2004. Pilot study of coagulation microfiltration for arsenic removal from groundwater. *American Water Works Association*, Volume 96, pp. 143-152.

Han, B., Runnells, T., Zimbron, J. & Wickramasinghe, R., 2002. Arsenic removal from drinking water by flocculation and microfiltration. *Desalination*, Volume 145, pp. 293-298.

Hillmen, E., 2000. Separation of azeotropic mixtures: tools for analyst an studies on batch distillation operation. s.l.:Norwegian University of Science and Technology.

Huisman, J. L., Schouten, G. & Schultz, C., 2006. Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. *Hydrometallurgy*, Volume 83, pp. 106-113.

Hyfluxmembranes.com, 2008. *Hyfluxmembranes.com*. [Online] Available at: <u>http://www.hyfluxmembranes.com/hollow-fibre-membranes.html</u> [Accessed 8 March 2014].

Ismail, A. F., Mustaffar, M. I., Illias, R. M. & Abdullah, M. S., 2006. Effect of dope extrusion rate on morphology and performance. *Separation and Purification Technology*, Volume 49, pp. 10-19.

Ismail, A. & Hassan, A., 2007. Effect of additive contents on the performances and structural properties of asymmetric polyethersulfone (PES) nanofiltration membranes. *Separation Purification Technology*, Volume 55, pp. 98-109.

Javaid, A., Bajwa, R., Shafique, U. & Anwar, J., 2011. Removal of heavy metals by adsorption on Pleurotus ostreatus. *Biomass and Bioenergy*, Volume 35, pp. 1675-1682.

Jha, M. K. et al., 2009. Adsorption of copper from the sulphate solution of low copper contents uisng the cationic resin Amberlite IR120. *Journal of Hazardous Materials*, Volume 164, pp. 948-953.

Kim, G., Igunnu, E. T. & Chen, G. Z., 2014. A sunlight assisted dual purpose photoelectrochemical cell for low voltage removal of heavy metals and organic pollutants in wastewater. *Chemical Engineering Journal*, Volume 244, pp. 411-421.

Kong, J. & Li, K., 2001. Preparation of PVDF hollow-fibermembranes via immersion. *Journal of Applied Polymer Science*, Volume 81, pp. 1643-1653.

Kongsricharoern, N. & Polprasert, C., 1995. Electrochemical precipitation of chromium (Cr6+) from an electroplating wastewater. *Water Science and Technology*, Volume 31, pp. 109-117.

Kuhn, H. & Medlin, D., 2000. ASM Handbook: Volume 8: Mechanical Testing and Evaluation, Ohio: Springer.
Kurniawan, T. A., Chan, G. Y., Lo, W.-H. & Babel, S., 2006. Physico–chemical treatment techniques for wastewater laden with heavy metals. *Chemical Engineering Journal*, Volume 118, pp. 83-98.

Ku, Y. & Jung, I.-L., 2001. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. *Water Research*, Volume 35, pp. 135-142.

Ku, Y. & Jung, I.-L., 2001. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. *Water Research*, Volume 35, pp. 135-142.

Lakshmanan, D., Clifford, D. A. & Samanta, G., 2009. Ferrous and Ferric Ion Generation During Iron Electrocoagulation. *Environmental Science & Technology*, Volume 43, pp. 3853-3859.

Lakshmanan, D., Clifford, D. A. & Samanta, G., 2010. Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation. *Water Research,* Volume 44, pp. 5641-5652.

Lan, P. & Wang, W., 2012. Structure morphology of polyethersulfone hollow fiber. *Journal of Applied Mechanics and Material*, Volume 152-154, pp. 574-578.

Li, D., Wang, R. & Chung, T.-S., 2004. Fabrication of lab-scale hollow fiber membrane modules with high packing density. *Separation Purification Technology*, Volume 40, pp. 15-30.

Li, X. et al., 2014. Experimental investigation of local flux distribution and fouling behavior in double-end and dead-end submerged hollow fiber membrane modules. *Journal Of Membrane Science,* Volume 453, pp. 18-26.

Loh, C. H. & Wang, R., 2012. Effects of Additives and Coagulant Temperature on Fabrication of High Performance PVDF/Pluronic F127 Blend Hollow Fiber Membranes via Nonsolvent Induced Phase Separation. *Chinese Journal of Chemical Engineering*, Volume 20, pp. 71-79.

MATRADE, 2013. *Malaysia External Trade Development Corporation*. [Online] Available at: <u>http://www.matrade.gov.my/en/foriegn-buyers-section/69-industry-write-up-products/557-electrical-a-electronics</u>

[Accessed 11 November 2014].

Matsuura, T., 1994. *Synthetic Membranes and Membrane Separation Processes*. 1st ed. Boca Raton: CRC Press.

Michael, P., Nemeth, P. & Julia, P., 2003. *Technical and cost review of commercially available mf/uf membrane products*, s.l.: International Desalination Association.

Mohan, D. & Pittman, C. U., 2007. Arsenic removal from water/wastewater using adsorbents—A critical review. *Journal Of Hazardous Materials*, Volume 142, pp. 1-53.

Moreno-Villoslada, I. et al., 2005. Comparison between the binding of chlorpheniramine maleate to poly(sodium 4-styrenesulfonate) and the binding to other polyelectrolytes. *Polymer*, Volume 46, pp. 7240-7245.

MSIF, 2014. *MSIF*. [Online] Available at: http://www.misif.org.my/index.php?option=com_content&view=category&layout=blog &id=79&Itemid=207

[Accessed 8 March 2014].

Mulligan, C. N., 2009. Recent advances in the environmental applications of biosurfactants. *Colloid & Interface Science*, Volume 14, pp. 372-378.

Nabi, S., Sheeba, K. & Khan, M., 2005. Chromatographic Separations of Metal Ions on Strong Acid Cation-Exchange Resin Loaded with Neutral Red. *ACTA CHROMATOGRAPHICA*, Volume 15, pp. 206-219.

Nagarale, R. K., Gohil, G. S. & Shahi, V. K., 2006. Recent developments on ionexchange membranes and electro-membrane processes. *Advances in Colloid and Interface Science*, Volume 119, pp. 97-130.

National Research Council, 1979. Iron, Baltimore, MD: University Park Press,.

Neunmann, S., 2009. Principle of ion exchange and overview over different types of resins. In: *Water Digest.* s.l.:s.n., p. 85.

Ngah, W. W. S., Endud, C. S. & Mayanar, R., 2002. Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. *Reactive and Functional Polymers*, Volume 50, pp. 181-190.

Peng, N. et al., 2012. Evolution of polymeric hollow fibers as sustainable technologies: Past present, and future. *Progress in Polymer Science*, Volume 37, pp. 1401-1424.

Radcliff, R. & Zarnadze, A., 2004. *Water Conditoning and Purification*. [Online] Available at: <u>http://www.wcponline.com/pdf/0804%20Membrane%20Technology.pdf</u> [Accessed 6 May 2014].

Rahimpour, A. & Madaeni, S. S., 2010. Improvement of performance and surface properties of nano-porous polyethersulfone (PES) membrane using hydrophilic monomers as additives in the casting solution. *Journal of Membrane Science*, Volume 360, pp. 371-379.

Sablani, S., 2007. *Handbook of food and biprocess modelling techniques*. 1st ed. Boca Raton: CRC/Taylor & Francis.

Sato, Y., Kang, M., Kamei, T. & Magara, Y., 2002. Performance of nanofiltration for arsenic removal. *Water Research*, Volume 36, pp. 3371-3377.

Shi, X., Tal, G., Hankins, N. P. & Gitis, V., 2014. Fouling and cleaning of ultrafiltration membranes: A review. *Journal Of Water Process Engineering*, Volume 1, pp. 121-138.

Sigma-Aldrich, 2013. Amberlite IR120H Specification. s.l.:Sigma-Aldrich.

Stremovskii, L. & Klyueva, L., 1974. Pressure drop as a parameter controlling the continuous, countercurrent ion exchange process in a multisection column. *Khimiko-farmatsevvticheskii Zhurna*, Volume 4, pp. 35-37.

Sun, B. et al., 2012. Separation of low concentration of cesium ion from wastewater by electrochemically switched ion exchange method: Experimental adsorption kinetics analysis. *Journal of Hazardous Materials*, Volume 233-234, pp. 177-183.

Tang, C.-y.et al., 2010. Effect of solution extrusion rate on morphology and performance of polyvinylidene fluoride hollow fiber membranes using polyvinyl pyrrolidone as an additive. *Chinese Journal of Polymer Science*, Volume 28, pp. 527-535.

Tanninen, J., Mänttäri, M. & Nyström, M., 2006. Nanofiltration of concentrated acidic copper sulphate solutions. *Desalination*, Volume 189, pp. 92-96.

Tin, P. S., 2005. *Membrane Materials and Fabrications for Gas Separation*. Singapore: National University of Singapore.

Volesky, B., 1990. Biosorption of heavy metals. 1st ed. Boca Raton: CRC Press.

Wallace, D. W., Staudt-Bickel, C. & Koros, W. J., 2006. Efficient development of effective hollow fiber membranes for gas separations from novel polymers. *Journal Of Membrane Science*, Volume 278, pp. 92-104.

Wang, D., Li, K. & Teo, W. K., 1999. Preparation and characterization of polyvinylidene fluoride (PVDF) hollow fiber membranes. *Journal of Membrane Science*, Volume 163, pp. 211-220.

Wang, F.-H., Ji, Y.-X. & Wang, J.-J., 2012. Synthesis of heavy metal chelating agent with four chelating groups of N1,N2,N4,N5-tetrakis(2-mercaptoethyl)benzene-1,2,4,5-tetracarboxamide (TMBTCA) and its application for Cu-containing wastewater. *Journal Of Hazardous Materials*, Volume 241-242, pp. 427-432.

Wang, L. K., Hung, Y.-T. & Shammas, N. K., 2005. *Physicochemical Treatment Processes*. 1st ed. Totowa: Humana Press.

Wang, Z., Ma, J. & Liu, Q., 2011. Pure sponge-like membranes bearing both high water permeability and high retention capacity. *Desalination*, Volume 278, pp. 141-149.

Yin, Z. et al., 2012. Poly (vinylpyrrolidone-co-acrylonitrile-co-vinylpyrrolidone) Modified Polyethersulfone Hollow Fiber Membranes with Improved Blood Compatibility. *Fibers and Polymers*, Volume 13, pp. 269-276.

Zhang, Q. & Vecitis, C. D., 2014. Conductive CNT-PVDF membrane for capacitve organic fouling reduction. *Journal Of Membrane Science*, Volume 459, pp. 143-156.

Zhao, C., Xue, J., Ran, F. & Sun, S., 2013. Modification of polyethersulfone membranes – A review of methods. *Progress in Materials Science*, Volume 58, pp. 76-150.

