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ABSTRACT 

 

In this thesis, a method of lattice Boltzmann is introduced. Lattice Boltzmann 

method (LBM) is a class of computational fluid dynamics (CFD) methods for fluid 

simulation. Objective of this thesis is to develop finite difference lattice Boltzmann 

scheme for the natural convection heat transfer. Unlike conventional CFD methods, the 

lattice Boltzmann method is based on microscopic models and macroscopic kinetic 

equation. The lattice Boltzmann equation (LBE) method has been found to be 

particularly useful in application involving interfacial dynamics and complex 

boundaries. First, the general concept of the lattice Boltzmann method is introduced to 

understand concept of Navier-Strokes equation. The isothermal and thermal lattices 

Boltzmann equation has been directly derived from the Boltzmann equation by 

discretization in both time and phase space. Following from this concept, a few simple 

isothermal flow simulations which are Poiseulle flow and Couette flow were done to 

show the effectiveness of this method. Beside, numerical result of the simulations of 

Porous Couette flow and natural convection in a square cavity are presented in order to 

validate these new thermal models. Lastly, the discretization procedure of Lattice 

Boltzmann Equation (LBE) is demonstrated with finite difference technique. The 

temporal discretization is obtained by using second order Rungge-Kutta (modified) 

Euler method from derivation of governing equation. The discussion and conclusion 

will be presented in chapter five. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

vi 

 

 

 

ABSTRAK 

 

 Di dalam tesis ini, kaedah kekisi Boltzmann diperkenalkan. Kaedah kekisi 

Boltzmann (LBM) ialah dikelaskan daripada kaedah pengiraan dinamik bendalir 

berkomputer (CFD) untuk simulasi bendalir. Objektif tesis ini ialah untuk 

membangunkan kaedah pembezaan terhingga kekisi Boltzmann untuk pemanasan 

semulajadi pemindahan haba. Tidak seperti kaedah CFD, kaedah kekisi Boltzmann ialah 

berdasarkan model mikroskopik dan persamaan kinetik makroskopik. Kaedah 

persamaan kekisi Boltzmann ditemui untuk kegunaan terutamanya di dalam aplikasi 

yang melibatkan hubungkait dinamik dan garisan sempadan yang rumit. Permulaannya, 

konsep umum kaedah kekisi Boltzman diperkenalkan untuk memahami konsep 

persamaan Navier-Strokes iaitu dengan diskritasikan persamaan Boltzmann terhadap 

masa dan ruang fasa, persamaan untuk isoterma dan terma kekisi Boltzmann dapat 

diterbitkan. Berdasarkan konsep ini, contoh yang mudah daripada pengaliran isoterma 

ialah pengaliran Poiseulle dan pengaliran Couette telah dijalankan untuk menunjukkan 

keberkesanan kaedah ini. Selain itu, keputusan berangka daripada simulasi pengaliran 

Porous Couette dan pemanasan semulajadi di dalam ruang segiempat diperkenalkan 

untuk mengesahkan model terma yang baru. Akhir sekali, diskritasikan prosedur 

persamaan kekisi Boltzmaan diperkenalkan dengan menggunakan teknik pembezaan 

terhingga. Hasil daripada pemberolehan persaman governing, masa diskritasi ini 

diperolehi dengan menggunakan kaedah susuan kedua Rungge-Kutta(modified) Euler. 

Perbincangan dan kesimpulan akan dibentangkan di dalam bab lima.  

 

 

 

 

 

 

 

 



 

 

vii 

 

 

 

TABLE OF CONTENTS 

 

  Page 

SUPERVISOR’S DECLARATION ii 

STUDENT’S DECLARATION iii 

ACKNOWLEDGEMENTS iv 

ABSTRACT v 

ABSTRAK vi 

TABLE OF CONTENTS vii 

LIST OF TABLES x 

LIST OF FIGURES xi 

LIST OF SYMBOLS xiii 

LIST OF ABBREVIATIONS xv 

 

CHAPTER 1 INTRODUCTION 

 

1.1 Navier-Strokes Equation 1 

1.2 Computational Fluid Dynamics 2 

1.3 Lattice Boltzmann  Method (LBM) 2 

1.4 Classical CFD Versus LBM Method 4 

1.5 Project Objective 5 

1.6 Project Scopes 5 

1.7 Project background 6 

1.8 Thesis Outline 6 

 

CHAPTER 2 LITERATURE REVIEW 

 

2.1 Introduction  8 

2.2 Governing Equation 9 

2.3 Basic Principle 10 



 

 

viii 

 

2.4 Collision Integral 12 

2.5 Time Relaxation 13 

2.6 Discretization of Microscopic Velocity 13 

 2.6.1     Isothermal Fluid Flow 14 

              2.6.1.1     The Macroscopic Equation For Isothermal 14 

 2.6.2     Thermal Fluid Flow 15 

              2.6.2.1     The Macroscopic equation For Thermal 15 

2.7 Bhatnagar-Grook-Krook (BGK) 16 

2.8 Boundary Condition 16 

 2.8.1     Bounce Back 17 

 2.8.1     Periodic Boundary 18 

2.9 Theory of Poiseulle Flow 18 

2.10 Theory of Couette Flow 19 

2.11 Definition Of Rayleigh Number, Reynolds Number And Prandtl 

Number 

20 

 2.11.1    Rayleigh Number 20 

 2.11.2    Reynolds Number 21 

 2.11.3    Prandtl Number 21 

 

CHAPTER 3 METHODOLOGY 

 

3.1 Algorithm 23 

3.2 Flow Chart For the Thesis 25 

3.3  Simulation Result of Poiseulle Flow 27 

3.4      Simulation Result of Couette Flow 28 

3.5 Simulation Result of Porous Couette Flow 29 

 

CHAPTER 4 RESULTS AND DISCUSSION 

 

4.1 Finite Difference lattice Boltzmann Method  33 

4.2 Finite Difference Thernal Lattice Boltzmann Method  34 

4.3 Natural Convection  in a Square Cavity  35 

4.4 Expected result for the simulation of natural convection in a 

square cavity at ra=10
5
 

 38 



 

 

ix 

 

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion 40 

5.2 Recommendations 41 

REFERENCES 
 

 42 

APPENDICES 

 

 

A1 Gannt chart for final year project 1 44 

A2 Gannt chart for final year project 2 45 

B Finite difference simulation 46 

C Mesh for 2d natural convection 60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

x 

 

 

 

LIST OF TABLE 

 

Table No.                                    Title Page 

   

4.1 Comparison among the present result with other LBM 39 

   

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

xi 

 

 

 

 

LIST OF FIGURES 

 

Figure No.                                       Title Page 

   

1.1 Historically stages in the development of lattice Boltzmann model 4 

   

1.2  Classical CFD versus LBM 5 

   

2.1 General concept of Lattice Boltzmann 9 

   

2.2 Streaming and collision processes 10 

   

2.3 Time relaxation concept 13 

   

2.4 Lattice Boltzmann Isothermal Model 14 

   

2.5 Lattice Boltzmann Thermal Model 15 

   

2.6 Schematic plot of bounce back boundary condition 17 

   

2.7 Periodic boundary condition 18 

   

3.1 Original LBM algorithm flowchart 24 

   

3.2 Flow chart for the relation in the thesis 25 

   

3.3 Poiseulle flow graph  28 

   

3.4 Couette flow graph  29 

 