APPENDICES

A.1 Static Adsorption

nalyzis Begun potromoster: AAnlyzt: Addinistrator potromoster: AAnlyzt: Addinistrator potromoster: AAnlyzt: C. 3000 memories and Settings/All Users/BerkinElmer/AA\Data\Sample Information addinistric Distance and Settings/All Users/PerkinElmer/AA\Data\Sample Information Bet ScileCited Information addinistric Distance and Settings/All Users/PerkinElmer/AA\Data\Sample Information addinistric Distance and Settings/All Users/PerkinElmer/AA/Data\Sample Information addinistric Distance and Settings/All Users/PerkinElmer/AA/Data\Sample Information addinistric Distance and Settings/All Users/PerkinElmer/AA/Data\Sample Information addinistric Distance and Settings/All Users/PerkinElmer/AA/Data	nalys ogged pectr								
Malysis Begun Ggge In Analyst: Administrator Entropy All Second Provide Second	nalys ogged pectr								
ogged for Analyst : Administrator Technique: AA Flame partorester: AANalyst 400, SAN 2013:2012 Technique: AA Flame mapped formation File: C:\Documents and Settings\All Users\PerkinElmer\AA\Data\Sampler Information\ CUJ21246Arin3.sif memory Collecter: 12/19/2014 11:11:20 AM Data Type: Original for Gord A	ogged	is Begun	-						
ample Information File: C:\Documents and Settings\All Users\PerkinElmer\AA\Data\Sample Information\ Satch ID: Samils Data Set: Chi91214Kalvin3 samils Library: C:\Documents and Settings\All Users\PerkinElmer\AA\Data\Results.Results.mb manual information in the information in		In Analyst: ometer: AAna	Administr lyst 400,	ator S/N 201S12(010501	Technique Autosampl	: AA Flame er:		
Batch DD: Determined Barulas Data Set Cui921/Alkavin3 Autosampler Location: Data Collected: 12/19/2014 11:11:20 AM Sample D: Ope A Autosampler Location: Data Collected: 12/19/2014 11:11:22 AM Data Collected: 12/19/2014 11:11:52 AM Data Collected: 12/19/2014 11:11:21:9 AM <	Sample	Information	File: C:\	Documents a	and Setting	s\All User	s\PerkinElmer	\AA\Data\Sample Inform	ation\
Sequence No.: 1 smple D: Op A malyst: Autosampler Location: Date Collected: 12/19/2014 11:11:20 AM Date Type: Cujmal sepicate Data: Op C mg/L Signal 0.256 0.256 0.035 1 0.256 0.256 0.035 1 0.256 0.256 0.035 1 0.256 0.035 11:11:22 AM Second 1 0.256 0.035 11:11:22 AM Yes 1 0.256 0.035 11:11:22 AM Yes 1 0.256 0.035 11:11:20 AM Yes 1 0.256 0.035 11:11:22 AM Yes 1 0.276 0.036 11:11:20 AM Yes 1 0.276 0.035 11:11:20 AM Yes 1 0.226 0.031 11:11:20 AM Yes	Batch Result Result	ID: s Data Set: s Library: C	Cu191214Ke :\Document	lvin3 s and Setti	ings\All Use	ers\Perkin	Elmer\AA\Data	\Results\Results.mdb	
Replicate Data: Opc A Analyte: Cu 324.75 Signal 1 0.254 0.254 0.33 11:11:2 AM Yes 3 0.254 0.256 0.333 11:11:2 AM Yes 3 0.254 0.256 0.335 11:11:2 AM Yes 3 0.254 0.256 0.335 11:11:2 AM Yes 50:0 0.055 0.035 0.035 11:11:2 AM Yes 50:0 0.055 0.035 0.005 0.005 0.005 51:00:1 1.378 1.370 Autosampler Location: Tample: 0.256 0.031 11:11:52 AM Data Type: Original Data Type: Original Data Type: Original Time Signal Signal Signal Signal 2 0.226 0.031 11:11:54 AM Yes 2 0.227 0.227 0.331 11:11:54 AM Yes 2 0.226 0.031 11:11:24 AM Yes Signal 2 0.226 0.031 11:12:19 AM Data Collocco	Sequen Sample Analys	ce No.: 1 ID: Opc A t:				Autosampl Date Coll Data Type	er Location: ected: 12/19/ : Original	2014 11:11:20 AM	
SampleCons StuckCons BinkCorr Time Signal 1 0.254 0.254 0.035 11:11:22 AM Yes 3 0.254 0.254 0.035 11:11:22 AM Yes 3 0.254 0.256 0.035 11:11:26 AM Yes 3 0.256 0.256 0.005 11:11:26 AM Yes 3 0.254 0.035 11:11:26 AM Yes 3 1.378 1.375 1.375 3 1.378 1.375 1.375 3 1.378 1.375 1.375 3 0.224 0.007 Bank Decomposition 3 0.227 0.021 Signal Stored 1 0.224 0.0226 0.031 11:11:54 AM Yes 3 0.227 0.0215 0.0012 Stored Stored 1 0.224 0.226 0.031 11:11:54 AM Yes 2 0.226 0.226 0.031 11:12:10 AM Yes 1 0.261 0.038	Replic	ate Data: Op	с A			Analyte:	Cu 324.75		
1 0.7254 0.7264 0.7264 0.7264 0.7264 0.7264 0.7264 0.7264 0.7264 0.7264 0.7264 0.7264 0.7264 0.7264 0.7264 0.7264 0.7264 0.7297 0.7264 0.7264 0.7297 0.7264 0.7264 0.7297 0.7264 0.7264 0.7297 0.7264 0.7297 0.7264 0.7297 0.7264 0.7297 0.7264 0.7297 0.7264 0.7264	Repl #	SampleConc mg/L	StndConc mg/L	BlnkCorr Signal	Time	Signal Stored			6
2 0.200 0.200 0.035 11:11:30 AM Yes Hean: 0.226 0.236 0.035 D:: 0.0335 0.0005 11:11:30 AM Yes Sequences No.: 2 Autosampler Location: Date Collected: 12/19/2014 11:11:52 AM Date Type: Original Sequence No.: 3 Signal 11:11:50 AM Yes Signal 1 0.226 0.031 11:11:150 AM Yes Signal 1 0.226 0.031 11:11:150 AM Yes Signal 1 0.227 0.227 0.031 11:11:50 AM Yes 1 0.226 0.031 11:11:150 AM Yes 2 0.227 0.227 0.031 11:11:150 AM Yes 1 0.226 0.031 11:11:150 AM Yes 2 0.227 0.226 0.031 11:12:02 AM Yes 1 0.226 0.226 0.031 11:12:02 AM Yes 1: 0.226 0.268 0.68 Signal Signal 1: malyte: Date Collected: 12/19/2014 11:12:19 AM Date Type: Original 1: 0.226 0.226 0.033 11:1	1	0.254	0.254	0.035	11:11:22	AM Yes			
tean: 0.256 0.035 0.0005 DID: 0.0035 0.0005 0.0005 BRED: 1.378 1.378 1.377 Sequence No.: 2 Autosampler Location: Date Collected: 12/19/2014 11:11:52 AM Signal March March Signal Signal Signal Signal # mg/L mg/L Signal Signal Signal Signal # mg/L Signal Signal Signal Signal Signal # mg/L Signal Signal Signal Signal Signal Bit: Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal <td>2</td> <td>0.260</td> <td>0.260</td> <td>0.036</td> <td>11:11:26 1</td> <td>AM Yes</td> <td></td> <td></td> <td></td>	2	0.260	0.260	0.036	11:11:26 1	AM Yes			
Number Outcome Outcome Outcome Sequence No.: 2 Autosampler Location: Date Collected: 12/19/2014 11:11:52 AM Sequence No.: 2 Autosampler Location: Date Collected: 12/19/2014 11:11:52 AM Seplicate Data: Opc B Analyte: Cu 324.75 Signal 111:11:54 AM Yes 1 0.224 0.231 11:11:54 AM 1 0.227 0.226 0.031 11:11:54 AM 1 0.226 0.226 0.031 11:11:54 AM Seplicate Data: Opc C Autosampler Location: Date Collected: 12/19/2014 11:12:19 AM Seplicate Data: Opc C Autosampler Location: Date Type: Original Seplicate Data: Opc C Autosampler Location: Date Type: Original Temple ID: Date Collected: 12/19/2014 11:12:19 AM Date Type: Original Date Type: Original Temple ID: Date Collected: 12/19/2014 11:12:19 AM Yes Signal Signal Sequence No.: 4 Signal 11:12:28 AM Yes Signal Sequence No.: 4 Signal Signal Signal Signal Sequ	Mean:	0.256	0.256	0.035					
Sequence No.: 2 smaple DI: Opc B smaple DI: Opc B 0.226 Autosampler Location: Data Type: Original Autosampler Location: Data Type: Original Data Type: Original March Sample Onco France BinKCorr Signal 11:11:54 AM Yes 2 0.226 0.031 11:11:54 AM Yes 2 0.226 0.031 11:11:54 AM Yes 2 0.226 0.031 11:11:54 AM Yes 2 0.226 0.031 11:12:02 AM Yes 50: 0.0015 0.00002 Deta Type: Original Deta Type: Original Sequence No.: 3 Autosampler Location: Data Type: Original Data Type: Original Deta Type: Original Sequence No.: 3 Signal 11:12:19 AM Yes Signal Signal Sequence No.: 3 Signal 11:12:24 AM Yes Signal Signal 1 0.256 0.256 0.036 11:12:24 AM Yes Signal Signal 1 0.259 0.239 0.036 11:12:24 AM Yes Signal Deta Type: Original Sequence No.: 4 Signal Signal Signal <t< td=""><td>SD: RSD:</td><td>1.37%</td><td>1.37%</td><td>1.37</td><td></td><td></td><td></td><td></td><td></td></t<>	SD: RSD:	1.37%	1.37%	1.37					
Date Collected: 12/19/2014 11:11:52 AM Data Type: Original Bar Type: Original Bar Type: 0.0210 11:11:52 AM Data Type: Original Bar Type: 0.0210 11:11:52 AM Data Type: 0.0210 11:11:52 AM Bar Type: 0.0210 11:12:10 2 A O.224 0.031 D: 0.0015 0.0015 Bequence No.: 3 Sample D: 0pc C Bar Type: 0riginal Beglicate Data: 0pc C Stored Bar Type: 0riginal Bequence No.: 3 Sample D: 0pc C Bar Type: 0riginal Beglicate Data: 0pc C Stored Beglicate Data: 0pc C Signal 1 0.256 0.261 0.261 0.261 D: 2.05 0.259 O.261 0.261 D: 2.05 0.259 O.261 0.261 D: 2.05 0.259 D: 2.05 0.259 D: 2.0033 0.0005 Bar Type: 0riginal	Semier	ce No.: 2				Autosampl	er Location:		
Replicate Data: Opc B Analyte: Cu 324.75 Signal Signal 1 0.224 0.031 1 0.226 0.226 0.031 1 11:11:54 AM Yes 3 0.227 0.027 0.031 11:11:50 AM Yes 12:0:226 0.227 0.031 11:11:50 AM Yes 10:0:0:05 0.0015 0.0002 RSD:0:0:68 0.68 0.68 Sampler D: Opc C Data Type: Original Inalyst: Data Type: Original Sequence No.: 3 Signal sampleConc StndConc BlnkCorr # mg/L Signal 1 0.256 0.035 1 0.261 0.036 1 0.261 0.036 1 1.12:12 M Yes 2 0.261 0.036 1 0.261 0.036 1 1.278 M Yes 2 0.261 0.036 0:0:0:033 0.0005 RBD: 1.278 Autosa	Sample Analys	ID: Opc B				Date Coll Data Type	ected: 12/19/ : Original	2014 11:11:52 AM	
Wepl. Signal Signal Stored 1 0.224 0.224 0.031 11:11:154 AM Yes 2 0.226 0.226 0.031 11:11:158 AM Yes 3 0.227 0.226 0.031 11:11:158 AM Yes 3 0.227 0.226 0.031 11:11:158 AM Yes 3 0.227 0.226 0.031 11:11:158 AM Yes 3 0.226 0.226 0.031 11:12:02 AM Yes Benence No.:3 Autosampler Location: Data Collected: 12/19/2014 11:12:19 AM Data Type: Original Sequence No.:3 Signal 11:12:19 AM Yes Sequence No.:4 Signal Signal 1 0.256 0.035 11:12:19 AM Yes 2 0.261 0.261 0.036 11:12:19 AM Yes 2 0.261 0.261 0.036 11:12:19 AM Yes 2 0.261 0.261 0.361 11:12:28 AM Yes 10:033 0.00033 0.0005 11:12:28 AM Yes Data Type: Original Sequence No.: 4 Autosampler Location: Data Type: Original Data Type: Origi	Replic	ate Data: Op	с В			Analyte:	Cu 324.75		
1 0.224 0.226 0.031 11:11:154 AM Yes 3 0.227 0.226 0.031 11:11:158 AM Yes 3 0.227 0.226 0.031 11:11:150 AM Yes stean: 0.226 0.226 0.031 11:11:150 AM Yes stean: 0.226 0.226 0.031 11:12:02 AM Yes stean: 0.226 0.68% 0.68 stean: 0.66% 0.68 0.68 stean: 0.66% 0.68 stean: 0.226 0.68% stean: 0.66% 0.68 stean: 0.266 0.68 1 0.256 0.256 0.036 1 0.256 0.261 0.036 11:12:24 AM Yes 3 0.261 0.261 0.036 11:12:28 AM Yes 3 0.261 0.261 0.33 11:12:28 AM Yes 3 0.261 0.261 0.36 11:12:24 AM Yes 3 0.261 0.261 0.36 11:12:24 AM Yes Stored Date Collected: 12/19/2014 11:12:48 AM	Repl #	SampleConc mg/L	StndConc mg/L	BinkCorr Signal	Time	Signal			
2 0.220 0.227 0.227 0.031 11:12:02 AM Yes Hean: 0.226 0.031 11:12:02 AM Yes Sequence No.: 3 0.688 0.688 0.688 Sequence No.: 3 0.688 0.688 0.688 Sequence No.: 3 Date Collected: 12/19/2014 11:12:19 AM Data Type: Original Templicate Data: 0pc C Analyte: Cu 324.75 Sequence No.: 3 Signal Stored 1 0.256 0.261 0.036 1 0.256 0.261 0.036 1 0.256 0.261 0.036 1 0.259 0.259 0.366 11:12:19 AM Yes 11:12:28 AM Yes 3 0.261 0.366 11:12:28 AM Yes 3 0.261 0.366 11:12:28 AM Yes 1.273 1.278 1.27 Date Collected: 12/19/2014 11:12:48 AM Load Sequence No.: 4 Autosampler Location: Date Collected: 12/19/2014 11:12:48 AM Load Date Type: Original Sequence No.: 4 Analyte: Cu 324.75 Stored Sequence No.: 4 Analyte: Cu 324.75 Sequence No.: 4	1	0.224	0.224	0.031	11:11:54	AM Yes			
Mean: 0.226 0.031 Di: 0.0015 0.0015 Mayst: 0.68% 0.68 Autosampler Location: Date Collected: 12/19/2014 11:12:19 AM Data Type: Original Data Type: Original Malyst: Data Stored 1 0.256 0.261 0.261 0.261 0.336 1 0.259 0.336 0.261 0.261 0.366 1:12:19 AM Yes 1:12:28 AM Yes 2 0.261 0.366 1:12:28 AM Yes 0.0033 1:12:19 AM Yes 1:27% 1:27% 1.27% 1:27% 1.27% Autosampler Location: Data Collected: 12/19/2014 11:12:48 AM Data Type: Original Data Type: Original Autosampler Location: Bample ID: 3pc A Analyte: Cu 324.75 Sequence No.: 4 Autosampler Location: Sample On: 3pc A Analyte: Cu 324.75 Keplicate Data: 3pc A Analyte: Cu 324.75 Keplicate Data: 3pc A Analyte: Cu 324.75 Signal Signal	3	0.227	0.227	0.031	11:12:02	AM Yes			
Dir. 0.1088 0.088 0.088 Jample ID: Opc C Autosampler Location: Jample ID: Opc C Data Type: Original Replicate Data: Opc C Analyte: Cu 324.75 Time Signal Stored 1 0.256 0.256 1 0.256 0.261 0.261 0.261 0.336 1 1.278 1.27 Sequence No.: 4 Sample Tocation: Jample ID: Spc A Autosampler Location: Sequence No.: 4 Autosampler Location: Jample ID: Spc A Autosampler Location: Sequence No.: 4 Autosampler Location: Jample ID: Spc A Autosampler Location: Sequence No.: 4 Autosampler Location: Sample ID: Spc A Autosampler Location: Sequence No.: 4 Sample TD: Spc A Manalyst: Data Collected: 12/19/2014 11:12:48 AM Data Type: Original Data Type: Original Replicate Data: 3pc A Analyte: Cu 324.75 Signal Signal # mg/L mg/L Signal Signal 1 0.234 </td <td>Mean:</td> <td>0.226</td> <td>0.226</td> <td>0.031</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Mean:	0.226	0.226	0.031					
Bequence No.: 3 sample ID: Opc C Inalyst: Autosampler Location: Date Collected: 12/19/2014 11:12:19 AM Data Type: Original Replicate Data: Opc C Replicate Data: Opc A Nalyte: Cu 324.75 Signal Replicate Data: Opc A Nalyte: Cu 324.75 Signal Signal Signal Stored Replicate Data: Opc A Nalyte: Cu 324.75 Signal Signal Signal Stored Replicate Data: Opc A Nalyte: Cu 324.75 Signal Signal Replicate Data: Opc A Nalyte: Cu 324.75 Signal Signal Signal Stored Replicate Data: Opc A Nalyte: Cu 324.75 Signal Signal Replicate Data: Opc A Nalyte: Cu 324.75 Signal Signal Replicate Data: Opc A Nalyte: Cu 324.75 Signal Signal Replicate Data: Opc A Nalyte: Cu 324.75 Signal Signal Signal Stored Replicate Data: Opc A Nalyte: Cu 324.75 Signal Si	&RSD:	0.68%	0.68%	0.68					
hanalyst: Data Type: Original hanalyst: Data Type: Original keplicate Data: Opc C Analyte: Cu 324.75 keplicate Data: Opc C Analyte: Cu 324.75 keplicate Data: Opc C Signal mg/L mg/L Signal ************************************	Sequen	ce No.: 3				Autosampl	er Location:	2014 11.12.19 AM	
Replicate Data: Opc C Analyte: Cu 324.75 SampleConc StndConc BlnkCorr Time Signal # mg/L mg/L Signal Stored 1 0.256 0.035 11:12:19 AM Yes 2 0.261 0.036 11:12:24 AM Yes 3 0.261 0.036 11:12:28 AM Yes 4(an: 0.259 0.036 11:12:28 AM Yes 3D: 0.0033 0.0005 3RSD: 1.27% 1.27 Autosampler Location: 3maple TD: 3pc A Analyte: Cu 324.75 Bage ID: 3pc A Analyte: Cu 324.75 Date Collected: 12/19/2014 11:12:48 AM Data Type: Original Analyte: Cu 324.75 Signal # mg/L Signal # mg/L Signal # mg/L Signal Stored 1 0.234 0.032 11:12:49 AM Yes 2 0.232 0.032 11:12:54 AM Yes	Analys	t:				Data Type	: Original	2014 11.12.13 M	
Map/L Signal Stored 1 0.256 0.256 0.035 11:12:19 AM Yes 2 0.261 0.261 0.036 11:12:24 AM Yes 3 0.261 0.261 0.036 11:12:24 AM Yes 4(ean: 0.259 0.259 0.036 11:12:28 AM Yes 4(ean: 0.259 0.259 0.036 11:12:28 AM Yes 50: 0.0033 0.0005 11:12:28 AM Yes 50: 1.27% 1.27 1.27 Date Collected: 12/19/2014 11:12:48 AM Sample TD: 3pc A Analyte: Cu 324.75 Cu 324.75 Stored 1 0.234 0.032 11:12:49 AM 1 0.234 0.232 0.032 11:12:49 AM 2 0.232 <td>Replic</td> <td>ate Data: Op</td> <td>c C</td> <td></td> <td></td> <td>Analyte:</td> <td>Cu 324.75</td> <td></td> <td></td>	Replic	ate Data: Op	c C			Analyte:	Cu 324.75		
1 0.256 0.286 0.035 11:12:19 AM Yes 2 0.261 0.261 0.036 11:12:24 AM Yes 3 0.261 0.261 0.036 11:12:28 AM Yes 4 minor 0.033 0.0005 BSD: 0.0033 0.0005 BSD: 1.27% 1.27% 1.27 	Repl #	SampleConc mg/L	mg/L	Signal	Time	Stored			
2 0.261 0.261 0.036 11:12:28 AM Yes Mean: 0.259 0.259 0.036 3D: 0.0033 0.0005 SBD: 1.27% 1.27 Bequence No.: 4 Autosampler Location: Data Collected: 12/19/2014 Manalyst: Data Collected: Deplicate Data: 3pc A # mg/L Signal # mg/L Signal 4 0.234 0.232 0.234 0.232 0.032 0.234 0.232 0.032 11:12:28 AM Yes	1	0.256	0.256	0.035	11:12:19	AM Yes AM Yes			
Mean: 0.259 0.036 SD: 0.0033 0.0005 SBSD: 1.27% 1.27 Bequence No.: 4 Autosampler Location: Sample TD: 3pc A Analyst: Date Collected: 12/19/2014 11:12:48 AM Data Collected: 12/19/2014 11:12:48 AM Beplicate Data: 3pc A Replicate Data: BinkCorr Time Signal # mg/L Signal 1 0.234 0.032 11:12:49 AM 2 0.232 0.032 11:12:54 AM	3	0.261	0.261	0.036	11:12:28	AM Yes			
Ars.D: 1.27% 1.27 Bequence No.: 4 Autosampler Location: Sample ID: 3pc A Date Collected: 12/19/2014 11:12:48 AM Data Type: Original Replicate Data: 3pc A Analyte: Cu 324.75 Stepl SampleConc StndConc BlnkCorr Time Signal # mg/L mg/L 1 0.234 0.232 0.032 11:12:54 AM Yes	Mean:	0.259	0.259	0.036					
Bequence No.:: 4 Autosampler Location: Date Collected: 12/19/2014 11:12:48 AM Data Type: Original Analyst: Data Type: Original Replicate Data: 3pc A Analyte: Cu 324.75 Replicate Data: 3pc A Analyte: Cu 324.75 1 0.234 0.234 0.032 1 0.232 0.232 0.032 1 0.232 0.232 0.032 1 1:12:54 AM Yes	RSD:	1.27%	1.27%	1.27					
Analyte: Cu 324.75 Replicate Data: 3pc A Analyte: Cu 324.75 Replicate Data: Stored Signal Stored # mg/L mg/L Signal Stored 1 0.234 0.032 11:12:49 AM Yes 2 0.232 0.032 11:12:54 AM Yes	Sequen Sample Analys	ce No.: 4 ID: 3pc A t:				Autosampl Date Coll Data Type	er Location: ected: 12/19/ : Original	2014 11:12:48 AM	
Repl SampleConc StindConc BlnkCorr Time Signal # mg/L mg/L Signal Stored 1 0.234 0.232 11:12:49 AM Yes 2 0.232 0.232 0.032 11:12:54 AM Yes	Replic	ate Data: 3n				Analyte:	 Cu 324.75		
mg/L mg/L Signal 1 0.234 0.232 11:12:49 AM Yes 2 0.232 0.232 11:12:54 AM Yes	Repl	SampleConc	StndConc	BlnkCorr	Time	Signal			
2 0.232 0.232 0.032 11:12:54 AM Yes	# 1	mg/L 0.234	0.234	0.032	11:12:49	AM Yes			
	2	0.232	0.232	0.032	11:12:54	AM Yes			