3.5 Temperature profile at Ra=100 and Re=10 and Pr=0.2, 0.8, and 

1.5 

30 

   

3.6 Temperature profile at Pr = 0.71 and Ra = 100 and Re=5, 10, 20, 

and 30 

 

31 

3.7 Velocity and temperature profile at Re=10 , Pr = 0.71 and Ra = 

60000 

 

31 

4.1 The schematic for natural convection in a square cavity 36 



 

 

xii 

   

4.2 Streamline and isotherms for the simulation of natural convection 

in a square cavity for Ra=10
3 

37 

   

4.3 Streamline and isotherms for the simulation of natural convection 

in a square cavity for Ra=10
4 

37 

   

4.4 Streamline and isotherms for the simulation of natural convection 

in a square cavity for Ra=10
5
 

38 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

xiii 

 

 

 

LIST OF SYMBOLS 

 

R Gas constant 

  

t Time 

  

T Temperature 

  

TC Cold temperature 

  

TH Hot temperature 

  

u Horizontal velocity 

  

u Velocity vector 

  

U Horizontal velocity of top plate 

  

v Vertical velocity 

  

V Volume 

  

x Space vector 

  

P Pressure 

  

τ f ,g Time relaxation 

  

υ Shear viscosity 

  

β Thermal expansion coefficient 

  

ε Internal energy 

  

ρ Density 

  

𝑇∞  Infinity temperature 

  

𝑇𝑓  Film temperature 

  

𝑇𝑠 Surface  temperature 

  

A Area of contact A 

  



 

 

xiv 

η Proportionally constant 

  

χ Thermal diffusivity 

  

Ω Collision operator 

  

𝑇𝑚  Average temperature 

  

g Acceleration due to gravity 

  

c Microscopic velocity 

  

𝑓𝑒𝑞  Equilibrium distribution function 

  

f Distribution function 

  

Pr Prandtl number 

  

Ra Rayleigh number 

  

Re Reynolds number 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

xv 

 

 

 

LIST OF ABBREVIATIONS 

 

BGK Bhatnagar Gross krook 

  

CFD Computational fluid dynamics 

  

LBM Lattice Boltzmann method 

  

LGA Lattice gas approach 

  

LGCA Lattice gas cellular automata 

  

PBC Periodic Boundary condition 

  

PDEs Partial differential equations 

  

 

 

 

 

 
   

 

 

 

 



 

 

   

 

 

 

 CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 NAVIER-STROKES EQUATION 

 

The Navier-strokes equation can derive as the motion of fluid substances that is 

substances which can flow. These equations arise from applying Newton's second law to 

fluid motion, together with the assumption that the fluid stress is the sum of a diffusing 

viscous term (proportional to the gradient of velocity), plus a pressure term. The derivation 

of the Navier–Stokes equations begins with the conservation of mass, momentum, and 

energy being written for an arbitrary control volume. These equations describe how the 

velocity, pressure, temperature, and density of a moving fluid are related. The mathematical 

relationship governing fluid flow is the famous continuity equation and Navier-strokes 

equation is given by  

 

. 0 u             (1.1) 
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The Navier-Stroke equation is nonlinear partial differential equations in almost 

every real situation and so complex that there is currently no analytical solution to them 

except for a small number of special cases. The Navier–Stokes equations dictate not 

position but rather velocity. A solution of the Navier–Stokes equations is called a velocity 



 

 

2 

field or flow field, which is a description of the velocity of the fluid at a given point in 

space and time. Once the velocity field is solved for, other quantities of interest (such as 

flow rate or drag force) may be found. (C.S. Nor Azwadi, 2007) 

 

Nowadays, the use of a computer is necessary to determine the fluid motion of a 

particular problem because fluid related problems arising in science and engineering are 

extremely complex by nature. 

 

1.2 COMPUTATIONAL FLUID DYNAMICS 

   

Computational Fluid Dynamic (CFD) is a based on the fundamental governing 

equation of fluid dynamics-the continuity, momentum and energy equations. The most 

fundamental consideration in CFD is how one treats a continuous fluid in a discretized 

fashion on a computer. One method is to discretize the spatial domain into small cells to 

form a volume mesh or grid, and then apply a suitable algorithm to solve the Navier-

Strokes equation or an equation derived from them. To exactly simulate fluid flow in a 

computer it would be necessary to solve Navier-Stroke equation with infinite accuracy .In 

reality, numerical researchers must choose a method to discretize the problem. Some of the 

general numerical methods used in computational fluid dynamics are described here.  

 

1.3  LATTICE BOLTZMANN METHOD (LBM) 

 

The Lattice Boltzmann method (LBM) is a recently developed method for 

simulating fluid flows and modeling physics in fluids. Unlike the traditional CFD methods, 

which solve the conservation equations of macroscopic properties (i.e., mass, momentum, 

and energy) numerically, LBM models the fluid consisting of fictive particles, and such 

particles perform consecutive propagation and collision processes over a discrete lattice 

mesh. Due to its particulate nature and local dynamics, LBM has several advantages over 

other conventional CFD methods, especially in dealing with complex boundaries, 

incorporating of microscopic interactions, and parallelization of the algorithm. It is also 
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known as an alternative approach to the well-known finite difference, finite element and 

finite volume technique for solving the Navier-Strokes equations. Lattice Boltzmann 

methods (LBM) is a class of computational fluid dynamics (CFD) methods for fluid 

simulation. Instead of solving the Navier–Stokes equations, the discrete Boltzmann 

equation is solved to simulate the flow of a Newtonian fluid with collision models such as 

Bhatnagar-Gross-Krook (BGK).LB scheme is a scheme evolved from the improvement of 

lattice gas automata and inherits some features from its precursor, the Lattice Gas Automata 

(LGA).  

 

The LBM recognizes that Boltzmann’s transport equation is a computational tool 

that can be solved on the lattice .The collision term of this equation can be simplified using 

the Bhatnagar-Gross-Krook (BGK) approximation where the distribution function relaxes 

to a local equilibrium with a constant relaxation time. The main motivation for the 

transition from LGA to LBM was the desire to remove the statistical noise by replacing the 

Boolean particle number in a lattice direction with its ensemble average, the so-called 

density distribution function. Accompanying this replacement, the discrete collision rule is 

also replaced by a continuous function known as the collision operator. In the LBM 

development, an important simplification is to approximate the collision operator with the 

Bhatnagar-Gross-Krook (BGK) relaxation term. This lattice BGK (LBGK) model makes 

simulations more efficient and allows flexibility of the transport coefficients. (Xiaoyi He 

and Li-Shi Luo ,1997) 

 



 

Although LBM approach treats gases and liquids as systems consisting of 

individual particles, the primary goal is to build the connection between the microscopic 

and macroscopic dynamics, rather than to deal with macroscopic dynamics directly. In 

other words, the goal is to derive macroscopic equations from microscopic dynamics by 

means of statistic, rather than to solve macroscopic equation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Historically stages in the development of lattice Boltzmann model    

 

Source: Wolf Gladrow, 2000  

 

1.4 CLASSICAL CFD VERSUS LATTICE BOLTZMANN METHODS 

 

The conventional simulation of fluid flow and other physical processes generally 

starts from non linear partial differential equation (PDEs). These PDEs are discretized 

by finite differences, finite element finite volume or spectral methods. The resulting 

Lattice Boltzmann equation have been used at the 

cradle of lattice gas cellular automata by Ferish etal 

in 1987 to calculate the viscosity of LGCA. 

McNamara and Zanetti introduced LBM as a 

independent numerical method for the hydrodynamic 

simulation in 1988.Fermi Dirac distributions were 

used as equilibrium functions. 

Higuera and Jimenez introduced linearized collision 

operator in 1989. 

Replacement of the Fermi Dirac distribution 

functions with Boltzmann Maxwell distribution 

function. 

Linearized collision operator has benn replaced by 

BGK (also called single time relaxation) 

approximation by Koelman in 1991 and Qian et al. in 

1992 
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algebraic equations of ordinary differential equation are solved by standard numerical 

methods. In LBM, the starting point is a discrete microscopic model which by 

construction conservation equation of mass and momentum for Navier-Stokes equation. 

The derivation of the corresponding macroscopic equation requires multi-scale analysis. 

(Wolf Gladrow, 2000) 

  

 

 

 

  

Discretization  

 

         

 

 

 

 

 

Figure 1.2: Classical CFD versus LBM 

 

1.5 PROJECT OBJECTIVE 

 

To develop finite difference Lattice Boltzmann Scheme for the Natural Convection 

Heat Transfer 

 

1.6 PROJECT SCOPES 

 

The first project scope is to analysis heat transfer limit to natural convection 

only. The second project scope is the problem will be test at Rayleigh number, Ra =10
3
 

to 10
5
.This limitation due to Lattice Boltzmann Method (LBM) cam perform well at 

low Rayleigh number and at high Rayleigh number LBM having a problem. This 

selection high Rayleigh number is to show that this scheme can simulate problem at 

high Rayleigh number. For the last project scope is to simulate natural convection in a 

Partial Differential equation 

(Navier-Strokes Equation) 

Partial Differential equation     

(Navier-Strokes Equation) 

Ordinary differential Equation 

(Solved using standard 

numerical method) 

Discrete Model (Lattice 

Boltzmann Medels) 
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square cavity. Detail characteristic numerical value of the flow will be carrying out; 

isotherm line, stream line and average of Nusselt number where they occur will be 

compared. 

 

1.7 PROJECT BACKGROUND 

 

The lattice Boltzmann Method (LBM) is an alternative approach to the well-

known finite difference, finite element and finite volume techniques for solving the 

Navier-Strokes equations. LB scheme is a scheme evolved from the improvement of 

lattice gas automata (LGA) and inherits some features from its precursor, the LGA. The 

implementation of the Bhatnagar-Gross-Krook (BGK) approximation is a improvement 

to enhance the computational efficiency has been made for the LB method. The 

algorithm is simple and can also easily modify to allow for the application of other, 

more complex simulation component. In mathematics, finite difference methods are 

numerical methods for approximating the solution to difference equation using finite 

difference equation to approximate derivatives. Finite difference lattice Boltzmann 

method is obtained using second order Runge-Kutta (modified) Euler Method. 

 

1.8 THESIS OUTLINE 

 

The aim of this thesis is to study the methods of the lattice Boltzmann equations 

in order by using finite difference method. These subjects, newly emerged in 1980’s 

utilize the statistical mechanics of simple discrete models to simulate complex physical 

systems. The theory of lattice Boltzmann method in 4-discrete velocity and 9-discrete 

velocity are reviewed in detail.  

 

In the Chapter two, the concept of a distribution function is considered and the 

derivation and the theory of the classical Boltzmann equation are discussed briefly. 

Then the theory of lattice Boltzmann method and its coefficients from the Boltzmann 

equation (Chapman-Enskog expansion) are also presented.  

 

For the four discrete velocities is found in the isothermal model and for the 9-

discrete velocity, happen in thermal model that will discuss in chapter three. By using 4-
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type of discrete velocity, we can apply to develop Porous Couette flow problem for the 

thermal fluids problem. Using 9-discrete velocity model can apply in Poiseulle flow and 

Couette flow 

 

In Chapter four, the simulation by using Finite difference method was applied 

among the first approaches applied to the numerical solution of differential equations. 

This method is directly applied to the differential form of the governing equations. The 

finite difference is a second order equation upwind scheme.  

 

Finally in chapter five, conclusions and discussion on future studies are 

presented and also some of recommendations will elaborate in order to improve the 

project on future.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 INTRODUCTION 

 

For the literature review will consist the theory of Lattice Boltzmann Model 

(LBM) that a content are governing equation, basic principle of LBM, collide function 

Bhatnagar-Gross-Krook (BGK), equilibrium distribution function, time relaxation, 

discretization of microscopic velocity and lastly is a derivation of Navier-Strokes 

equation. For the derivation of Navier-Strokes equation was already state in Chapter 1. 

Beside, derivation of two type of boundary condition which are Bounce-back and also 

periodic also presented. For this chapter also, we state briefing about Isothermal Lattice 

Boltzmann Model which are Poiseulle Flow and Couette Flow and Thermal Lattice 

Boltzmann Model which is Porous Couette Flow.   

 

LBM is a computational fluid dynamics (CFD) method or alternative method to 

simulate the fluid problems especially to simulate the complex fluid flow problems 

including single and multiphase flow in complex geometries. The main objective to 

achieve is to create a connection between the microscopic and macroscopic dynamics. 

From the Navier-Strokes equation, we already know the density, velocity, pressure and 

etc. So, this is called macroscopic scale. But, for the Boltzmann equation, we only have 

the particles that moves to one place to another and called microscopic scale 
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Figure 2.1: General concept of Lattice Boltzmann 

Source: C.S. Nor Azwadi, 2007 

 

2.2 GOVERNING EQUATION 

 

From this equation, we can the relation between microscopic and macroscopic 

dynamics. The Boltzmann equation given is shown below:- 

 

 ( , ) ( , ) ( )f x c t t t f x t f         (2.1) 

 

Where   f = density distribution function 

  c = microscopic velocity 

             Ω = collision integral 

 

 

 

 

 

 

 

 
 

 
 

  

 

 

 
 

 

 

 
 

Moment of distribution function 

Macroscopic variables 

Density,velocity, pressure, etc. 

Statistical Mechanics 

Density distribution function, ( , )f x t   



10 

 

 

2.3 BASIC PRINCIPLE 

 

Basic principle of LBM is including streaming step and collision step. The 

particles move to another place in the variable direction with their velocities (streaming 

step) and after they meet to each other, the collision happens (collision step) and the 

particles will separate again. (Streaming step).Example is from the ‘snooker’. From this 

situation, means when a ball hit to another ball, its can firstly streaming and then it will 

collision and it become streaming again.  

 

 

 

Figure 2.2: Streaming and collision processes 

Source: C.S. Nor Azwadi, 2007 

 

It represents the minimal from of Boltzmann kinetic equation (Higuera and 

Jimenez, 1989) and the result is a very elegant and simple equation. (F.Kuznik et al. 