Static Adsorption Page 1

Date: 12/19/2014 11:15:01 AM 2 Method: Cu011214G4 Page 11:12:58 AM Yes 3 0.226 0.226 0.031 Mean: 0.231 SD: 0.0041 0.231 0.0041 0.032 0.0006 %RSD: 1.79% 1.79% 1.79 ______ Autosampler Location: Sequence No.: 5 Date Collected: 12/19/2014 11:13:15 AM Sample ID: 3pc B Analyst: Data Type: Original Analyte: Cu 324.75 Replicate Data: 3pc B SampleConc StndConc BlnkCorr Time mg/L mg/L Signal Signal Stored Repl Signal 0.040 0.042 mg/L 0.293 0.305 # 11:13:15 AM Yes 11:13:19 AM Yes 11:13:24 AM Yes 0.293 1 2 0.301 0.300 0.0059 0.041 3 0.301 0.300 0.0059 0.041 0.0008 Mean: SD: %RSD: 1.98% 1.98% 1.98 Autosampler Location: Date Collected: 12/19/2014 11:13:41 AM Sequence No.: 6 Sample ID: 3pc C Data Type: Original Analyst: Analyte: Cu 324.75 Replicate Data: 3pc C Repl SampleConc StndConc BlnkCorr Time Repl Signal Stored mg/L 0.253 0.258 mg/L 0.253 0.258 Signal # 11:13:42 AM Yes 11:13:46 AM Yes 0.035 0.036 0.036 2 Yes 0.263 0.258 0.0051 3 0.263 11:13:50 AM 0.036 Mean: SD: 0.0051 0.0007 %RSD: 1.97% 1.97% 1.97 Autosampler Location: Sequence No.: 7 Sample ID: 8pc A Date Collected: 12/19/2014 11:14:08 AM Data Type: Original Analyst: Replicate Data: 8pc A Repl SampleConc StndConc Analyte: Cu 324.75 BlnkCorr Time Signal mg/L 0.231 0.227 **mg/L** 0.231 0.227 Signal Stored # 11:14:08 AM 11:14:13 AM 11:14:17 AM Yes Yes Yes 0.032 2 0.032 0.032 0.0003 3 0.230 0.230 0.230 Mean: 0.230 SD: 0.0021 0.0021 %RSD: 0.90% 0.90% 0.90 Autosampler Location: Date Collected: 12/19/2014 11:14:34 AM Sequence No.: 8 Sample ID: 8pc B Data Type: Original Analyst: Replicate Data: 8pcB Analyte: Cu 324.75 Repl SampleConc StndConc BlnkCorr Signal Time mg/L 0.189 0.180 mg/L 0.189 0.180 Signal 0.026 0.025 Stored # 11:14:35 AM Yes Yes 11:14:39 AM 2 Yes 0.180 0.180 0.025 11:14:43 AM Mean: 0.183 0.183 0.0007 0.0052 0.0052 SD: %RSD: 2.85% Autosampler Location: Sequence No.: 9 Sample ID: 8pc C Date Collected: 12/19/2014 11:15:01 AM

Static Adsorption Page 2

Date: 12/19/2014 11:17:05 AM Method: Cu011214G4 Page 3 Data Type: Original Analyst: Analvte: Cu 324.75 Replicate Data: 8pc C Repl SampleConc StndConc BlnkCorr Time Signal Signal mg/L 0.166 0.168 mg/L Stored # 11:15:01 AM Yes 11:15:05 AM Yes 11:15:09 AM Yes 0.166 0.023 0.168 2 0.180 0.025 3 0.180 Mean: 0.171 0.0074 4.34% SD: 0.0074 0.0010 %RSD: 4.34% 4.34 Sequence No.: 10 Autosampler Location: Date Collected: 12/19/2014 11:15:30 AM Data Type: Original Sample ID: 5pc A Analyst: Replicate Data: 5pc A Analyte: Cu 324.75 Repl SampleConc StndConc BlnkCorr Time # mg/L mg/L Signal Signal mg/L 0.291 0.272 0.276 Signal 0.040 0.037 0.038
 Signal

 Stored

 11:15:31 AM
 Yes

 11:15:36 AM
 Yes

 11:15:40 AM
 Yes
 mg/L 0.291 0.272 0.276 1 23 Mean: 0.279 0.279 0.0099 0.038 0.0099 0.0014 SD: %RSD: 3.54% 3.54% 3.54 Sequence No.: 11 Autosampler Location: Date Collected: 12/19/2014 11:16:00 AM Sample ID: 5pc B Analyst: Data Type: Original _____ Analyte: Cu 324.75 Replicate Data: 8pc B Signal Repl SampleConc StndConc BlnkCorr Time mg/L 0.240 0.239 0.243 mg/L 0.240 0.239 Signal Stored # 11:16:00 AM 0.033 0.033 0.033 1 11:16:00 AM Yes 11:16:05 AM Yes 11:16:09 AM Yes 2 3 0.243 Mean: 0.241 0.241 0.0020 0.033 SD: %RSD: 0.84% 0.84% 0.84 Autosampler Location: Sequence No.: 12 Date Collected: 12/19/2014 11:16:28 AM Sample ID: 5pc C Data Type: Original Analyst: Replicate Data: 5pc C Analyte: Cu 324.75 Signal Stored Repl SampleConc StndConc BlnkCorr Time mg/L 0.080 0.067 Signal # mg/L 11:16:29 AM Yes 11:16:33 AM Yes 11:16:38 AM Yes 0.080 0.067 0.011 0.009 2 0.059 0.069 0.0107 3 0.059 0.008 0.069 0.009 Mean: 0.010, 15.59% 0.0015 SD: %RSD: 15.59% 15.59 Autosampler Location: Sequence No.: 13 Date Collected: 12/19/2014 11:16:56 AM Sample ID: 10pc A Data Type: Original Analyst: _____ Analyte: Cu 324.75 Replicate Data: 10pc A Repl SampleConc StndConc BlnkCorr Time Signal mg/L 0.199 0.203 mg/L 0.199 0.203 Signal 0.027 0.028 # Stored Store 11:16:56 AM Yes 11:17:01 AM Yes 2

Static Adsorption Page 3

Method	: Cu011214G4		n.	Pa	ge 4		Date: 12/19/2014	11:18:19 AM
3 Mean: SD: %RSD:	0.198 0.200 0.0028 1.41%	0.198 0.200 0.0028 1.41%	0.027 0.028 0.0004 1.41	11:17:05 AN	M Yes			
Sequenc Sample Analyst	ce No.: 14 ID: 10pc B L:			i 1 1	Autosamp Date Col Data Type	ler Location: lected: 12/19/: a: Original	2014 11:17:23 AM	
Replica Repl # 1 2 3 Mean: SD: %RSD:	ate Data: 10 SampleConc mg/L 0.169 0.168 0.182 0.173 0.0075 4.34%	pc B StndConc mg/L 0.169 0.168 0.182 0.173 0.0075 4.34%	BlnkCorr Signal 0.023 0.023 0.025 0.024 0.0010 4.34	Time 11:17:24 AN 11:17:28 AN 11:17:33 AN	Analyte: Signal Stored 4 Yes 4 Yes 4 Yes	Cu 324.75		
Sequenc Sample Analyst	ce No.: 15 ID: 10pc C ::]]]]]]]	Autosamp Date Col Data Type	ler Location: Lected: 12/19/2 e: Original	2014 11:17:49 AM	
Replica Repl # 1 2 3 Mean: SD: %RSD:	ate Data: 10 SampleConc mg/L 0.295 0.295 0.298 0.295 0.296 0.296 0.0017 0.58%	pc C StndConc mg/L 0.295 0.298 0.295 0.296 0.0017 0.58%	BlnkCorr Signal 0.041 0.041 0.041 0.041 0.0041 0.0002 0.58	Time 11:17:49 AI 11:17:54 AI 11:17:58 AI	Analyte: Signal Stored 4 Yes 4 Yes 4 Yes	Cu 324.75		 5
						· .	ख िह्	