2007). Lattice Boltzmann equation is directly obtained from the lattice gas automata by 

taking ensemble average with the assumption of random phase and leads to the 

following equation. (Wolf Gladrow, 2000)  

 

 ( , , ) ( , , ) ( )f x c t c a t t t f x c t f          (2.2) 

 

Where ( , , )f x c t = the single particle distribution function with discrete velocity, c     

           ( )f = the lattice Boltzmann collision operator 

 

 

 

  

      Streaming 

  

Streaming 

  

    Collision 
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Distribution function 𝑓 𝑥, 𝑐, 𝑡  describe the number of particles at position 

𝑥,moving with velocity, 𝑐 at time, 𝑡. There are two conditions related to the distribution 

function; without collisions and with collisions. At a short time,∆𝑡  each particle would 

move from 𝑥 to 𝑥 + 𝑐∆𝑡 and each particle velocity would change from 𝑐 to 𝑐 + 𝑎∆𝑡 

where 𝑎 is the acceleration due to external forces on a particle at 𝑥 with a velocity𝑥. 

Hence, the number of molecules 𝑓 𝑥, 𝑐, 𝑡 𝑑𝑥𝑑𝑐 is equal to the number of molecules 

𝑓 𝑥 + 𝑐∆𝑡, 𝑐 + 𝑎∆𝑡, 𝑡 + ∆𝑡 𝑑𝑥𝑑𝑐 for the distribution without collisions. (N. A. C. 

Sidik, 2007). Therefore; 

 

 ( , , ) ( , , ) 0f x c t c a t t t dxdc f x c t                       (2.3) 

 

There will be a net difference between the number of molecules 𝑓 𝑥, 𝑐, 𝑡 𝑑𝑥𝑑𝑐 

and the number of molecules 𝑓 𝑥 + 𝑐∆𝑡, 𝑐 + 𝑎∆𝑡, 𝑡 + ∆𝑡 𝑑𝑥𝑑𝑐 if collision occurs 

between the molecules.  

 

This can be expressed by; 

 

 ( , , ) ( , , ) ( )f x c t c a t t t dxdc f x c t dxdc f          (2.4) 

 

Where Ω(𝑓)𝑑𝑥𝑑𝑐𝑑𝑡 is the collision operator. On dividing by 𝑑𝑐𝑑𝑡 , and letting 

𝑑𝑡 tends to zero  𝑑𝑡~ 0   give the Boltzmann equation for 𝑓 ; 

 

 ( )a

a a

f f f
c a f

t c c

  

  
      (2.5) 

   

Without collision; 

 

 

 𝑓 𝑥, 𝑐, 𝑡                                                       𝑓 𝑥 + 𝑐∆𝑡, 𝑐 + 𝑎∆𝑡, 𝑡 + ∆𝑡  
 

  

 

 At time, 𝑡         at time, ∆𝑡 
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With collision; 

 

 𝑓 𝑥, 𝑐, 𝑡                                                       𝑓 𝑥 + 𝑐∆𝑡, 𝑐 + 𝑎∆𝑡, 𝑡 + ∆𝑡  
 

 

 Ω(𝑓) 

  

At time, 𝑡    at time, ∆𝑡 
  

         

2.4 COLLISION INTEGRAL, Ω 

 

The BGK collision model assumes that the system is at near equilibrium state 

and the particle distribution function relaxes to its equilibrium state at a constant rate. It 

term refers to a collision operator used in the Boltzmann Equation and in the Lattice 

Boltzmann method, a Computational fluid dynamics technique. Boltzmann’s equation 

describes the evolution of molecules in rare gas. If no external force is present, then 

after a long time the gas should reach an equilibrium state. Boltzmann’s equation 

describes such behavior. Boltzmann conceived the H-theorem to explain how a many-

body system to approach equilibrium from an arbitrary non-equilibrium initial state. He 

derived this theorem based on the assumption of ‘molecular chaos’ where the two 

colliding molecule’s position and velocities were statistically uncorrelated or unrelated. 

(S. Succi, 2001) 

 

 
1

( ) ( )eqf f f


                                        (2.6) 

 

Boltzmann came out with the H-theorem where the value of distribution 

function will always tend to the equilibrium distribution function, f
eq

 during collision 

process. The distribution function f can be related to f
eq

 and τ is a relaxation parameter. 
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2.5 TIME RELAXATION 

 

To achieve the equilibrium, means τ is a relaxation parameter (time to reach 

equilibrium state during every collision process) and value of the time relaxation is 

between (0.5< τ <1). Below shown the time relaxation concept: 

 

 

      τ = 0.5 

                             τ = 0.6     

                              τ=0.8 

     τ=0.9 

                   τ=1.0  

 

Non-equilibrium  Equilibrium   Non-equilibrium 

 

Figure 2.3: Time relaxation concept 

 

The figure above show value of τ = 0.5 is the limit for the relaxation time. The 

value of time relaxation 𝜏 need to be more close to 1. The more close time relaxation 𝜏 

to 1, the more number of particles exchange to equilibrium state.  

 

2.6 DISCRETIZATION OF MICROSCOPIC VELOCITY 

 

For the discretization of microscopic velocity, from the Gauss-Hermitte 

integration, we can integrate from the continuous velocity to the 9-discrete velocity and 

also 4-discrete velocity. We focused on the two type of discrete velocity. Means that for 

the 9-discrete velocity happen in isothermal fluid flow (poiseulle flow and couette flow) 

while the 4-discrete velocity happen in thermal fluid flow (porous couette flow). 
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2.6.1. Isothermal Fluid Flow 

 

Figure below (Figure 2.4) shows the Lattice Boltzmann Isothermal Model 

(Poiseulle Flow and Couette flow)  

 

 

 

Figure 2.4: Lattice Boltzmann Isothermal Model 

Source: C.S. Nor Azwadi, 2007 

 

2.6.1.1 The Macroscopic Equation for Isothermal  

 

  By using chapmann-enskog expansion procedure, we can have the navier-stroke 

equations accurate in continuity equations and in momentum equation:  

 

          ∇. 𝒖 = 0                               (2.7) 

  

                        22 1
.

6

u
P

t

  
      

  
u u u                                    (2.8) 

 

 

 

1
2

3

4

5 98

7 6

Continuous velocity 

Gauss-Hermitte integration 
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The relation between the time relaxation τ, in microscopic level and viscocity of 

fluid ν, in macroscopic level is;  

       

 
2 1

6





       (2.9) 

 

2.6.2 Thermal Fluid Flow 

 

Figure 2.5 is shown the Lattice Boltzmann Thermal Model means Porous 

Couette Flow 

 

  

Figure 2.5: Lattice Boltzmann Thermal Model 

Source: C.S. Nor Azwadi, 2007 

 

2.6.2.1. The Macroscopic Equation for Thermal 

 

By using the chapmann-enskog expansion procedure, we can get the derivation 

equation for the energy equation. 

 

 21
.( ) ( )

2
g

T
T T

t



   


u  (2.10) 

 

 

 

 

 

Gauss-Hermitte integration  

Continuous velocity 
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Where:                    

 
1

3
2

f                   (2.11) 

 

 
1

2
g    (2.12) 

   

2.7 BHATNAGAR-GROSS-KROOK (BGK) 

 

BGK is a combination step between streaming process and collision process. 

These two processes are repeating one after another until all the distribution function 

relaxes to the equilibrium distribution function. (S. Succi, 2001) 

 

 ( , ) ( , )
eqf f

f x c t t t f x t



        (2.13) 

 

Streaming process Collision process 

 

fi: density distribution function 

τ: relaxation parameter 

f
eq

: equilibrium distribution 

 

2.8 BOUNDARY CONDITION  

 

The boundary conditions are responsible to determining these unknown 

distributions. Basically, there are two ways to define boundary conditions; placing the 

boundary on grid modes or placing the boundary on links (Xiaoyi he et al. 1995). 