Static Adsorption Page 4

A.2 Effect of pH

		8			=			
nalys:	is Begun							
ogged pectro	In Analyst: ometer: AAna	Administ Lyst 400,	rator S/N 201S120	10501	Technique: AA Autosampler:	Flame		
ample	Information	File: C:	Documents a	nd Setting	s\All Users\Pe	rkinElmer\AA\	Data\Sample :	Information\
atch 1 esults esults	ID: s Data Set: (s Library: C	Cul Cul31114Ke : \Document	elvin s and Settin	.sıf ngs\All Us	ers\PerkinElme	r\AA\Data\Res	ults\Results	.mdb
ethod	Loaded							
lethod lethod	Name: Cu131: Description	L14G5 : Cu131114	Kelvin		Method Last S	aved: 11/13/2	2014 12:27:34	PM
	ce No · 1				Autosampler I.			
ample	ID: Cu 8% S: t:	L			Date Collecte Data Type: Or	d: 11/13/2014 iginal	12:34:38 PM	
eplica	ate Data: Cu	8% S1	BlakCorr		Analyte: Cu 3	24.75		
#	mg/L	mg/L	Signal	Time	Stored			
1 Samr	5.930 ple concentra	5.930 ation is c	0.766 reater than	12:34:39 that of +	PM Yes he highest sta	ndard.		
2	5.941	5.941	0.768	12:34:43	PM Yes			
Samp 3	ple concentra 5.937	tion is c 5.937	preater than 0.767	that of t 12:34:48	ne highest sta PM Yes	ndard.		
Samp	ple concentra	ation is c	reater than	that of t	he highest sta	ndard.		
ean: D:	5.936 0.0057	5.936 0.0057	0.767					
RSD: Samp	0.10% ple concentra	0.10% ation is g	0.10 greater than	that of t	he highest sta	ndard.		
equend	ce No.: 2				Autosampler L	ocation:		
Sample	ID: Cu 8% S2	2			Date Collecte	d: 11/13/2014	12:35:27 PM	
ample	ID: Cu 8% S2 t:	2			Date Collecte Data Type: Or	d: 11/13/2014 iginal	12:35:27 PM	
ample nalyst eplica	ID: Cu 8% S2 t: ate Data: Cu	8% S2		 .	Date Collecte Data Type: Or Analyte: Cu 3	d: 11/13/2014 iginal 24.75	12:35:27 PM	
ample inalyst ceplica eplica #	ID: Cu 8% S2 t: ate Data: Cu SampleConc mg/L	8% S2 StndConc mg/L	BlnkCorr Signal	Time	Date Collecte Data Type: Or Analyte: Cu 3 Signal Stored	d: 11/13/2014 iginal 24.75	12:35:27 PM	
Sample Analyst Ceplics Repl # 1	ID: Cu 8% S2 t: ate Data: Cu SampleConc mg/L 3.296 2.204	8% S2 StndConc mg/L 3.296	BlnkCorr Signal 0.426	Time 12:35:28	Date Collecte Data Type: Or Analyte: Cu 3 Signal Stored PM Yes DM Yes	d: 11/13/2014 iginal 24.75	12:35:27 PM	
ample analyst ceplica cepl # 1 2 3	ID: Cu 8% 52 t: ate Data: Cu SampleConc mg/L 3.296 3.304 3.281	8% S2 StndConc mg/L 3.296 3.304 3.281	BlnkCorr Signal 0.426 0.427 0.424	Time 12:35:28 12:35:32 12:35:37	Date Collecte Data Type: Or Analyte: Cu 3 Signal Stored PM Yes PM Yes PM Yes	d: 11/13/2014 iginal 24.75	12:35:27 PM	
ample nalyst eplica epl # 1 2 3 eean:	ID: Cu 8% S2 t: ate Data: Cu SampleConc mg/L 3.296 3.281 3.281 3.294 0.0110	8% S2 8% S2 stndConc mg/L 3.296 3.304 3.281 3.294 0.0112	BlnkCorr Signal 0.426 0.427 0.424 0.424 0.426 0.0015	Time 12:35:28 12:35:32 12:35:37	Date Collecte Data Type: Or Analyte: Cu 3 Signal Stored PM Yes PM Yes PM Yes	d: 11/13/2014 iginal 24.75	. 12:35:27 PM	
ample nalyst ceplica ceplica tepl 4 1 2 3 kean: D: RSD:	ID: Cu 8% S2 t: ate Data: Cu SampleConc mg/L 3.296 3.296 3.294 3.294 0.0119 0.36%	8% S2 StndConc mg/L 3.296 3.304 3.281 3.294 0.0119 0.36%	BlnkCorr Signal 0.426 0.427 0.424 0.426 0.0015 0.36	Time 12:35:28 12:35:32 12:35:37	Date Collecte Data Type: Or Analyte: Cu 3 Signal Stored PM Yes PM Yes	d: 11/13/2014 iginal 24.75	. 12:35:27 PM	
Sample nalyst Replicate tepl 1 2 3 Mean: D: RSD: requence imple imple nalyst	ID: Cu 8% S2 t: ate Data: Cu SampleConc mg/L 3.296 3.296 3.294 0.0119 0.36% c. No.: 3 ID: Cu 8% S3 t:	8% S2 StndConc mg/L 3.296 3.304 3.281 3.294 0.0119 0.36%	BlnkCorr Signal 0.426 0.427 0.424 0.426 0.0015 0.36	Time 12:35:28 12:35:32 12:35:37	Date Collecte Data Type: Or Analyte: Cu 3 Signal Stored PM Yes PM Yes PM Yes Autosampler L Date Collecte Data Type: Or	d: 11/13/2014 iginal 24.75 cation: d: 11/13/2014 iginal	12:35:27 PM	
ample analyst analyst ceplica tepl 1 2 3 kean: D: RSD: equence ample nalyst eplica	ID: Cu 8% S2 t: ate Data: Cu SampleConc mg/L 3.296 3.294 0.0119 0.36% Ce No.: 3 ID: Cu 8% S2 t: ate Data: Cu	8% S2 StndConc mg/L 3.296 3.304 3.281 3.294 0.0119 0.36% 8% S3	BlnkCorr Signal 0.426 0.427 0.424 0.426 0.0015 0.36	Time 12:35:28 12:35:32 12:35:37	Date Collecte Data Type: Or Analyte: Cu 3 Signal Stored PM Yes PM Yes PM Yes Autosampler L Date Collecte Data Type: Or Analyte: Cu 3	d: 11/13/2014 iginal 24.75 coation: d: 11/13/2014 iginal 24.75	12:35:27 PM	
ample ample malyst deplicate epl # 1 2 3 dean: D: RSD: equence ample nalyst eplicate eplicate eplicate eplicate sequence	ID: Cu 8% S2 t: ate Data: Cu SampleConc mg/L 3.296 3.294 0.0119 0.36% Ce No.: 3 ID: Cu 8% S2 t: ate Data: Cu SampleConc	8% S2 StndConc mg/L 3.296 3.304 3.281 3.294 0.0119 0.36% 8% S3 StndConc	BlnkCorr Signal 0.426 0.427 0.424 0.426 0.0015 0.36 BlnkCorr	Time 12:35:28 12:35:32 12:35:37 Time	Date Collecte Data Type: Or Analyte: Cu 3 Signal Stored PM Yes PM Yes PM Yes Autosampler L Date Collecte Data Type: Or Analyte: Cu 3 Signal	d: 11/13/2014 iginal 24.75 24.75 24.75 24.75 24.75	12:35:27 PM	
ample nalyst eplics epl 2 3 ean: D: RSD: equenc ample nalyst eplics epl 1	ID: Cu 8% S2 t: ate Data: Cu SampleConc mg/L 3.296 3.294 0.0119 0.36% Ce No.: 3 ID: Cu 8% S2 t: ate Data: Cu SampleConc mg/L 6.804	8% S2 StndConc mg/L 3.296 3.304 3.281 3.294 0.0119 0.36% 8% S3 StndConc mg/L 6.804	BlnkCorr Signal 0.426 0.427 0.424 0.426 0.0015 0.36 BlnkCorr Signal 0.879	Time 12:35:28 12:35:32 12:35:37 Time 12:36:03	Date Collecte Data Type: Or Analyte: Cu 3 Signal Stored PM Yes PM Yes PM Yes Autosampler L Date Collecte Data Type: Or Analyte: Cu 3 Signal Stored PM Yes	d: 11/13/2014 iginal 24.75 24.75 24.75 24.75 24.75	12:35:27 PM	
ample nalyst eplics epl # 1 2 3 ean: D: RSD: equence ample nalyst eplics epl 1 2 Samp 2 3	ID: Cu 8% S2 t: ate Data: Cu SampleConc mg/L 3.296 3.294 0.0119 0.36% Ce No.: 3 ID: Cu 8% S2 t: ate Data: Cu SampleConc mg/L 6.804 ole concentre 6 814	8% S2 StndConc mg/L 3.296 3.304 3.281 3.294 0.0119 0.36% 8% S3 StndConc mg/L 6.804 tion is g 6.814	BlnkCorr Signal 0.426 0.427 0.424 0.0015 0.36 BlnkCorr Signal 0.879 greater than 0.889	Time 12:35:28 12:35:32 12:35:37 Time 12:36:03 that of t 12:36:09	Date Collecte Data Type: Or Analyte: Cu 3 Signal Stored PM Yes PM Yes PM Yes Autosampler L Date Collecte Data Type: Or Analyte: Cu 3 Signal - Stored PM Yes he highest star	d: 11/13/2014 iginal 24.75 coation: d: 11/13/2014 iginal 24.75	12:35:27 PM	
ample nalyst eplics eplics eplics ent 23 3 ecan: D: RSD: equenc ample nalyst eplics eplics eplics Samp 2 Samp	ID: Cu 8% S2 t: ate Data: Cu SampleConc mg/L 3.296 3.294 0.0119 0.36% Concerner t: ate Data: Cu SampleConc mg/L 6.804 che concentra 6.814 che concentra	8% S2 StndConc mg/L 3.296 3.304 3.281 3.294 0.0119 0.36% StndConc mg/L 6.804 tion is g 6.814 tion is g	BlnkCorr Signal 0.426 0.427 0.424 0.0015 0.36 BlnkCorr Signal 0.879 rreater than 0.880 reater than	Time 12:35:32 12:35:37 Time 12:36:03 that of t 12:36:08 that of t	Date Collecte Data Type: Or Analyte: Cu 3 Signal Stored PM Yes PM Yes PM Yes Autosampler L Date Collecte Data Type: Or Analyte: Cu 3 Signal - Stored PM Yes he highest sta: PM Yes	d: 11/13/2014 iginal 24.75 coation: d: 11/13/2014 iginal 24.75 ndard.	12:35:27 PM	
ample nalyst eplics epl 2 3 eean: D: RSD: equence ample analyst eplics epl 3 Samm 3 3	ID: Cu 8% S2 t: ace Data: Cu SampleConc mg/L 3.296 3.294 3.2	8% S2 StndConc mg/L 3.296 3.304 3.281 3.294 0.0119 0.36% StndConc mg/L 6.804 tion is 9 6.814 tion is 9 6.834 tion is 9	BlnkCorr Signal 0.426 0.427 0.424 0.426 0.0015 0.36 BlnkCorr Signal 0.879 rreater than 0.883 rreater than	Time 12:35:32 12:35:37 Time 12:36:03 that of t 12:36:08 that of t 12:36:12	Date Collecte Data Type: Or Analyte: Cu 3 Signal Stored PM Yes PM Yes PM Yes Autosampler L Date Collecte Data Type: Or Analyte: Cu 3 Signal - Stored PM Yes he highest sta: PM Yes he highest sta: PM Yes	d: 11/13/2014 iginal 24.75 coation: d: 11/13/2014 iginal 24.75 ndard. ndard. ndard.	12:35:27 PM	
ample nalyst epplcze epplcze epplcz z 3 acan: c c c c c c c c c c c c c c c c c c c	ID: Cu 8% S2 t: ate Data: Cu SampleConc mg/L 3.296 3.296 3.294 0.0119 0.36% Concentration TD: Cu 8% S2 t: ate Data: Cu SampleConc mg/L 6.804 Concentration 6.814 Concentration 6.814 Concentration 6.817	8% S2 StndConc mg/L 3.296 3.304 3.281 3.294 0.0119 0.36% StndConc mg/L 6.804 tion is 9 6.814 tion is 9 6.814	BlnkCorr Signal 0.426 0.427 0.424 0.0015 0.36 BlnkCorr Signal 0.879 rreater than 0.880 rreater than 0.883 rreater than 0.881	Time 12:35:28 12:35:32 12:35:37 Time 12:36:03 that of t 12:36:08 that of t 12:36:12 that of t	Date Collecte Data Type: Or Analyte: Cu 3 Signal Stored PM Yes PM Yes PM Yes Autosampler L Date Collecte Data Type: Or Analyte: Cu 3 Signal - Stored PM Yes he highest star PM Yes he highest star PM Yes	d: 11/13/2014 iginal 24.75 coation: a: 11/13/2014 iginal 24.75 ndard. ndard.	12:35:27 PM	
ample nalyst eplics eplics epl 1 2 3 ecan: D: RSD: equenc ample equenc ample equenc ample samp 2 Samp 3 Samp 2 Samp 3 Samp 8 Samp	ID: Cu 8% S2 t: ate Data: Cu SampleConc mg/L 3.296 3.294 0.0119 0.36% c.804 c.814 c.804 c.814 c.817 0.0154 c.23%	<pre>8% S2 StndConc mg/L 3.296 3.304 3.281 3.294 0.0119 0.36% 8% S3 StndConc mg/L 6.804 tion is 9 6.814 tion is 9 6.814 tion is 9 6.814 tion is 9 6.814 c.817 0.0154 0.23%</pre>	BlnkCorr Signal 0.426 0.427 0.424 0.0015 0.36 BlnkCorr Signal 0.879 rreater than 0.880 rreater than 0.883 preater than 0.881 0.0020 0.23	Time 12:35:32 12:35:37 Time 12:36:03 that of t 12:36:08 that of t	Date Collecte Data Type: Or Analyte: Cu 3 Signal Stored PM Yes PM Yes PM Yes Autosampler L Date Collecte Data Type: Or Analyte: Cu 3 Signal - Stored PM Yes he highest sta: PM Yes he highest sta: PM Yes he highest sta:	d: 11/13/2014 iginal 24.75 coation: 1: 11/13/2014 iginal 24.75 ndard. ndard. ndard.	12:35:27 PM	
ample nalyst eplics eplics ean: D: RSD: equence ample equence ample equence ample sample f Samp 2 Samp 3 Samp 2 Samp 2 Samp 3 Samp 2 Samp	ID: Cu 8% S2 t: ate Data: Cu SampleConc mg/L 3.296 3.294 0.0119 0.36% ce No.: 3 ID: Cu 8% S2 t: ate Data: Cu SampleConc mg/L 6.804 ole concentra 6.814 ole concentra 6.834 ce Concentra 6.814 ole concentra 6.817 0.0154 0.23%	8% S2 StndConc mg/L 3.296 3.304 3.281 3.294 0.0119 0.36% 8% S3 StndConc mg/L 6.804 tion is 9 6.814 tion is 9 6.814 tion is 9 6.814 tion is 9 6.814 0.0154 0.23%	BlnkCorr Signal 0.426 0.427 0.424 0.426 0.0015 0.36 BlnkCorr Signal 0.879 preater than 0.880 preater than 0.883 preater than 0.881 0.0020 0.23	Time 12:35:32 12:35:37 Time 12:36:03 that of t 12:36:12 that of t	Date Collecte Data Type: Or Analyte: Cu 3 Signal Stored PM Yes PM Yes PM Yes Autosampler L Data Collecte Data Type: Or Analyte: Cu 3 Signal Stored PM Yes he highest star PM Yes he highest star PM Yes he highest star	d: 11/13/2014 iginal 24.75 coation: 1: 11/13/2014 iginal 24.75 ndard. ndard. ndard.	12:35:27 PM	
ample nalyst eplics epl 2 3 eean: D: RSD: equence nalyst eplics eppl 3 Samp 2 Samp 2 Samp 2 Samp 2 Samp 2 Samp 2 Samp	ID: Cu 8% S2 t: ate Data: Cu SampleConc mg/L 3.296 3.294 0.0119 0.36% Ce No.: 3 ID: Cu 8% S2 t: ate Data: Cu SampleConc mg/L 6.804 ole concentra 6.814 ole concentra 6.834 Die concentra 6.817 0.0154 0.23%	8% S2 StndConc mg/L 3.296 3.304 3.281 3.294 0.0119 0.36% 8% S3 StndConc mg/L 6.804 tion is 9 6.814 tion is 9 6.814 tion is 9 6.814 tion is 9 6.814 0.0154 0.23%	BlnkCorr Signal 0.426 0.427 0.424 0.0015 0.36 BlnkCorr Signal 0.879 preater than 0.880 preater than 0.883 preater than 0.881 0.0020 0.23	Time 12:35:28 12:35:32 12:35:37 Time 12:36:03 that of t 12:36:03 that of t	Date Collecte Data Type: Or Analyte: Cu 3 Signal Stored PM Yes PM Yes PM Yes Autosampler L Date Collecte Data Type: Or Analyte: Cu 3 Signal Stored PM Yes he highest star PM Yes he highest star PM Yes	d: 11/13/2014 iginal 24.75 coation: 1: 11/13/2014 iginal 24.75 ndard. ndard. ndard.	12:35:27 PM	
ample nalyst maintering eplics eplics eplics eplics ecurci maintering ecurci ample analyst samp samp sam: 3 Samp aan: 2: 3 Samp aan: 3 Samp	ID: Cu 8% S2 t: ate Data: Cu SampleConc mg/L 3.296 3.294 0.0119 0.36% Ce No.: 3 ID: Cu 8% S2 t: ate Data: Cu SampleConc mg/L 6.804 ole concentra 6.814 ole concentra	8% S2 StndConc mg/L 3.296 3.304 3.281 3.294 0.0119 0.36% 8% S3 StndConc mg/L 6.804 tion is 9 6.814 tion is 9 6.814 tion is 9 6.814 0.0154 0.23%	BlnkCorr Signal 0.426 0.427 0.424 0.0015 0.36 BlnkCorr Signal 0.879 preater than 0.880 preater than 0.883 preater than 0.883 0.0020 0.23	Time 12:35:28 12:35:32 12:35:37 Time 12:36:03 that of t 12:36:03 that of t	Date Collecte Data Type: Or Analyte: Cu 3 Signal Stored PM Yes PM Yes PM Yes Autosampler L Date Collecte Data Type: Or Analyte: Cu 3 Signal Stored PM Yes he highest star PM Yes he highest star PM Yes	d: 11/13/2014 iginal 24.75 coation: 1: 11/13/2014 iginal 24.75 ndard. ndard. ndard.	12:35:27 PM	
ample nalyst eplics eplics ear: 1 2 3 ear: counce ample analyst eplics spl Samp 3 Samp 2 3 Samp 2 3 Samp 2 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	ID: Cu 8% S2 t: ate Data: Cu SampleConc mg/L 3.296 3.294 0.0119 0.36% ce No.: 3 ID: Cu 8% S2 t: ate Data: Cu SampleConc mg/L 6.804 ole concentra 6.814 ole concentra 6.834 ole concentra 6.817 0.0154 0.23%	8% S2 StndConc mg/L 3.296 3.304 3.281 3.294 0.0119 0.36% 8% S3 StndConc mg/L 6.804 tion is 9 6.814 tion is 9 6.814 tion is 9 6.814 0.0154 0.23%	BlnkCorr Signal 0.426 0.427 0.424 0.0015 0.36 BlnkCorr Signal 0.879 rreater than 0.880 rreater than 0.883 preater than 0.881 0.0020 0.23	Time 12:35:32 12:35:37 Time 12:36:03 that of t 12:36:08 that of t	Date Collecte Data Type: Or Analyte: Cu 3 Signal Stored PM Yes PM Yes PM Yes Autosampler L Date Collecte Data Type: Or Analyte: Cu 3 Signal Stored PM Yes he highest star PM Yes he highest star PM Yes	d: 11/13/2014 iginal 24.75 coation: 1: 11/13/2014 iginal 24.75 ndard. ndard. ndard.	12:35:27 PM	
ample nalyst epplics epplics aspl alyst eplics eppl samp eplics samp samp samp can: can: control samp control samp can: control samp contro	ID: Cu 8% S2 t: ase Data: Cu SampleConc mg/L 3.296 3.296 3.294 0.0119 0.36% concents t: ase No.: 3 ID: Cu 8% S2 t: ase Data: Cu SampleConc mg/L 6.804 concentra 6.8145 concentra 6.8145 concentra 6.8145 concentra 6.8145 concentra 6.8145 concentra 6.8145 concentra 6.8145 concentra 6.8145	8% S2 StndConc mg/L 3.296 3.304 3.281 3.294 0.0119 0.36% StndConc mg/L 6.804 tion is 9 6.814 tion is 9 6.814 tion is 9 6.834 tion is 9 6.834 tion is 9 6.814 0.0154 0.23%	BlnkCorr Signal 0.426 0.427 0.424 0.426 0.0015 0.36 BlnkCorr Signal 0.879 rreater than 0.883 rreater than 0.883 rreater than 0.881 0.0020 0.23	Time 12:35:32 12:35:37 Time 12:36:03 that of t 12:36:08 that of t	Date Collecte Data Type: Or Analyte: Cu 3 Signal Stored PM Yes PM Yes PM Yes Autosampler L Date Collecte Data Type: Or Analyte: Cu 3 Signal - Stored PM Yes he highest sta: PM Yes he highest sta: PM Yes	d: 11/13/2014 iginal 24.75 coation: 3: 11/13/2014 iginal 24.75 ndard. ndard. ndard.	12:35:27 PM	

Effect of pH Page 1

Method: Cu131114G5 Page 2 Date: 11/13/2014 12:38:33 PM Sample concentration is greater than that of the highest standard. Sequence No.: 4 Autosampler Location: Date Collected: 11/13/2014 12:36:29 PM Data Type: Original Sample ID: Cu 8% S4 Analyst: Analyte: Cu 324.75 Replicate Data: Cu 8% S4
 SampleConc
 StndConc
 BlnkCorr
 Time

 mg/L
 mg/L
 Signal
 12:36:
 Signal Stored Repl mg/L 4.021 3.609 # 12:36:29 PM 0.520 Yes Yes 3.609 12:36:34 PM 12:36:38 PM 2 3 3.545 Mean: 3.725 SD: 0.2587 3.545 Yes 0.458 0.481 0.0334 0.2587 6.95% %RSD: 6.95% 6.95 Autosampler Location: Date Collected: 11/13/2014 12:36:58 PM Data Type: Original Sequence No.: 5 Sample ID: Cu 8% S5 Analyst: Replicate Data: Cu 8% S5 SampleConc StndConc BlnkCorr Time Analvte: Cu 324.75 Repl # Signal
 mg/L
 mg/L
 Signal
 Stored

 4.863
 4.863
 0.628
 12:37:00 PM
 Yes

 Sample concentration is greater than that of the highest standard.
 4.857
 4.857
 0.628
 12:37:04 PM
 Yes
 1 2 Sample concentration is greater than that of the highest standard. 3 3.278 Mean: 4.333 SD: 0.9133 0.424 0.560 0.1180 3.278 4.333 12:37:09 PM Yes 0.9133
21.08% %RSD: 21.08% 21.08 Sequence No.: 6 Autosampler Location: Date Collected: 11/13/2014 12:37:33 PM Data Type: Original Sample ID: Cu 8% S6 Analyst: Replicate Data: Cu 8% S6 Analyte: Cu 324.75 SampleConc StndConc BlnkCorr Time mg/L mg/L Signal 5.663 5.663 0.732 12:37:34 PM Repl Signal Stored # Yes Sample concentration is greater than that of the highest standard. 5.566 5.566 0.719 12:37:38 PM Yes Sample concentration is greater than that of the highest standard. 5.542 5.542 0.716 12:37:43 PM Yes 2 3
 3
 5.542
 5.542
 0.716
 12:37:43 PM
 Yes

 Sample concentration is greater than that of the highest standard.

 Mean:
 5.590
 5.590
 0.722

 SD:
 0.0640
 0.0083

 %RSD:
 1.15%
 1.15

 Sample concentration is greater than that of the highest standard.
 Autosampler Location: Date Collected: 11/13/2014 12:38:04 PM Sequence No.: 7 Sample ID: Cu 8% S7 Data Type: Original Analyst: Analyte: Cu 324.75 Replicate Data: Cu 8% S7 Repl SampleConc StndConc BlnkCorr Time Signal mg/L 3.239 3.168 mg/L 3.239 3.168 Signal # Stored 12:38:04 PM 12:38:08 PM 12:38:12 PM 0.419 0.409 0.408 Yes Yes 3.1 0.0432 1.36% 3 3.160 Yes Mean: 3.189 SD: 0.0433 %RSD: 1.36% 3.189 0.0433 0.408 0.412 0.0056 1.36

Effect of pH Page 2

								, _0	
Sequer Sample Analys	nce No.: 8 9 ID: Cu 8% 8 st:	88			Autosamp Date Col Data Type	ler Location lected: 11/1 e: Original	: 3/2014 1:	2:38:33 PM	
Replic Repl 1 San 2 San 3 Mean: SD: San	cate Data: Cu SampleConc mg/L 5.226 mple concentr 4.842 mple concentr 3.854 4.641 0.7077 15.25% mple concentr	8% S8 StndConc mg/L 5.226 ation is c 4.842 ation is c 3.854 4.641 0.7077 15.25% ation is c	BlnkCorr Signal 0.675 greater than 0.626 greater than 0.498 0.600 0.0914 15.25 greater than	Time 12:38:34 that of 12:38:38 that of 12:38:43	Analyte: Signal Stored PM Yes the highest PM Yes the highest PM Yes	Cu 324.75			
Sequen Sample Snalys	ce No.: 9 ID: Cu 8% S	9			Autosampl Date Coll Data Type	er Location ected: 11/13 : Original	: : 3/2014 12	2:39:01 PM	
Replic Repl 4 1 2 3 Iean: 5D: RSD:	ate Data: Cu SampleConc mg/L 0.069 0.023 0.028 0.040 0.0253 63.54%	8% S9 StndConc mg/L 0.069 0.023 0.028 0.040 0.0253 63.54%	BlnkCorr Signal 0.009 0.003 0.004 0.005 0.0033 63.54	Time 12:39:01 12:39:05 12:39:09	Analyte: Signal Stored PM Yes PM Yes PM Yes	Cu 324.75	1		
						2			

Effect of pH Page 3

: Cu31114G5			P	age 1		Date: 11/20/2014 10:5	3:00 A
is Begun							
To Applact.	Administr	ator		Technicu	e: AA Flame		
ometer: AAnal	Lyst 400,	S/N 2015120	10501	Autosamp	ler:		
Information	File: C:\	Documents a	and Setting	s\All Use	rs\PerkinElmer	AA\Data\Sample Informat	ion\
TD -	Cu2	01114kelvir	n.sif				
s Data Set: (Cu201114Ke	lvin				Poculte Poculte adb	
s Library: C	: \Document	s and setti	INGS (MII US	ers (rerkl	WATHEL /WW /Date	a laneout co laneout co ando	
Loaded							and the set of the .
Name: Cu311: Description	14G5 : Cu31114G	5		Method L	ast Saved: 11,	3/2014 4:00:20 PM	
- soor peron							
ce No.: 1				Autosamp	ler Location:	(2014 10.51.16 3)	*
ID: 3.5 A t:				Date Col Data Typ	e: Original	2014 10:51:10 AM	
ate Data: 3.5	A	B1-1-0	Time	Analyte:	Cu 324.75		
SampleConc mg/L	stndConc mg/L	Signal	TTWO	Stored	i.		
1.535	1.535	0.198	10:51:17 10:51:22	AM Yes AM Yes			
1.508	1.508	0.195	10:51:26	AM Yes			
1.523	1.523	0.197					
0.92%	0.92%	0.92					
ce No.: 2 ID: 35B				Autosamp Date Col	lected: 11/20	/2014 10:51:50 AM	
t:				Data Typ	e: Original		
2F	в			Analyta	Cu 324.75		
SampleConc	StndConc	BlnkCorr	Time	Signal			
mg/L 1.889	mg/L 1.889	Signal 0.244	10:51:51	AM Yes	1		
1.897	1.897	0.245	10:51:55	AM Yes			
1.888	1.888	0.244	10:52:00	AN IES			
0.0047	0.0047	0.0006					
0.25%	0.25%	0.25			2	5	
				Autosamp	oler Location:		
ID: 3.5 C				Date Col Data Tvr	llected: 11/20 be: Original	/2014 10:52:21 AM	
ι.							
ate Data: 3.5	с			Analyte	Cu 324.75		
SampleConc	StndConc	BlnkCorr	Time	Signal	1		
1.856	1.856	0.240	10:52:23	AM Yes			
1.859	1.859	0.240	10:52:27	AM Yes AM Yes			
1.859	1.859	0.240	10.02.01				
0.0033	0.0033	0.0004					
0.102	0.100	0.10					
ce No.: 4				Autosam	pler Location:	/2014 10.52.54 34	
ID: 3 A				Date Col Data Tvi	llected: 11/20 pe: Original	/2014 10:52:54 AM	
·							
	s Begun In Analyst: meter: AAnai Information (D: S Data Set: (G S Library: C Loaded Name: Cu311: Description Des	LISITIASS IN Analyst: Administr. meter: Analyst 400, Information File: C:\/ CU2 D: S Data Set: Cu201114Ke S Library: C:\Document Loaded Name: Cu31114G5 Description: Cu31114G Description: Cu3114G Description: Cu3114G Description: Cu3114G D	LUSIII465 In Analyst: Administrator meter: Analyst 400, S/N 201S120 Information File: C:\Documents a Cu201114kelvin B Library: C:\Documents and Setti Loaded Name: Cu31114G5 Description: Cu31		s Begun In Analyst: Administrator Information File: C:\Documents and Settings\All Users\Perki Cu201114kelvin.sif D: S Data Set: Cu201114kelvin.sif Data Set: Cu201114kelvin.sif Loaded Name: Cu3111465 Method I Description: Cu311465 Method I Description: Cu311466 Method I Method I	Culling The second state of the second state state	Linition Implies is Begun Trachnique: AA Flame Autosampler: Location: Di: Di: Di: Di: Di: Di: Di: Di: Di: Di

Effect of low pH Page 1

Method	: Cu31114G5		2	Pag	e 2	1	Date: 11/20/2014 10:55:22
Replica Repl # 1 2 3 Mean: SD: %RSD:	ate Data: 3 SampleConc mg/L 1.688 1.692 1.694 1.691 0.0032 0.19%	A StndConc mg/L 1.688 1.692 1.694 1.691 0.0032 0.19%	BlnkCorr Signal 0.218 0.219 0.219 0.219 0.219 0.0004 0.19	A Time 10:52:56 AM 10:53:00 AM 10:53:04 AM	nalyte: Signal Stored Yes Yes Yes	Cu 324.75	
Sequend Sample Analysi	ce No.: 5 ID: 3 B t:			A D D	utosampl ate Coll ata Type	ler Location: lected: 11/20/201 a: Original	4 10:53:27 AM
Replica Repl 1 2 3 Mean: SD: %RSD:	ate Data: 3 SampleConc mg/L 1.921 1.938 1.935 1.931 0.0089 0.46%	B StndConc mg/L 1.921 1.938 1.935 1.931 0.0089 0.46%	BlnkCorr Signal 0.248 0.250 0.250 0.250 0.0011 0.46	A Time 10:53:28 AM 10:53:32 AM 10:53:36 AM	nalyte: Signal Stored Yes Yes Yes	Cu 324.75	
Sequenc Sample Analysi	ce No.: 6 ID: 3 C t:			A D D	utosampi ate Coli ata Type	ler Location: Lected: 11/20/201 a: Original	4 10:54:03 AM
Replica Repl 1 2 3 Mean: SD: %RSD:	ate Data: 3 SampleConc mg/L 1.849 1.851 1.848 1.849 0.0014 0.08%	C StndConc mg/L 1.849 1.851 1.848 1.849 0.0014 0.08%	BlnkCorr Signal 0.239 0.239 0.239 0.239 0.239 0.0002 0.08	A Time 10:54:04 AM 10:54:08 AM 10:54:13 AM	nalyte: Signal Stored Yes Yes Yes	Cu 324.75	
Sequenc Sample Analys	ce No.: 7 ID: 4 A t:			A D D	utosamp ate Coli ata Type	ler Location: lected: 11/20/201 a: Original	4 10:54:39 AM
Replica Repl 1 2 3 Mean: SD: %RSD:	ate Data: 4 SampleConc mg/L 1.850 1.831 1.832 1.838 0.0110 0.60%	A stndConc mg/L 1.850 1.831 1.832 1.838 0.0110 0.60%	BlnkCorr Signal 0.239 0.237 0.237 0.237 0.0014 0.60	A Time 10:54:40 AM 10:54:45 AM 10:54:49 AM	nalyte: Signal Stored Yes Yes Yes	Cu 324.75	
Sequend Sample Analys	ce No.: 8 ID: 4B t:			A D D D	utosamp ate Coli ata Type	ler Location: lected: 11/20/201 e: Original	4 10:55:09 AM
Replica Repl # 1 2 3 Mean: SD:	ate Data: 4 SampleConc mg/L 1.738 1.759 1.760 1.752 0.0121	3 StndConc mg/L 1.738 1.759 1.760 1.752 0.0121	BlnkCorr Signal 0.225 0.227 0.227 0.226 0.226 0.2016	A Time 10:55:09 AM 10:55:13 AM 10:55:18 AM	nalyte: Signal Stored Yes Yes Yes	Cu 324.75	

Effect of low pH Page 2

Date: 11/20/2014 10:57:26 AM Method: Cu31114G5 Page 3 %R5D: 0.69% 0.69% 0.69 Sequence No.: 9 Autosampler Location: Date Collected: 11/20/2014 10:55:40 AM Data Type: Original Sample ID: 4 C Analyst: _____ Replicate Data: 4 C Repl SampleConc StndConc BlnkCorr Analyte: Cu 324.75 Signal Time mg/L 1.436 1.445 **mg/L** 1.436 1.445 Signal 0.186 0.187 # Stored 10:55:41 AM 10:55:46 AM Yes Yes 2 10:55:50 AM Yes 3 1.443 1.443 0.186 0.186 1.441 1.441 Mean: SD: 0.0050 %RSD: 0.35% 0.0050 0.0050 0.0006 0.35% 0.35 Autosampler Location: Date Collected: 11/20/2014 10:56:08 AM Sequence No.: 10 Sample ID: 4.5 A Analyst: Data Type: Original Analyte: Cu 324.75 Replicate Data:4.5 A
 mepile
 Data:+3-N

 Repl
 SampleConc
 StndConc
 BlnkCorr
 Time

 #
 mg/L
 mg/L
 Signal
 1

 1
 1.948
 1.948
 0.252
 10:56

 2
 1.958
 1.958
 0.253
 10:56

 3
 1.979
 1.979
 0.256
 10:56
 Signal Stored 10:56:08 AM Yes Yes Yes 10:56:12 AM 10:56:17 AM Mean: 1.962 0.0154 1.962 0.0154 0.253 0.0020 SD: %RSD: 0.79% 0.79% Sequence No.: 11 Autosampler Location: Date Collected: 11/20/2014 10:56:35 AM Sample ID:4.5 B Analyst: Data Type: Original Replicate Data:4.5 B Analyte: Cu 324.75 Repl SampleConc StndConc BlnkCorr Time Signal mg/L 1.874 1.874 mg/L 1.874 1.874 Signal Stored # 10:56:37 AM 0.242 0.242 0.241 1 Yes Yes Yes Yes 10:56:41 AM 10:56:45 AM 2 1.862 3 1.862 1.870 1.870 0.242 Mean: SD: %RSD: 0.37% 0.37% 0.37 _____ Autosampler Location: Sequence No.: 12 Date Collected: 11/20/2014 10:57:03 AM Sample ID: 4.5 C Analyst: Data Type: Original Analyte: Cu 324.75 Replicate Data: 4.5 C Repl SampleConc StndConc BlnkCorr Time Signal mg/L 1.858 1.863 mg/L 1.858 1.863 Signal 0.240 0.241 Stored # 10:57:03 AM Yes 10:57:07 AM Yes 10:57:11 AM Yes 2 2 1.861 1.861 1.861 0.240 Mean: SD. 0.0024 0.0024 0.0003 %RSD: 0.13% 0.13% 0.13