Lattice Boltzmann method have several types of boundary conditions.  
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2.8.1 Bounce-Back 

 

The initial approach to simulate boundary was to follow the methods used in the 

lattice Gas Approach. The simplest boundary condition is called bounce back boundary 

conditions where all the distribution functions at the boundaries back along to the link 

they arrived. The bounce-back boundary condition for lattice Boltzmann simulations is 

evaluated for flow about an infinite periodic array of cylinders. The solution is 

compared with results from a more accurate boundary condition formulation for the 

lattice Boltzmann method and with finite difference solutions. The bounce-back 

boundary condition is used to simulate boundaries of cylinders with both circular and 

octagonal cross-sections.  Figure 2.6 below show the schematic plot of the bounce-back 

boundary condition. (Gallivan, Martha A., Noble, David R, Georgiadis, John G, 

Buckius, Richard O, 1997) 

 

 

 

Figure 2.6: Schematic plot of bounce back boundary condition 

 

Source: Frisch et al., 1986 

 

http://www.sandia.gov/eesector/gs/gc/hws/saltfing.htm#Frisch_etal_1986
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 2.8.2 Periodic Boundary  

 

Periodic boundary conditions typically intended to isolate bulk phenomena from 

the actual boundaries of the real physical system and consequently they are adequate for 

physical phenomena where surface effect play a negligible role. Periodic boundary 

conditions are applied directly to the particle populations, and not to macroscopic flow 

variables. They are generally useful for capturing flow invariance in a given direction. If 

a uniform body force is used instead of an imposed pressure gradient, periodic 

conditions can be used in place of macroscopic inflow/outflow conditions in the stream 

wise direction [Robert S. Maier et al.1996]. This boundary condition can be 

implementing by bring the same distribution function that leaving the outlet to the inlet. 

This can review with reference to Figure 2.7 that show a particles flow. 

  

      Rigid body 

  

 

                 Periodic BC Fluid flow Periodic BC 

 

 

 

Figure 2.7: Periodic boundary condition 

 

 

2.9 THEORY OF POISEULLE FLOW 

 

The Hagen-Poiseuille equation is a physical law that describes slow viscous 

incompressible flow through a constant circular cross-section. It is also known as the 

Hagen-Poiseuille law, Poiseuille law and Poiseuille equation. The Hagen Poiseuille 

equation can be derived from the Navier-Stokes equations. The derivation of 

Poiseuille's Law is surprisingly simple, but it requires an understanding of viscosity. 

When two layers of liquid in contact with each other move at different speeds, there will 
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be a force between them. (S. P. Sutera, R. Skalak,1993). This force is proportional to 

the area of contact A, the velocity difference in the direction of flow Δvx/Δy, and a 

proportionality constant η and is given by 

 
cos ,

x
vis ity topF A

y





 


  (2.14) 

 

The negative sign is in there because we are concerned with the faster moving 

liquid (top in figure). 

 

2.10 THEORY OF COUETTE FLOW 

In fluid dynamics, Couette flow refers to the laminar flow of a viscous fluid in 

the space between two parallel plates, one of which is moving relative to the other. The 

flow is driven by virtue of viscous drag force acting on the fluid and the applied 

pressure gradient parallel to the plates. 

 

Couette flow is frequently used in undergraduate physics and engineering 

courses to illustrate shear-driven fluid motion. The simplest conceptual configuration 

finds two infinite, parallel plates separated by a distance h. One plate, say the top one, 

translates with a constant velocity u0 in its own plane. Neglecting pressure gradients, the 

Navier-Stokes equations simplify to 

 

 

2

2
0

d u

dy
   (2.15) 

 

Where y is a spatial coordinate normal to the plates and u (y) is the velocity 

distribution. This equation reflects the assumption that the flow is uni-directional. That 

is only one of the three velocity components (u, v, w) is non-trivial. If y originates at the 

lower plate, the boundary conditions are u (0) = 0 and u (h) = u0. The exact solution 

found by integrating twice and solving for the constants using the boundary condition. 

(B.R. Munson, D.F. Young, and T.H. Okiishi, 2002) 
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 0( )
y

u y u
h

   (2.16) 

 

 

2.11 DEFINITION OF RAYLEIGH NUMBER, REYNOLDS NUMBER AND 

PRANDTL NUMBER 

 

2.11.1 Rayleigh Number 

 

The Rayleigh number for a fluid is a dimensionless number associated with buoyancy 

driven flow (also known as free convection or natural convection). When the Rayleigh 

number is below the critical value for that fluid, heat transfer is primarily in the form of 

conduction; when it exceeds the critical value, heat transfer is primarily in the form of 

convection. The Rayleigh number is describes the relationship between buoyancy and 

viscosity within a fluid and the Prandtl number which describes the relationship 

between momentum diffusivity and thermal diffusivity. 

For free convection near a vertical wall, this number is 

   

 3Pr Pr ( )x x s

g
Ra Gr T T x




    (2.17) 

 

 

In the above, the fluid properties Pr,𝜈, 𝛼 and 𝛽 are evaluated at the film temperature, 

which is defined as  

 

 
2

s
f

T T
T 

   (2.18) 
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2.11.2 Reynolds Number 

 

 Reynolds number can be defined for a number of different situations where a 

fluid is in relative motion to a surface. These definitions generally include the fluid 

properties of density and viscosity, plus a velocity and a characteristic length or 

characteristic dimension.  

 For flow in a pipe or a sphere moving in a fluid the diameter is generally used 

today. The velocity may also be a matter of convention in some circumstances, notably 

stirred vessels. 

  

 Re
VD VD QD

A



  
    (2.19) 

 

2.11.3 Prandtl Number 

 

The Prandtl number is a dimensionless number approximating the ratio of 

momentum diffusivity (kinematics viscosity) and thermal diffusivity. It is defined as:  

 

 Pr
pC

k




         (2.20) 

 

Typical values for Pr are: 

i. Around 0.7-0.8 for air and many other gases 

ii. Around 0.16-0.7 for mixture of noble gases or noble gases with hydrogen 

iii. Around 7 for water 

iv. Between 100 and 40000 for engine oil 

v. Between 4 and 5 for R-12 refrigerant 

vi. Around 0.015 for mercury 
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 Prandtl number is related to the thickness of the momentum and thermal 

boundary layer. When Pr is small, means that the heat diffuses very quickly compared 

to the velocity (momentum). This means that for liquid metals the thickness of the 

thermal boundary layer is much bigger than the velocity boundary layer. 

 

 



 

 

 

 

 

CHAPTER 3 

 

 

METHODOLOGY 

 

 

For this chapter, we will discuss about the simulation result of poiseulle flow, 

Couette flow and Porous Couette Flow. We also discuss about finite difference method 

to simulate natural convection in a square cavity. 

 

3.1 ALGORITHM   

 

The algorithm flowchart for LBM is shown in Figure 3.1. It consists of two 

processes; advection process and collision process. The initial values of density 

distribution 𝑓 are specified at each grid point. Then, the system evolves in the following 

steps. 