Effect of low pH Page 3

A.3 Cross Flow Data

inalys logged Spectr	is Begun I In Analyst: cometer: AAna	Administr lyst 400,	ator S/N 201812	010501	Technique Autosamp	e: AA Flame ler:		
Sample Batch Result Result	Information ID: S Data Set: S Library: C	File: C:\ Cul Cu191214Ke :\Document	Documents a 91214Kelvia lvin s and Sett	and Setting h.sif ings\All Us	gs\All Use sers\Perkin	rs\PerkinElme nElmer\AA\Dat	er\AA\Data\Sample ta\Results\Result	Information\ s.mdb
lethod lethod lethod	Loaded Name: Cu011 Description	214G4 : Cu011214	G4		Method L	ast Saved: 12	2/1/2014 4:32:05	
Sequen Sample Analys	ce No.: 1 ID: Opc P A tt:				Autosamp Date Col Data Type	ler Location Lected: 12/19 a: Original	: 9/2014 10:58:18 A	м
Replic Repl # 1 2 3 Mean: SD: SD: SRSD:	Bate Data: Op SampleConc mg/L 0.758 0.755 0.738 0.750 0.750 0.0111 1.48% 0.0111	c P A stndConc mg/L 0.758 0.755 0.738 0.750 0.0111 1.48%	BlnkCorr Signal 0.104 0.104 0.102 0.103 0.0015 1.48	Time 10:58:20 10:58:24 10:58:29	Analyte: Signal Stored AM Yes AM Yes AM Yes	Cu 324.75	- - -	
Sequen Sample Analys	ce No.: 2 ID: Opc P B t:				Autosamp Date Col Data Type	ler Location Lected: 12/19 a: Original	: 9/2014 10:58:47 A	м
Replic Repl 1 2 3 Mean: SD: RSD:	Cate Data: Op SampleConc mg/L 0.884 0.860 0.900 0.881 0.0205 2.33%	c P B stndConc mg/L 0.884 0.900 0.881 0.0205 2.33%	BlnkCorr Signal 0.122 0.118 0.124 0.121 0.0028 2.33	Time 10:58:47 10:58:51 10:58:56	Analyte: Signal Stored AM Yes AM Yes AM Yes	Cu 324.75		2 1
Sequen Sample Analys	CE No.: 3 ID: Opc R A t:				Autosamp Date Col Data Type	ler Location: Lected: 12/19 a: Original	: 9/2014 10:59:20 A	 М
Replic Repl 1 2 3 Mean: SD: %RSD:	ate Data: 0p sampleConc ma/L 0.960 0.971 0.947 0.959 0.0120 1.25%	c R A stndConc mq/L 0.960 0.971 0.947 0.959 0.0120 1.25%	BlnkCorr Signal 0.095 0.088 0.090 0.091 0.0035 1.25	Time 10:59:21 10:59:25 10:59:30	Analyte: Signal Stored AM Yes AM Yes AM Yes	Cu 324.75		
Sequen Sample Analys	ce No.: 4 ID: Opc R B t:				Autosamp Date Col Data Type	ler Location Lected: 12/19 a: Original	: 9/2014 10:59:48 A	 М
						с. 21		

Cross Flow of 0% PVP Page 1

Method	: Cu011214G4			F	age 2		Date: 12/19/2014	11:01:53
Rejilic Repl 1 2 3 Mean: SD: %RSD:	ate Data: 0p SampleConc mg/L 0.270 0.260 0.266 0.050 1.90%	c R B StndConc mg/L 0.270 0.260 0.266 0.266 0.0050 1.90%	BlnkCorr Signal 0.037 0.036 0.037 0.037 0.0007 1.90	Time 10:59:48 10:59:52 10:59:57	Analyte: Signal Stored AM Yes AM Yes AM Yes	Cu 324.75	2	3
Sequen Sample Analys	ce No.: 5 ID: Opc E P t:	A			Autosamp Date Coli Data Type	ler Location: Lected: 12/19/2 a: Original	2014 11:00:16 AM	
Replic Repl 1 2 3 Mean: SD: %RSD:	ate Data: Op SampleConc mg/L 0.999 1.002 1.000 1.000 0.0015 0.15%	c E P A StndConc mg/L 0.999 1.002 1.000 1.000 0.0015 0.15%	BlnkCorr Signal 0.138 0.138 0.138 0.138 0.138 0.0002 0.15	Time 11:00:18 11:00:22 11:00:26	Analyte: Signal Stored AM Yes AM Yes AM Yes	Cu 324.75		
Sequen Sample Analys	ce No.: 6 ID: Opc E P t:	в			Autosamp Date Coll Data Type	er Location: .ected: 12/19/2 e: Original	2014 11:00:45 AM	
Replic Repl 1 2 3 Mean: SD: %RSD:	ate Data: 0p SampleConc mg/L 0.798 0.831 0.839 0.823 0.0219 2.66%	c E P B StndConc mg/L 0.798 0.831 0.839 0.823 0.0219 2.66%	BlnkCorr Signal 0.110 0.114 0.116 0.113 0.0030 2.66	Time 11:00:45 11:00:50 11:00:54	Analyte: Signal Stored AM Yes AM Yes AM Yes	Cu 324.75		
Sequen Sample Analys	ce No.: 7 ID: 0pc E R t:	А			Autosampi Date Coli Data Type	er Location: .ected: 12/19/2 : Original	2014 11:01:13 AM	
Replic Repl 1 2 3 Mean: SD: &RSD:	ate Data: 0p SampleConc mg/L 0.960 0.971 0.947 0.959 0.0120 1.25%	c E R A StndConc mg/L 0.960 0.971 0.947 0.959 0.0120 1.25%	BlnkCorr Signal 0.052 0.051 0.051 0.0051 0.0006 1.25	Time 11:01:14 11:01:19 11:01:23	Analyte: Signal Stored AM Yes AM Yes AM Yes	Cu 324.75		
Sequen Sample Analys	ce No.: 8 ID: Opc E R t:	B			Autosamp Date Coll Data Type	er Location: ected: 12/19/2 : Original	2014 11:01:40 AM	
Replic Repl # 1 2 3 Mean: SD:	ate Data: 0p SampleConc mg/L 0.274 0.283 0.265 0.265 0.274 0.0090	c E R B StndConc mg/L 0.274 0.283 0.265 0.274 0.0090	BlnkCorr Signal 0.148 0.120 0.120 0.120 0.129 0.0166	Time 11:01:40 11:01:44 11:01:48	Analyte: Signal Stored AM Yes AM Yes AM Yes	Cu 324.75		

Cross Flow of 0% PVP Page 2

nalys: ogged pectro	is Begun In Analyst: ometer: AAna	Administr lyst 400,	ator S/N 201S12(010501	T A	echnique utosampl	: AA	A Flame		
ample atch esult: esult:	Information ID: s Data Set: s Library: C	File: C:\ Cu1 Cu161214Ke :\Document	Documents a 61214Kelvin lvin s and Sett:	and Settir h.sif ings\All U	ngs\. Jser	All User s\Perkir	s\Pe Elme	erkinElme er\AA\Dat	r\AA\Data\Sample Inf a\Results\Results.md	ormation\
lethod lethod lethod	Loaded Name: Cu011 Description	214G4 : Cu011214	G4		м	ethod La	st S	aved: 12	/1/2014 4:32:05 PM	
Sequen Sample Analys	ce No.: 1 ID: 3pc P A t:				A D D	utosampl ate Coll ata Type	er I ecte a: Or	Location: ed: 12/16 riginal	/2014 2:58:08 PM	4
leplic	ate Data: 3p	C P A			 A	nalyte:	Cu 3	324.75		
tepl #	SampleConc mg/L	StndConc mg/L	BinkCorr Signal	Time		Signal Stored				
1	0.947	0.947	0.130	2:58:09	PM	Yes				
2	0.943	0.943	0.133	2:58:13	PM	Yes				
Mean:	0.952	0.952	0.131							
SD: %RSD:	0.0123 1.29%	0.0123 1.29%	0.0017 1.29							
Sequen	ce No.: 2 ID: 3pc P B				A	utosamp] ate Col]	er I	d: 12/16	/2014 2:58:37 PM	
Analys	t:				D	ata Type	e: 01	riginal		
Replic	ate Data: 3p	C P B StudConc	BlnkCorr	Time	A	nalyte: Signal	Cu 3	324.75		
# #	mg/L	mg/L	Signal	1 1110		Stored				
1	0.746	0.746	0.103	2:58:37	PM	Yes				
2	0.735	0.735	0.101	2:58:42	PM	Yes				
Mean:	0.742	0.742	0.102	2.20.10						
SD:	0.0063	0.0063	0.0009							
oron:		5.00%								
Sequen Sample Analys	ce No.: 3 ID: 3pc R A t:				A D D	utosampl ate Coll ata Type	er 1 ecte e: 01	Location: ad: 12/16 riginal	/2014 2:59:07 PM	
Replic	ate Data: 3p	C R A	BlakCorr	Time	A	nalyte: Signal	Cu 3	324.75		
#	mg/L	mg/L	Signal	1 7 11 6		Stored				
1	1.032	1.032	0.142	2:59:09	PM PM	Yes				
2	1.048	1.048	0.144	2:59:17	PM	Yes				
Mean:	1.040	1.040	0.143							
SD: %RSD:	0.0079	0.0079	0.0011							
	======================================				==== م	utosamo	ler 1	Location:		
Sample	ID: 3pc R H	3			D	ate Coli ata Type	lecte e: Oi	ed: 12/16 riginal	/2014 2:59:36 PM	

Cross Flow of 3% PVP Page 1

Method	: Cu011214G4				Pag	e 2			Da	te: 12/16,	/2014 3:01:44 PM
Replica Repl 1 2 3 Mean: SD: %RSD:	te Data: 3p SampleConc mg/L 1.029 1.052 1.051 1.044 0.0134 1.29%	c R B StndConc mg/L 1.029 1.052 1.051 1.051 0.0134 1.29%	BlnkCorr Signal 0.142 0.145 0.145 0.145 0.144 0.0018 1.29	Time 2:59:36 2:59:41 2:59:46	A PM PM PM	nalyte: Signal Stored Yes Yes Yes	Cu 3	24.75			
Sequend Sample Analysi	ce No.: 5 ID: 3pc E P t:	A			A D D	utosampl ate Coll ata Type	er I ecte : Or	ocation: d: 12/16 iginal	/2014	3:00:05 Pl	м
Replica Repl 1 2 3 Mean: SD: %RSD:	ate Data: 3p SampleConc mg/L 1.167 1.170 1.183 1.173 0.0083 0.71%	c E P A StndConc mg/L 1.167 1.170 1.183 1.173 0.0083 0.71%	BlnkCorr Signal 0.161 0.161 0.163 0.162 0.0011 0.71	Time 3:00:07 3:00:11 3:00:15	PM PM PM	nalyte: Signal Stored Yes Yes Yes	Cu 3	24.75			×
Sequenc Sample Analys	ce No.: 6 ID: 3pc E P t:	в			A D D	utosampl ate Coll ata Type	er I ecte e: Or	ocation: d: 12/16 riginal	5/2014	3:00:34 P	м
Replica Repl # 1 2 3 Mean: SD: %RSD:	ate Data: 3p SampleConc mg/L 1.114 1.127 1.127 1.123 0.0075 0.67%	c E P B StndConc mg/L 1.114 1.127 1.127 1.123 0.0075 0.67%	BlnkCorr Signal 0.153 0.155 0.155 0.155 0.155 0.0010 0.67	Time 3:00:34 3:00:38 3:00:42	PM PM PM	nalyte: Signal Stored Yes Yes Yes	Cu 3	24.75			
Sequence Sample Analys	ce No.: 7 ID: 3pc E R t:				A D D	utosampl ate Coll ata Type	er I lecte a: Or	ocation: d: 12/16 riginal	5/2014	3:01:02 P	м
Replic: Repl 1 2 3 Mean: SD: %RSD:	ate Data: 3p SampleConc mg/L 0.432 0.427 0.426 0.428 0.0030 0.70%	c E R A StndConc mg/L 0.432 0.427 0.426 0.428 0.0030 0.70%	BlnkCorr Signal 0.059 0.059 0.059 0.059 0.059 0.0004 0.70	Time 3:01:04 3:01:08 3:01:12	PM PM PM	nalyte: Signal Stored Yes Yes Yes	Cu 3	324.75			
Sequen Sample Analys	ce No.: 8 ID: 3pc E R t:	=====================================			2222 2 2 2 2	autosampi ate Coli ata Type	ler I lecte e: Oi	ocation: d: 12/16 riginal	5/2014	3:01:30 P	M
Replic Repl 1 2 3 Mean: SD:	ate Data: 3p SampleConc mg/L 0.390 0.402 0.400 0.397 0.0066	C E R B StndConc mg/L 0.390 0.402 0.400 0.397 0.0066	BlnkCorr Signal 0.054 0.055 0.055 0.055 0.055 0.0009	Time 3:01:30 3:01:35 3:01:39	PM PM PM	nalyte: Signal Stored Yes Yes Yes	Cu 3	324.75			

Cross Flow of 3% PVP Page 2

Logged Spectro						
	In Analyst: ometer: AAna	Administr lyst 400,	s/N 201S12	010501	Technique: AA Flame Autosampler:	
Sample	Information	File: C:\	Documents	and Setting	s\All Users\PerkinElmer	AA\Data\Sample Informatio
Batch 3	ID:		JIZI4KelVI	12.511		
Result	s Data Set: s Library: C	:\Document	and Sett	ings\All Us	sers\PerkinElmer\AA\Data	\Results\Results.mdb
Sequend Sample Analys	ce No.: 1 ID: 5pc P A t:				Autosampler Location: Date Collected: 12/19/ Data Type: Original	2014 11:05:08 AM
Replica Repl	ate Data: 5p SampleConc	c P A StndConc	BlnkCorr	Time	Analyte: Cu 324.75 Signal	
1	0.620	0.620	0.085	11:05:10	AM Yes	
3	0.527	0.527	0.073	11:05:19	AM Yes	
Mean: SD:	0.571 0.0465	0.571 0.0465	0.079 0.0064			
%RSD:	8.15%	8.15%	8.15			
Sequend Sample Analyst	ce No.: 2 ID: 5pc P B t:				Autosampler Location: Date Collected: 12/19/ Data Type: Original	2014 11:05:35 AM
Replica	ate Data: 5p	с P B			Analyte: Cu 324.75	
Repl #	SampleConc mg/L	StndConc mg/L	BlnkCorr Signal	Time	Signal Stored	
1	0.696	0.696	0.096	11:05:35	AM Yes	
3	0.733	0.733	0.101	11:05:44	AM Yes	
SD:	0.0187	0.0187	0.0026			
	2.028	2.028	2.02			
Sequenc Sample Analyst	ce No.: 3 ID: 5pc R A t:				Autosampler Location: Date Collected: 12/19/ Data Type: Original	2014 11:06:28 AM
Replica	ate Data: 5p	c R A	BlabGam		Analyte: Cu 324.75	
# 1	mg/L	mg/L	Signal	11.06.20	Stored	
2	0.913	0.913	0.126	11:06:33	AM Yes	
3 Mean:	0.905	0.905	0.125	TT:00:38	Ari 185	
SD: %RSD:	0.0086	0.0086	0.0012			
Semier	ce No.: 4				Autosampler Location:	
Sample Analyst	ID: 5pc R B t:				Date Collected: 12/19/ Data Type: Original	2014 11:06:56 AM
Replica	ate Data: 5p	c R B	BlakCorr		Analyte: Cu 324.75	
#	mg/L	mg/L	Signal	11.06.55	Stored	
2	0.718	0.718	0.099	11:07:00	AM Yes	

Cross Flow of 5% PVP Page 1

Method: Cu011214G4 Page 2 Date: 12/19/2014 11:09:07 AM 0.698 0.706 0.0103 11:07:04 AM Yes 3 0.698 0.096 Mean: 0.706 SD: 0.0103 %RSD: 1.46% 0.097 0.0014 1.46% 1.46 Sequence No.: 5 Sample ID: 5pc E P A Autosampler Location: Date Collected: 12/19/2014 11:07:23 AM Data Type: Original Analyst: Replicate Data: 5pc E P A Repl SampleConc StndConc BlnkCorr Time # mg/L mg/L Signal Analyte: Cu 324.75 Signal mg/L 0.551 0.541 0.559 0.550 0.000 Stored 11:07:25 AM 11:07:29 AM 11:07:34 AM 0.551 0.541 0.559 0.006 Yes Yes 2 Yes 0.007 3 Mean: 0.550 0.006 SD: 0.0090 %RSD: 1.64% 0.0090 1.64% 1.64 Sequence No.: 6 Sample ID: 5pc E P B Autosampler Location: Date Collected: 12/19/2014 11:07:53 AM Analyst: Data Type: Original Replicate Data: 5pc E P B Repl SampleConc StndConc Analyte: Cu 324.75 Signal BlnkCorr Time mg/L 0.507 0.513 mg/L 0.507 0.513 Signal 0.070 0.071 # Stored 11:07:53 AM 11:07:57 AM 11:08:02 AM Yes Yes 2 0.510 0.510 0.070 2 0.510 Yes 0.510 Mean: SD: 0.0029 %RSD: 0.57% 0.0029 SD: 0.0004 0.57% 0.57 Sequence No.: 7 Sample ID: 5pc E R A Analyst: Autosampler Location: Date Collected: 12/19/2014 11:08:19 AM Data Type: Original _____ Replicate Data: 5pc E R A Analyte: Cu 324.75 Repl SampleConc StndConc BlnkCorr # mg/L mg/L Signal Signal Time
 Kepi
 Sampl

 #
 mc/L

 1
 0.117

 2
 0.120

 3
 0.127

 Mean:
 0.121
 Signal 0.015 0.014 0.017 0.015 Stored 11:08:21 AM 0.117 0.120 0.127 0.121 Yes Yes 11:08:25 AM 11:08:30 AM Yes SD: 0.0051 %RSD: 4.23% 0.0051 4.23% 0.0014 4.23 Autosampler Location: Date Collected: 12/19/2014 11:08:46 AM Sequence No.: 8 Sample ID: 5pc E R B Analyst: Data Type: Original ____ Replicate Data: 5pc E R B Analyte: Cu 324.75
 SampleConc
 StadConc

 mg/L
 mg/L

 0.175
 0.175

 0.181
 0.181

 0.187
 0.187
 Signal Stored Repl BlnkCorr Time Signal 0.024 0.025 0.026 # 11:08:46 AM 1 Yes 11:08:51 AM 11:08:55 AM Yes Yes 3 Mean: 0.181 SD: 0.0058 0.181 0.0058 0.025 %RSD: 3.19% 3.19 3.19%

Cross Flow of 5% PVP Page 2

Method: Cu011214G4 Date: 12/9/2014 3:42:09 PM Page 1 Analysis Begun Logged In Analyst: Administrator Technique: AA Flame Spectrometer: AAnalyst 400, S/N 201S12010501 Autosampler: Sample Information File: C:\Documents and Settings\All Users\PerkinElmer\AA\Data\Sample Information\ Cu091214Kelvin.sif Batch ID: Results Data Set: Cu091214Kelvin Results Library: C:\Documents and Settings\All Users\PerkinElmer\AA\Data\Results\Results.mdb Method Loaded Method Last Saved: 12/1/2014 4:32:05 PM Method Name: Cu011214G4 Method Description: Cu011214G4 Sequence No.: 1 Autosampler Location: Sample ID: 8pc P A Date Collected: 12/9/2014 3:40:20 PM Analyst: Data Type: Original _____ Analyte: Cu 324.75 Replicate Data: 8pc P A Repl SampleConc StndConc BlnkCorr Time Signal
 SampleConc
 Subconc
 Signal

 mg/L
 mg/L
 Signal

 0.951
 0.117
 3:40:22 PM
 Stored # 0.851 0.855 Yes Yes Yes 0.851 0.855 3:40:26 PM 3:40:30 PM 0.114
 2
 0.855
 0.855
 0.114

 3
 0.845
 0.845
 0.115

 Mean:
 0.850
 0.850
 0.115

 SD:
 0.0050
 0.0050
 0.0018
 2 %RSD: 0.59% 0.59% 0.59 _____ Sequence No.: 2 Autosampler Location: Sample ID: 8pc R A Date Collected: 12/9/2014 3:40:57 PM Data Type: Original Analyst: ____ Analyte: Cu 324.75 Replicate Data: 8pc R A Signal Repl SampleConc StndConc BlnkCorr Time mg/L 0.950 0.952 0.948 0.950 0.0018 0.19% Signal Stored # mg/L 0.950 0.131 3:40:58 PM Yes Yes Yes 1 0.131 3:41:02 PM 2 0.948 0.131 3:41:07 PM 3 Mean: 0.950⁻ 0.131 0.0018 SD: 0.0003 %RSD: 0.19% 0.19 Sequence No.: 3 Autosampler Location: Date Collected: 12/9/2014 3:41:29 PM Sample ID: 8pc P B Data Type: Original Analyst: _____ Replicate Data: 8pc P B Analyte: Cu 324.75 Signal Repl SampleConc StndConc BlnkCorr Time # mg/L mg/L Signal Stored 3:41:30 PM Yes Yes Yes 0.812 0.812 0.117 1 3:41:35 PM 0.830 0.836 0.826 0.115 2 0.830 3:41:39 PM 3 0.836 0.114 Mean: 0.826 0.826 0.115 SD: 0.0125 0.0015 0.0125 1.51% %RSD: 1.51% 1 51 Autosampler Location: Sequence No.: 4 Date Collected: 12/9/2014 3:42:03 PM Sample ID: 8pc R B Data Type: Original Analyst:

Cross Flow of 8% PVP Page 1

Mothor	N. CH011214C4				Page	2			Data	12/0/2014	2.44.05 DM
Method	1: CUUIIZI464				Page	Z			Date:	12/9/2014	5.44.05 PM
Replic	cate Data: 8p	CRB	000 0000		Ana	lyte:	Cu 324	.75			
Repl	SampleConc	StndConc	BlnkCorr	Time	S	ignal					
# 1	mg/L	mg/L	Signal	3.12.05	DM	Vos					
2	0.900	0.900	0.013	3.42.00	DM	Voc					
3	0.932	0.932	0.012	3.42.14	PM	Yes					
Mean:	0.952	0.944	0.014	0110121	~ ~ ~ ~	100					
SD:	0.0080	0.0080	0.0007								
%RSD:	0.84%	0.84%	0.84								
======					===== ۵۱۱+		er Loc	ation:		*********	
Sample	DI: 8pc P E				Date	e Coll	ected:	12/9/20	14 3:42	:38 PM	
Analys	st:				Data	а Туре	: Orig	inal			
Replic	cate Data: 8p	c P E			Ana	lyte:	Cu 324	.75			
Repl	SampleConc	StndConc	BlnkCorr	Time	S:	ignal					
#	mg/L	mg/L	Signal		St	tored					
1	0.310	0.310	0.043	3:42:39	PM	Yes					
2	0.300	0.300	0.041	3:42:44	PM	Yes					4
3	0.303	0.303	0.042	3:42:48	PM	Ies					
Mean:	0.304	0.304	0.042								
SD: SDCD.	1 779	1 778	1 77								
ONDD.	1.778	1.770	1.77								
Sequen Sample Analys	ace No.: 6 a ID: 8pc R E st:				Auto Dato Data	osampl e Coll a Type	er Loc ected: : Orig	ation: 12/9/20 inal	14 3:43	:12 PM	
Sequen Sample Analys	ace No.: 6 D: 8pc R E st: mate Data: 8p				Auto Date Data	osampl e Coll a Type	er Loc ected: : Orig	ation: 12/9/20 inal 	14 3:43	:12 PM	
Sequen Sample Analys Replic Replic	ace No.: 6 a ID: 8pc R E at: cate Data: 8p SampleConc	c R E StndConc	BlnkCorr	Time	Auto Dato Data Ana:	osampl e Coll a Type lyte: ignal	er Loc ected: : Orig Cu 324	ation: 12/9/20 inal 	14 3:43	:12 PM	
Sequen Sample Analys Replic Repl #	nce No.: 6 a ID: 8pc R E st: cate Data: 8p SampleConc mg/L	c R E StndConc mg/L	BlnkCorr Signal	Time	Auto Date Data Ana S:	osampl e Coll a Type lyte: ignal tored	er Loc ected: : Orig Cu 324	ation: 12/9/20 inal .75	14 3:43	:12 PM	
Sequen Sample Analys Replic Repl # 1	nce No.: 6 a ID: 8pc R E st: cate Data: 8p SampleConc mg/L 0.166	c R E StndConc mg/L 0.166	BlnkCorr Signal 0.023	Time 3:43:14	Auto Data Data Ana: S: S1 PM	osampl e Coll a Type lyte: ignal tored Yes	er Loc ected: : Orig Cu 324	ation: 12/9/20 inal .75	14 3:43	:12 PM	
Sequen Sample Analys Replic Repl # 1 2	nce No.: 6 a ID: 8pc R E st: cate Data: 8p SampleConc mg/L 0.166 0.175	c R E StndConc mg/L 0.166 0.175	BlnkCorr Signal 0.023 0.024	Time 3:43:14 3:43:18	Auto Date Data Ana: Si PM PM PM	osampl e Coll a Type lyte: ignal tored Yes Yes	er Loc ected: : Orig Cu 324	ation: 12/9/20 inal .75	14 3:43	:12 PM	2
Sequen Sample Analys Replic Repl # 1 2 3	ace No.: 6 a ID: 8pc R E st: cate Data: 8p SampleConc mg/L 0.166 0.175 0.168	c R E StndConc mg/L 0.166 0.175 0.168	BlnkCorr Signal 0.023 0.024 0.023	Time 3:43:14 3:43:18 3:43:23	Auto Date Data Ana: S: Sf PM PM PM PM	osampl e Coll a Type lyte: ignal tored Yes Yes Yes	er Loc ected: : Orig Cu 324	ation: 12/9/20 inal .75	14 3:43	:12 PM	
Sequen Sample Analys Replic Repl # 1 2 3 Mean:	ace No.: 6 a ID: 8pc R E bt: cate Data: 8p SampleConc mg/L 0.166 0.175 0.168 0.170	c R E StndConc mg/L 0.166 0.175 0.168 0.170	BlnkCorr Signal 0.023 0.024 0.023 0.023 0.023	Time 3:43:14 3:43:18 3:43:23	Auto Data Data Ana: S: St PM PM PM PM	osampl e Coll a Type lyte: ignal tored Yes Yes Yes	er Loc ected: : Orig Cu 324	ation: 12/9/20 inal .75	14 3:43	:12 PM	
Sequer Sample Analys Replic Repl 1 2 3 Mean: SD:	ace No.: 6 a ID: 8pc R E bt: cate Data: 8p SampleConc mg/L 0.166 0.175 0.168 0.170 0.0047	c R E StndConc mg/L 0.166 0.175 0.168 0.170 0.0047	BlnkCorr Signal 0.023 0.024 0.023 0.023 0.023 0.0006	Time 3:43:14 3:43:18 3:43:23	Auto Date Data Ana: S: Sf PM PM PM PM	osampl e Coll a Type lyte: ignal tored Yes Yes Yes	er Loc ected: : Orig Cu 324	ation: 12/9/20 inal .75	14 3:43	:12 PM	
Sequer Sample Analys Replic Repl # 1 2 3 Mean: SD: %RSD:	nce No.: 6 a ID: 8pc R E bt: cate Data: 8p SampleConc mg/L 0.166 0.175 0.168 0.170 0.0047 2.79%	c R E StndConc mg/L 0.166 0.175 0.168 0.170 0.0047 2.79%	BlnkCorr Signal 0.023 0.024 0.023 0.023 0.023 0.0006 2.79	Time 3:43:14 3:43:18 3:43:23	Auto Data Anai S: S1 PM PM PM PM	osampl e Coll a Type lyte: ignal tored Yes Yes Yes	er Loc ected: : Orig Cu 324	ation: 12/9/20 inal .75	14 3:43	:12 PM	
Sequent Sample Analys Replic Repl # 1 2 3 Mean: SD: %RSD: Sequent Sample Analys	<pre>nce No.: 6 a ID: 8pc R E at: cate Data: 8p SampleConc mg/L 0.166 0.175 0.168 0.170 0.0047 2.79% cate No.: 7 a ID: 8pc F at:</pre>	c R E StndConc mg/L 0.166 0.175 0.168 0.170 0.0047 2.79%	BlnkCorr Signal 0.023 0.024 0.023 0.023 0.0006 2.79	Time 3:43:14 3:43:18 3:43:23	Auto Data Data Ana: S: S1 PM PM PM PM PM PM PM	osampl e Coll a Type lyte: ignal tored Yes Yes Yes Yes Sampl e Coll a Type	er Loc ected: : Orig Cu 324 Cu 324 er Loc ected: : Orig	ation: 12/9/20 inal .75 ation: 12/9/20 inal	14 3:43	:12 PM	
Sequent Sample Analys Replic Repl 1 2 3 Mean: SD: %RSD: Sequent Sample Analys	Ace No.: 6 a ID: 8pc R E bt: cate Data: 8p SampleConc mg/L 0.166 0.175 0.168 0.170 0.0047 2.79% Ace No.: 7 a ID: 8pc F st:	c R E StndConc mg/L 0.166 0.175 0.168 0.170 0.0047 2.79%	BlnkCorr Signal 0.023 0.024 0.023 0.023 0.0006 2.79	Time 3:43:14 3:43:18 3:43:23	Auto Data Data Ana: S: S1 PM PM PM PM PM PM PM	osampl e Coll a Type lyte: ignal tored Yes Yes Yes Yes Sosampl e Coll a Type	er Loc ected: : Orig Cu 324 er Loc ected: : Orig 	ation: 12/9/20 inal .75 .75 ation: 12/9/20 inal .75	14 3:43	:12 PM :42 PM	
Sequent Sample Analys Replic Repl 1 2 3 Mean: SD: %RSD: Sequent Sample Analys Replic Replic Replic	Ace No.: 6 a ID: 8pc R E st: cate Data: 8p SampleConc mg/L 0.166 0.175 0.168 0.170 0.0047 2.79% Ace No.: 7 a ID: 8pc F st: cate Data: 8p SampleConc	c R E StndConc mg/L 0.166 0.175 0.168 0.170 0.0047 2.79%	BlnkCorr Signal 0.023 0.024 0.023 0.023 0.0006 2.79	Time 3:43:14 3:43:18 3:43:23	Auto Data Anai S: Sf PM PM PM PM PM Auto Data Data Data	osampl e Coll a Type lyte: ignal tored Yes Yes Yes Yes Yes Sosampl e Coll a Type	er Loc ected: : Orig Cu 324 er Loc ected: : Orig Cu 324	ation: 12/9/20 inal .75 .75 ation: 12/9/20 inal .75	14 3:43	:12 PM :42 PM	
Sequent Sample Analys Replic Repl 1 2 3 Mean: SD: %RSD: * RSD: * Sequent Sample Analys - Replic Repl *	<pre>ince No.: 6 a ID: 8pc R E st: cate Data: 8p SampleConc mg/L 0.166 0.175 0.168 0.170 0.0047 2.79% ce No.: 7 a ID: 8pc F st: cate Data: 8p SampleConc mg/L</pre>	c R E StndConc mg/L 0.166 0.175 0.168 0.170 0.0047 2.79%	BlnkCorr Signal 0.023 0.024 0.023 0.023 0.0006 2.79 BlnkCorr Signal	Time 3:43:14 3:43:18 3:43:23	Auto Data Anai S: Sf PM PM PM PM PM Auto Data Data Data Anai S: Sf	osampl e Coll a Type lyte: ignal tored Yes Yes Yes Yes Yes Sosampl e Coll a Type lyte: ignal	er Loc ected: : Orig Cu 324 er Loc ected: : Orig Cu 324	ation: 12/9/20 inal .75 .75 ation: 12/9/20 inal .75	14 3:43	:12 PM :42 PM	
Sequent Sample Analys Replic Repl 1 2 3 Mean: SD: %RSD: ************************************	Ace No.: 6 a ID: 8pc R E st: ate Data: 8p SampleConc mg/L 0.166 0.175 0.168 0.170 0.0047 2.79% ate No.: 7 a ID: 8pc F st: ate Data: 8p SampleConc mg/L 0.0047 0.004	c R E StndConc mg/L 0.166 0.175 0.168 0.170 0.0047 2.79% 	BlnkCorr Signal 0.023 0.024 0.023 0.0006 2.79 BlnkCorr Signal 0.121	Time 3:43:14 3:43:18 3:43:23 Time 3:43:42	Auto Data Anai S: SI PM PM PM PM PM Auto Data Data Anai Si SI PM	osampl e Coll a Type lyte: ignal tored Yes Yes Yes Yes Ses osampl e Coll a Type lyte: ignal tored Yes	er Loc ected: : Orig Cu 324 er Loc ected: : Orig Cu 324	ation: 12/9/20 inal .75 ation: 12/9/20 inal .75	14 3:43	:12 PM :42 PM	
Sequent Sample Analys Replic Repl # 1 2 3 Mean: SD: %RSD: ************************************	nce No.: 6 a ID: 8pc R E st: ate Data: 8p SampleConc mg/L 0.166 0.175 0.168 0.170 0.0047 2.79% ate Data: 8p SampleConc mg/L 0.875 0.876	c R E StndConc mg/L 0.166 0.175 0.168 0.170 0.0047 2.79% 	BlnkCorr Signal 0.023 0.024 0.023 0.0006 2.79 BlnkCorr Signal 0.121 0.121	Time 3:43:14 3:43:18 3:43:23 Time 3:43:42 3:43:42 3:43:46	Auto Data Anai S: Sf PM PM PM PM PM PM Auto Data Data Anai Sf PM PM PM	osampl e Coll a Type lyte: ignal tored Yes Yes Yes Yes osampl e Coll a Type lyte: ignal tored Yes Yes	er Loc ected: : Orig Cu 324 er Loc ected: : Orig Cu 324	ation: 12/9/20 inal .75 ation: 12/9/20 inal .75	14 3:43	:12 PM :42 PM	
Sequent Sample Analys Replic Repl # 1 2 3 Mean: SD: %RSD: * RSD: * RSD: Sequent Sample Analys Replic Repl 4 1 2 3 %RSD: * * * * * * * * * * * * * * * * * * *	nce No.: 6 a ID: 8pc R E st: ate Data: 8p SampleConc mg/L 0.166 0.175 0.168 0.170 0.0047 2.79% ate Data: 8p SampleConc mg/L 0.875 0.875 0.881	c R E StndConc mg/L 0.166 0.175 0.168 0.170 0.0047 2.79% c F StndConc mg/L 0.875 0.876 0.881	BlnkCorr Signal 0.023 0.024 0.023 0.0006 2.79 BlnkCorr Signal 0.121 0.121 0.121	Time 3:43:14 3:43:18 3:43:23 Time 3:43:42 3:43:42 3:43:46 3:43:50	Auto Data Anai S: Sf PM PM PM PM PM Auto Data Data Anai Si Sf PM PM PM PM	osampl e Coll a Type lyte: ignal tored Yes Yes Yes osampl e Coll a Type lyte: ignal tored Yes Yes Yes Yes	er Loc ected: : Orig Cu 324 er Loc ected: : Orig Cu 324	ation: 12/9/20 inal .75 ation: 12/9/20 inal .75	14 3:43	:12 PM :42 PM	
Sequent Sample Analys Replic Repl # 1 2 3 Mean: SD: %RSD: * RSD: * RSD: Sequent Sample Analys Replic Repl * 1 2 3 Mean: Sequent Sequent Sample # 1 2 3 Mean: Sequent Sequent Sample * Sequent Sample * Sequent Sequent Sample * Sequent Sample * Sequent Sample * Sequent Sample * Sequent Sample * Sequent Sample * Sequent * Seque * Seque * Se Seque * Se Seque * Se Se	nce No.: 6 a ID: 8pc R E st: ate Data: 8p SampleConc mg/L 0.166 0.175 0.168 0.170 0.0047 2.79% ate Data: 8p SampleConc mg/L 0.875 0.875 0.876 0.881 0.878	c R E StndConc mg/L 0.166 0.175 0.168 0.170 0.0047 2.79% c F StndConc mg/L 0.875 0.876 0.881 0.878	BlnkCorr Signal 0.023 0.024 0.023 0.0006 2.79 BlnkCorr Signal 0.121 0.121 0.121 0.121	Time 3:43:14 3:43:18 3:43:23 Time 3:43:42 3:43:42 3:43:46 3:43:50	Auto Data Anai S: Sf PM PM PM PM PM Auto Data Data Anai Si Sf PM PM PM PM PM	osampl e Coll a Type lyte: ignal tored Yes Yes Yes osampl e Coll a Type lyte: ignal tored Yes Yes Yes Yes	er Loc ected: : Orig Cu 324 er Loc ected: : Orig Cu 324	ation: 12/9/20 inal .75 ation: 12/9/20 inal .75	14 3:43	:12 PM :42 PM	
Sequent Sample Analys Replic Repl # 1 2 3 Mean: SD: %RSD: Sequent Sample Analys Replic Replic Repl # 1 2 3 Mean: So: Source Source Replic Replic Source Replic Source Replic Replic Source Replic Source Replic Replic Source Replic Replic Source Replic Replic Replic Source Replic Replic Replic Replic Replic Source Replic Replic Replic Replic Replic Replic Replic Replic Replic Replic Replic Replic Replic Source Replic Source Replic Source Replic Source Replic Source Replic Source Replic Source Replic Source Replic Source Replic Source Replic Source Source Source Replic Source Source Replic Source Source Replic Source Source Source Replic Source Source Source Replic Repl	nce No.: 6 a ID: 8pc R E bt: cate Data: 8p SampleConc mg/L 0.166 0.175 0.168 0.170 0.0047 2.79% ce No.: 7 a ID: 8pc F bt: cate Data: 8p SampleConc mg/L 0.875 0.875 0.876 0.881 0.878 0.0032	c R E StndConc mg/L 0.166 0.175 0.168 0.170 0.0047 2.79% c F StndConc mg/L 0.875 0.875 0.876 0.881 0.878 0.0032	BlnkCorr Signal 0.023 0.024 0.023 0.0006 2.79 BlnkCorr Signal 0.121 0.121 0.121 0.121 0.121 0.121 0.121	Time 3:43:14 3:43:18 3:43:23 Time 3:43:42 3:43:42 3:43:46 3:43:50	Auto Data Ana: S: St PM PM PM PM PM Auto Data Data Ana: S: St PM PM PM PM PM PM	osampl e Coll a Type lyte: ignal tored Yes Yes Yes osampl e Coll a Type lyte: ignal tored Yes Yes Yes	er Loc ected: : Orig Cu 324 er Loc ected: : Orig Cu 324	ation: 12/9/20 inal .75 ation: 12/9/20 inal .75	14 3:43	:12 PM :42 PM	
Sequer Sample Analys Replic Repl 1 2 3 Mean: SD: %RSD: Replic Replic Replic Replic Replic Replic Sample Analys Sequen Sample Analys Societation Replic Sequent Sample Analys Societation Replic Sequent Sample Analys Societation Replic Sequent Sample Sequent Sample Sequent Societation Replic Sequent Societation Replic Sequent Societation Replic Sequent Societation Replic Sequent Societation Replic Sequent Societation Replic Sequent Societation Replic Sequent Societation Replic Sequent Societation Replic Sequent Societation Replic Sequent Societation Replic Sequent Societation Replic Societation Replic Societation Replic Sequent Societation Replic R	nce No.: 6 a ID: 8pc R E st: cate Data: 8p SampleConc mg/L 0.166 0.175 0.168 0.170 0.0047 2.79% ce No.: 7 a ID: 8pc F st: cate Data: 8p SampleConc mg/L 0.875 0.876 0.881 0.878 0.0032 0.36%	c R E StndConc mg/L 0.166 0.175 0.168 0.170 0.0047 2.79% C F StndConc mg/L 0.875 0.875 0.876 0.881 0.878 0.0032 0.36%	BlnkCorr Signal 0.023 0.024 0.023 0.023 0.0006 2.79 BlnkCorr Signal 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.0004 0.36	Time 3:43:14 3:43:18 3:43:23 Time 3:43:42 3:43:46 3:43:50	Auto Data Ana: S: S1 PM PM PM PM Auto Data Data Data S: S1 PM PM PM PM PM	osampl e Coll a Type lyte: ignal tored Yes Yes Yes osampl a Type ignal tored Yes Yes Yes Yes	er Loc ected: : Orig Cu 324 er Loc ected: : Orig Cu 324	ation: 12/9/20 inal .75 .75 ation: 12/9/20 inal .75	14 3:43	:12 PM :42 PM	