 

i. The advection term is solved by applying the streaming process of the density 

distribution function. 

ii. Then the collision process is solved by BGK collision model. 

iii. Next step is to define the boundary conditions based on the bounce back 

boundary conditions.  

iv. The convergence criterion is based on steady state conditions and will discuss in 

Chapter 4. 
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Figure 3.1: Original LBM algorithm flowchart 
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3.2 FLOW CHART FOR THE THESIS 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theory of lattice Boltzmann 

i. Governing equation 

ii. Basic principle 

iii. Collision integral 

iv. Time relaxation 

v. Bhatnagar-Gross-Krook (BGK) 

vi. Discretization of microscopic velocity 

vii. Derivation of Navier-stroke equation 

Isothermal fluid flow 

i. Simulate Poiseulle flow 

ii. Simulate Coutte flow 

Extension to thermal LBM 

i. Theory of thermal LB model 

ii. Simulate Porous Coutte flow 

Theory of finite difference 
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Figure 3.2: Flow chart for the relation in the thesis 

 

 

 

 

 

 

 

 

 

Theory of finite difference 

Simulate the natural convection in 

a square cavity by using Fortran 90  
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Graphical the result by using 

AVS/Express Visualization 

Edition 

 

End 

Change value of 

Δt from 0.01 to 

0.001, 0.0001  
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3.3 SIMULATION RESULT OF POISEULLE FLOW  

 

Numerical simulation for the Poiseulle flow driven by a pressure gradient was 

carried out to test the validity of the isothermal lattice Boltzmann model. In this case the 

pressure gradient is set between the inlet and outlet end of the channel. This is done by 

setting the density (proportional to the pressure) at slightly different values between the 

two ends. The velocity is not set to any value. The well-known bounce-back boundary 

condition is applied at the top and bottom wall. 

 

Letting the system evolved, it is observed that it reaches a steady state 

corresponding to the parabolic solution of the channel flow. The criterion of steady state 

is set by 

 

                               
   , 1 , 2i ii x

i

f x t f x t

i M N

   

 




                                 (3.1) 

 

Where M and N are mesh number in x and y direction respectively. It usually 

takes a few thousand iterations to reach a steady state depending on the value of the 

viscosity and the boundary conditions. Two type of measurement were taken in the 

simulation. One is the measurement of velocity, u .The other is the measurement of 

pressure along the channel. All the measurements were taken after the steady state is 

attained. (C.S. Nor Azwadi, 2007) 
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Figure 3.3: Poiseulle flow graph 

 

The density change between the two ends along the centerline of the channel is a 

straight line as shown in Figure 3.3 .In the inset the velocity profile across the channel is 

displayed for the stationary state. The figure corresponds to a simulation using lattice 

size (4x33) means XD = 4, YD = 33 (corresponding to L = 30) and τf = 0.55  

 

The combination of results shows that, not only the velocity profile is correct 

(parabolic shape) but also the pressure distribution is linear along the channel length.   

 

3.4  SIMULATION RESULT OF COUETTE FLOW   

 

For this section, a numerical experiment involving the time evolution of the 

Couette flow is presented, in which the top plate moves with constant velocity, while 

the bottom plate is held fixed. The initial conditions correspond to a null velocity 

everywhere expect on the top boundary, where the velocity is u = (1, 0). The x-

component of the velocity on the top plate is maintained at U=1.00 (top plate boundary 

condition in LBM units), whereas the bottom one is at rest. No pressure gradient is 

included for this case. The channel is L= 40. 
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Figure 3.4: Couette flow graph 

 

Figure 3.4 shows a sequence of normalized velocity profiles for different times. 

The lattice size for this experiment is (4x32) where are XD = 4, YD = 32 and the 

relaxation time is τf = 1.000. The velocity profiles are drawn at times t= 200, 445, 600, 

1000, 1500 in LBM units. Periodic boundary conditions are implemented in the x-

direction. The solution for the steady state case well known and corresponds to the 

velocity increasing linearly from zero at the bottom to U at the top plate. 

 

3.5 SIMULATION RESULT OF POROUS COUETTE FLOW 

 

For this section, we shall apply the newly developed model to simulate heat 

transfer in porous coquette flow problem. 

 

Consider two infinite parallel plates separated by a distance of L. The upper cool 

plate at temperature TC moves at speed U and the lower hot plate at temperature TH is 

stationary. A constant normal flow of fluid is injected through the bottom hot plate and 

withdrawn at the same rate from the upper plate. The analytical solution of the velocity 

field in the steady state is given by 
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Re
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1

y
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e





                                      (3.2) 

 

Where Re is the Reynolds number based on the inject velocity,vo. The 

temperature profile in the steady state satisfies 

 

                                            

Pr Pr Re
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1
Δ

1

y

L

c

e
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e

 
  

  
 

                         (3.3) 

 

Where ΔT=TH-Tc is the temperature difference between the hot and cool walls.  

Pr=v/χ is the Prandtl number. Another dimensionless parameter id the Rayleigh number 

defined by 

 

                                                
3Δg TL

Ra



                                     (3.4) 

 

 

 

Figure 3.5: Temperature profile at Ra=100 and Re=10 and Pr=0.2, 0.8, and 1.5 
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Figure 3.6: Temperature profile at Pr = 0.71 and Ra = 100 and Re=5, 10, 20, and 30 

 

 

 

Figure 3.7: Velocity and temperature profile at Re=10, Pr = 0.71 and Ra = 60000 
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Periodic boundary conditions are used at the entrance and exit of the channel 

and the non-equilibrium bounce back boundary conditions for the velocity. The 

normalized temperature profile for Ra=100, Re=10 and Pr =0.2, 0.8, and 1.5 are shown 

in figure 3.5. For the figure 3.6 shows the result for the Pr=0.71, Ra= 100 and Re= 5, 

10, 20 and 30. They agree well with the analytical solution. To show that this model is 

suitable and numerically stable for a wide range of Rayleigh number, the computations 

for Ra=10 till Ra=60000 at Pr=0.71 and Re=10 have been done. The results are shown 

in figure 3.7. The results presented above indicating that the numerical stability of the 

new model is higher than the previous proposed 4-velocity lattice model.
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CHAPTER 4 

 

 

RESULT AND DISCUSSION 

 

 

4.1 FINITE DIFFERENCE LATTICE BOLTZMANN METHOD 

 

One possible way to release the constraint of the lattice symmetry is to use the 

fnite difference scheme for the lattice Boltzmann equation. For this section, the 

discretization procedure of LBE is demonstrated with finite difference technique. The 

temporal discretization is obtained using second order Rungge-Kutta (modified) Euler 

method. The time evolution of particle distributions is then derived by 
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                (4.3) 

 

The second order Equations of 4.4~4.7 upwind schemes can be applied to 

calculate the spatial gradient in equation 4.1; 
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The combination of these specifics space and time discretization results in 

second order in space and second order in time. (C.S.Nor Azwadi) 

 

4.2 FINITE DIFFERENCE THERMAL LATTICE BOLTZMANN METHOD 

 

The evolution of internal energy density distribution is given by; 
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The time space can also be discretised using second order Rungge-Kutta 

(modified) Euler method. The time evolution of particle distributions is then given by; 
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4.3 NATURAL CONVECTION IN A SQUARE CAVITY 

 

The natural convection in a square cavity is brought to test the validity of finite 

difference thermal lattice Boltzmann model using the newly developed 4-velocity model 

for the internal energy density equilibrium density distribution function. The problem is 

a two dimensional square cavity with side wall is a difference temperature which are a 

hot wall on the left and the cold wall on the right side. Meanwhile, the top side and the 

bottom side walls being adiabatic. The temperature difference between walls show a 

temperature gradient in a fluid and also consequently density difference induces a fluids 

motion. This called convection. 

 

 In this simulation, the Boussinesq approximation is applied to the buoyancy 

force term. With this approximation, it assumed that all fluid properties β and υ can be 

considered as constant in the body force term except for the temperature dependence of 

the density in the gravity term.  

 

 ( )mG g T T j    (4.11) 

         

 

 Where β is the thermal expansion coefficient, g is the acceleration due to 

gravity, 𝑇𝑚 is the average temperature and j is the vertical direction opposite to that of 

gravity. The dynamical similarity depends on two dimensionless parameters; the prandtl 

number, Pr and the Rayleigh number, Ra defined by 

 

 Pr



                                 (4.12) 

                      

 
3Δg TL

Ra
x




  (4.13) 
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Figure 4.1: The schematic for natural convection in a square cavity. 

 

Source: C.S. Nor Azwadi, 2007 

 

The simulation were done for Rayleigh number from Ra=10
3
 to Ra=10

5
.The 

mesh size of 51x51, 101x101, 201x201 are used for Ra=10
3
, Ra=10

4 
and Ra=10

5 

respectively. In this simulation, Prandlt number, Pr is set to be 0.71.The benchmark 

result of the natural convection in a square cavity was based on the solution of Navier 

Strokes equation by Davis (1983). Figure below show the streamlines and isotherms for 

the simulation at Rayleigh number, Ra=10
3
 to Ra=10

5
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Figure 4.2: Streamline and isotherms for the simulation of natural convection in a 

square cavity for Ra=10
3 

\
 

At the beginning of the simulation for Ra= 10
3
, vortex appear at the center of the 

cavity with circular shape. The isotherms are almost vertically parallel to the wall 

indicating that conduction mode heat transfer mechanism is dominant. From figure 4.2, 

streamline and isotherms can see clearly. 

 

 

 

   

Figure 4.3: Streamline and isotherms for the simulation of natural convection in a 

square cavity for Ra=10
4 
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For Ra= 10
4
 from figure 4.3, circular vortex at the center of cavity was distorted 

and its shape change to horizontal oval due to the connection effect. Meanwhile, 

isotherms start to be horizontally parallel to the wall at the cavity center. This effect due 

to the heat transfer mechanisms are mixed conduction and convection.  

 

4.4  EXPECTED RESULT FOR THE SIMULATION OF NATURAL 

CONVECTION IN A SQUARE CAVITY AT RA=10
5
 

 

Figure 4.4 show that the streamline and isotherms for the simulation at 

Ra=10000 that have done by Azwadi. It is show that the increasing the Rayleigh 

number to Ra=10
5
, a vortex oval shape appear at the left of the cavity when the system 

achieve equilibrium condition. All isotherms are almost horizontally parallel to the wall 

indicating that the convection is the main heat transfer mechanism.  

 

      

 

Figure 4.4: Streamline and isotherms for the simulation of natural convection in a 

square cavity for Ra=10
5 
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Table shows the comparison the average Nusselt number throughout the cavity 

by using finite difference scheme for Ra=10
3
 to Ra=10

6 

 

Table 4.1: Comparison among the present result with other LBM. 

 

Rayleigh number, ra 10
3
 10

4
 10

5
 10

6
 

 X.He et al (1998) 1.117 2.244 4.520 - 

 Peng et al.(2003) 1.117 2.235 4.511 - 

Nuave Davis (1883) 1.116 2.234 4.510 8.798 

 Azwadi (2007) 1.117 2.236 4.549 8.723 

 Rosdzimin (2008) 1.116 2.201 4.249 - 

 Present (2009) 1.116 1.737 - - 

 

From the table 4.1 shows the predicted results are compared with the results that 

obtained by original double distribution function thermal lattice Boltzmann scheme        

( X.He et al 1998), the simplified scheme (Peng et al. 2003), the solution by Navier-

Strokes equation ( Davis 1983), the simplified thermal (Azwadi 2007) and lastly by 

using CIP-LBM scheme by (Rosdzimin 2008). 

 

For all the value of Rayleigh number have been considered in the present 

analysis where the average Nusselt number have been predicted ±0.5 error compare to 

the previous result and can be accepted for the real engineering applications. 

 

The evolution of lattice Boltzmann equations have been discretised using second 

order upwind finite difference. From that equation, as expected that the boundary layer 

is thicker than the velocity boundary layer for different Rayleigh number simulations. 

The flow patterns that including the boundary layers and vortices can be seen clearly in 

Figure 4.2, Figure 4.3 and also in Figure 4.4. The result obtained demonstrate that by 

using double distribution function thermal lattice Boltzmann model is very efficient 

procedure to study flow and heat transfer in a differentially heated square enclosure. 
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CHAPTER 5 

 

 

CONCLUSION AND RECOMMENDATIONS 

 

 

5.1 CONCLUSION 

 

In chapter one, have been introduced about the Navier-stokes equation and 

introduced the lattice Boltzmann method (LBM). In literature review, the theory of 

lattice Boltzmann method (LBM) from the Boltzmann equation has been discussed. The 

theory of the classical Boltzmann equation is also discussed.  

 

In methodology, the algorithm of the advection and collision process was 

explained detail in chapter three. Simulation result for the isothermal flow which are 

Poiseulle flow and Couette flow have been discuss. Beside, the simulation result for the 

thermal flow which is Porous Couette flow also has been performed well.  

 

Chapter four concerned with the combination of the finite difference scheme 

with the lattice Boltzmann method. Results for all the above fluid flow problems show 

that LBM is a reliable CFD technique and agreed with the analytical solution and 

conventional approach.  

 

Objective for this thesis was achieved and already discussed in chapter four. 

Simulation of natural convection in a square cavity by using finite difference method is 

successfully done for the Ra=10
3
, Ra=10

4
. In this thesis, the advection term in both 

density and internal energy density equations has been discretised by using second order 

upwind scheme and applied in the simulation of natural convection in a square cavity. 
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By using finite difference scheme, the thickness of thermal boundary layer decrease as 

Rayleigh number increase.  

 

For the simulation at Rayleigh number, Ra=10
5
 occur some problem. Simulation 

at high Rayleigh number will take a longer time to simulate. In this case, Ra=10
5
 need a 

longer time, more than one month to simulate. Because of lack of time, the simulation is 

not done yet. To increase the simulation time, we were forced to apply small value of 

∆t. This problem proposed to be solved in recommendation for future work.  

 

5.2 RECOMMENDATIONS 

 

 Modification of finite difference lattice Boltzmann scheme can be done by 

solving the non advection terms using higher order Rungge-Kutta method in order to 

reduce the simulation time by increasing the accuracy of time. Using this advantage, 

finite difference lattice Boltzmann scheme can be extended for simulation of any fluid 

flows problem or heat transfer problem using the non uniform grid size.  
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APPENDIX B 

FINITE DIFFERENCE SIMULATION 

 

 

 !***********************************************************!