Cross Flow of 8% PVP Page 2

A.4 Pure Water Permeability

A=πDLn

Diameter is obtained from the SEM images

0wt%	PVP
0	

D	0.0013	m
А	0.12257	m
	1	mL/min
Q	0.06	L/h
PWP	4.8591	L/m².h.bar

3wt% PVP

D	0.001692	m
А	0.015956	m
	1.4	mL/min
Q	0.084	L/h
PWP	5.2645	L/m ² .h.bar

5wt% PVP

D	0.00135	m
А	0.012729	m
	1.6	mL/min
Q	0.096	L/h
PWP	7.5421	L/m ² .h.bar

8wt% PVP

D	0.001111	m
А	0.010476	m
	1.5	mL/min
Q	0.09	L/h
PWP	8.5909	L/m².h.bar

A.5 Cross Flow Processed Data

CROSSFLOW FILTRATION		
EXPERIMENT		
Feed,	Run1 Membrane 0	wt% PVP
Vol,ml	500	
Conc, mg/L	1000	
Mass, mg	500	
Retentate		
Vol,ml	458	
Dil Factor	500	
AAS Conc	0.959	
Conc, mg/L	479.5	
Mass, mg	219.611	
Permeate		
Time, min	29	
Vol,ml	42	
Dil Factor	500	
AAS Conc	0.750	
Conc, mg/L	375	
Mass, mg	15.75	
Connor Dound		
Соррег Боила,	264 620	
ing	204.035	
Elution	250	
Time. Min	30	
Permeate Side		
Vol,ml	75	
Dil Factor	500	
AAS Conc	1	
Conc, mg/L	250	
Mass, mg	18.75	
Dotontata Cida		
	175	
VUI,IIII Dil Eactor	1/5	
	500	
AAS CONC	0.369	
Conc, mg/L	184.5	
iviass, mg	32.28/5	
Total Eluted	51.0375	
Elution		
Recovery	19.3%	

CROSSFLOW		
FILIRATION		
Feed,	Run 2 Membrane 0	vt% PVP
Vol,ml	500	
Conc, mg/L	1000	
Mass, mg	500	
Retentate		
Vol,ml	455	
Dil Factor	500	
AAS Conc	0.966	
Conc, mg/L	483	
Mass, mg	219.765	
Permeate		
Time, min	30	
Vol,ml	45	
Dil Factor	500	
AAS Conc	0.881	
Conc, mg/L	440.5	
Mass, mg	19.8225	
Copper Bound,		
mg	260.4125	
Elution	250	
Time. Min	30	
Permeate Side	70	
Vol,mi Dil Fastar	72	
	500	
AAS CONC	0.823	
Conc, mg/L	411.5	
iviass, mg	29.028	
Retentate Side		
Vol,ml	178	
Dil Factor	500	
AAS Conc	0.274	
Conc, mg/L	137	
Mass, mg	24.386	
Total Fluted	54.014	
Elution Recovery	20.7%	

CROSSFLOW FILTRATION EXPERIMENT		
Feed,	Run 1 Membrane 3wt%	PVP
Vol,ml	500	
Conc, mg/L	1000	
Mass, mg	500	
Retentate		
Vol,ml	466	
Dil Factor	500	
AAS Conc	1.04	
Conc, mg/L	520	
Mass, mg	242.32	
Permeate		
Time, min	30	
Vol,ml	34	
Dil Factor	500	
AAS Conc	0.952	
Conc, mg/L	476	
Mass, mg	16.184	
Copper Bound,		
mg	241.496	
Elution	250	
Time. Min	30	
Permeate Side		
Vol,ml	60	
Dil Factor	500	
AAS Conc	1.173	
Conc, mg/L	586.5	
Mass, mg	35.19	
Retentate Side		
Vol,ml	190	
Dil Factor	500	
AAS Conc	0.428	
Conc, mg/L	214	
Mass, mg	40.66	
Total Eluted	75.85	
Elution Recovery	21 /1%	
	51.4%	

EXPERIMENT		
Feed,	Run 2 Membrane 3	wt% PVP
Vol,ml	500	
Conc, mg/L	1000	
Mass, mg	500	
Retentate		
Vol,ml	469	
Dil Factor	500	
AAS Conc	1.044	
Conc, mg/L	522	
Mass, mg	244.818	
Permeate		
Time, min	30	
Vol,ml	31	
Dil Factor	500	
AAS Conc	0.742	
Conc, mg/L	371	
Mass, mg	11.501	
Copper Bound,		
mg	243.681	
Flution	250	
Time. Min	30	
Permeate Side		
Vol.ml	58	
Dil Factor	500	
AAS Conc	1.123	
Conc. mg/L	561.5	
Mass, mg	32.567	
5		
Retentate Side		
Vol,ml	192	
Dil Factor	500	
AAS Conc	0.397	
Conc, mg/L	198.5	
Mass, mg	38.112	
I otal Eluted	70.679	
Elution Recovery	29.0%	

CROSSFLOW FILTRATION EXPERIMENT		
Feed.	Run 1 Membrane 5wt% PVP	
Vol,ml	500	
Conc, mg/L	1000	
Mass, mg	500	
Retentate		
Vol,ml	460	
Dil Factor	500	
AAS Conc	0.913	
Conc, mg/L	456.5	
Mass, mg	209.99	
Permeate		
Time. min	30	
Vol.ml	40	
Dil Factor	500	
AAS Conc	0.571	
Conc, mg/L	285.5	
Mass, mg	11.42	
Copper Bound,		
mg	278.59	
Elution	250	
Time. Min	30	
Permeate Side		
Vol,ml	61	
Dil Factor	500	
AAS Conc	0.55	
Conc, mg/L	275	
Mass, mg	16.775	
Retentate Side		
Vol,ml	189	
Dil Factor	500	
AAS Conc	0.121	
Conc, mg/L	60.5	
Mass, mg	11.4345	
Total Eluted	28.2095	
Elution Recoverv	10.1%	

CROSSFLOW FILTRATION EXPERIMENT

Feed,	Run 2 Membrane 5	vt% PVP
Vol,ml	500	
Conc, mg/L	1000	
Mass, mg	500	
Retentate		
Vol,ml	458	
Dil Factor	500	
AAS Conc	0.706	
Conc, mg/L	353	
Mass, mg	161.674	
Permeate		
Time, min	30	
Vol,ml	42	
Dil Factor	500	
AAS Conc	0.717	
Conc, mg/L	358.5	
Mass, mg	15.057	
Copper Bound,		
mg	323.269	
Elution	250	
Time. Min	30	
Permeate Side	60	
Vol,ml	60	
Dil Factor	500	
AAS Conc	0.51	
Conc, mg/L	255	
Mass, mg	15.3	
Retentate Side		
Vol,ml	190	
Dil Factor	500	
AAS Conc	0.181	
Conc, mg/L	90.5	
Mass, mg	17.195	
Total Eluted	32.495	
Elution Recovery	10.1%	

CROSSFLOW FILTRATION EXPERIMENT		
Feed,	Run 1 Membrane 8wt	% PVP
Vol,ml	500	
Conc, mg/L	1000	
Mass, mg	500	
Retentate		
Vol,ml	457	
Dil Factor	500	
AAS Conc	0.95	
Conc, mg/L	475	
Mass, mg	217.075	
Permeate		
Time, min	30	
Vol,ml	43	
Dil Factor	500	
AAS Conc	0.85	
Conc, mg/L	425	
Mass, mg	18.275	
Copper Bound,		
mg	264.65	
Elution	250	
Time. Min	30	
Permeate Side		
Vol,ml	53	
Dil Factor	500	
AAS Conc	0.303	
Conc, mg/L	151.5	
Mass, mg	8.0295	
Retentate Side		
Vol,ml	197	
Dil Factor	500	
AAS Conc	0.17	
Conc, mg/L	85	
Mass, mg	16.745	
Total Eluted	24.7745	
Elution Recovery	9.4%	

CROSSFLOW FILTRATION EXPERIMENT

Feed,	Run 2 Membrane 8	vt% PVP
Vol,ml	500	
Conc, mg/L	1000	
Mass, mg	500	
Retentante		
Vol,ml	456	
Dil Factor	500	
AAS Conc	0.826	
Conc, mg/L	413	
Mass, mg	188.328	
Permeate		
Time, min	30	
Vol,ml	44	
Dil Factor	500	
AAS Conc	0.952	
Conc, mg/L	476	
Mass, mg	20.944	
Copper Bound,	200 729	
Illg	290.728	
	230	
Dermost Side	30	
	10	
VUI,IIII Dil Factor	40 E00	
	000	
AAS CONC	0.878	
Mass mg	459	
ividss, mg	21.072	
Retentate Side		
Vol,ml	202	
Dil Factor	500	
AAS Conc	0.166	
Conc, mg/L	83	
Mass, mg	16.766	
Total Eluted	37.838	
Elution Recovery	13.0%	