  Finite Difference lattice Boltzmann                  

 

 !***********************************************************!  

program cavity 

implicit real*8 (a-h,o-z) 

parameter (ij = 330, kkk = 8) 

common/var1/f(0:ij,0:ij,0:kkk),feq(0:ij,0:ij,0:kkk),g(0:ij,0:ij,0:k

kk),geq(0:ij,0:ij,0:kkk)   

common /var2/ cx(0:kkk),cy(0:kkk),dx(0:kkk),dy(0:kkk)    

common /var3/ u(ij,ij),v(ij,ij),temp(ij,ij) 

common /var4/ rho(ij,ij)    

common /var5/ tmp(0:ij,0:ij,0:kkk),ff(0:ij,0:ij,0:kkk) 

common/var6/fn(0:ij,0:ij,0:kkk),fx(0:ij,0:ij,0:kkk),fy(0:ij,0:ij,0:

kkk),fxn(0:ij,0:ij,0:kkk),fyn(0:ij,0:ij,0:kkk) 

common/var7/gn(0:ij,0:ij,0:kkk),gx(0:ij,0:ij,0:kkk),gy(0:ij,0:ij,0:

kkk),gxn(0:ij,0:ij,0:kkk),gyn(0:ij,0:ij,0:kkk) 

common /con1/ delt,ra, pr, th ,tc,gra 

common /con2/ lx,ly 

common /con3/ ntin,nstep,totalg     

common/con4/pi,tauf,rhoint,delx,dely,delx2,dely2,rtauf,xnyu,chi,tau

g,rtaug     

integer lx,ly,ntin,nstep,i,j,k,l 

integer ::unit, ierror 

character (len=6)::filename 

 

real vel(ij,ij) 

 

lx = 51 

ly = 51 

ra = 1000.d0 

pr = 0.71d0 

th = 1.0d0 

tc = 0.0d0 

ntin = 10 

delt = 0.001d0 

rhoint = 1.0d0 

uinit = 0.0d0 

 

write(*,*)'lx',lx 

write(*,*)'ly',ly 

write(*,*)'ra',ra 

write(*,*)'pr',pr 

write(*,*)'th',th 

write(*,*)'tc',tc 

write(*,*)'ntin',ntin 

write(*,*)'delt',delt 

write(*,*)'rhoint',rhoint 

write(*,*)'uinit',uinit 

gra = (0.0557**2)/(lx-1) 

xnyu = (gra*((lx-1)**3)*(th-tc)*pr/ra)**0.5 
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tauf = 3*xnyu 

chi = xnyu/pr 

taug = chi 

rtauf = 1.0/tauf 

rtaug = 1.0/taug 

   

write (6,*) 'tauf = ',tauf  

write (6,*) 'rtauf = ',rtauf 

write (6,*) 'taug = ',taug  

write (6,*) 'rtaug = ',rtaug 

write (6,*) 'gra = ',gra 

write (6,*) 'is everything ok?' 

read (*,*) ok 

 

pi = atan(1.0d0)*4.0d0 

write (6,*) 'calculation start' 

 

call initial 

 

do nstep = 1, 5000000 

  

call fin  

call output 

        call equilibrium 

   

  if (mod(nstep,ntin) .eq. 0) then 

  totalg=0.0 

  do i = 1,lx 

   do j = 1,ly 

    do k=1,4 

    totalg=totalg+g(i,j,k) 

    end do 

   end do 

  end do 

   

   write(*,*) nstep 

   write(*,10)totalgn-totalg10    

format ('Convergence= ',F10.7) 

 

  end if 

 

  if (mod(nstep,ntin) .eq.1) then 

  totalgn=0.0 

  do i = 1,lx 

   do j = 1,ly 

    do k = 1,4 

    totalgn=totalgn +g(i,j,k) 

    end do 

   end do 

  end do 

  end if 

 

    

!***** if converge*****::! 

  if (abs(totalgn - totalg) .le. 1.0e-5 )  then  

  go to 100 

  end if 
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  end do 

   

100  write(*,*)'end of iteration' 

   

open(unit=30,file='uvel1.dat',status='replace',action='write',iosta

t=ierror) 

write(30,*)' Thermal Diffusivity      ',chi 

write(30,*)' Rayleigh Number          ',ra 

write(30,*)' Prandtl Number           ',pr 

write(30,*)' Hydro Relax. Time        ',tauf 

write(30,*)' Termo Relax. Time        ',taug 

write(30,*)' Solution Converge at     ',nstep 

write(30,*)' Delta t       ',delt 

write(30,*)' Mesh Size           ', lx, ly 

 

 

do j = 1,ly  

 

write(30,*) u((lx+1)/2,j)*(ly-1)/chi 

 

end do 

 

close(30) 

 

open(unit=31,file='vvel1.dat',status='replace',action='write',iosta

t=ierror) 

do i = 1,lx  

 

write(31,*) v(i,(ly+1)/2)*(ly-1)/chi 

 

end do 

 

close(31) 

 

open(unit=32,file='variables.dat',status='replace',action='write',i

ostat=ierror) 

write(32,*)'x-vel, y-vel, temp' 

do j = 1,ly 

do i = 1,lx  

 

write(32,*) u(i,j)*(ly-1)/chi,v(i,j)*(ly-1)/chi,temp(i,j) 

 

  end do 

  end do 

 

  close(32) 

  

  

  

 stop 

 end 

 

 

==================================================================

   

  subroutine initial 
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=================================================================== 

implicit real*8 (a-h,o-z) 

parameter (ij = 330, kkk = 8) 

common/var1/f(0:ij,0:ij,0:kkk),feq(0:ij,0:ij,0:kkk),g(0:ij,0:ij,0:k

kk),geq(0:ij,0:ij,0:kkk)   

common /var2/ cx(0:kkk),cy(0:kkk),dx(0:kkk),dy(0:kkk)    

common /var3/ u(ij,ij),v(ij,ij),temp(ij,ij) 

common /var4/ rho(ij,ij)    

common /var5/ tmp(0:ij,0:ij,0:kkk),ff(0:ij,0:ij,0:kkk) 

common/var6/fn(0:ij,0:ij,0:kkk),fx(0:ij,0:ij,0:kkk),fy(0:ij,0:ij,0:

kkk),fxn(0:ij,0:ij,0:kkk),fyn(0:ij,0:ij,0:kkk) 

common/var7/gn(0:ij,0:ij,0:kkk),gx(0:ij,0:ij,0:kkk),gy(0:ij,0:ij,0:

kkk),gxn(0:ij,0:ij,0:kkk),gyn(0:ij,0:ij,0:kkk) 

common /con1/ delt,ra, pr, th ,tc,gra 

common /con2/ lx,ly 

common /con3/ ntin,nstep,totalg     

common/con4/pi,tauf,rhoint,delx,dely,delx2,dely2,rtauf,xnyu,chi,tau

g,rtaug     

integer lx,ly,ntin,nstep,i,j,k,l 

integer ::unit, ierror 

character (len=6)::filename 

 

real w(0:kkk) 

 

delx = 1.0 

dely = 1.0 

dely2 = dely*dely 

delx2 = delx*delx 

   

 

!setup physical data! 

cx(0) = 0.0d0 

cy(0) = 0.0d0 

 

do k = 1,8 

w(k) = sqrt (2.0d0) 

if(mod(k,2) .eq. 1) w(k) = 1.0d0 

 cx(k) = w(k)*cos((k-1)*pi/4.0d0) 

 cy(k) = w(k)*sin((k-1)*pi/4.0d0)  

  end do 

 

dx(1) = 1.0d0 

dy(1) = 1.0d0 

dx(2) = -1.0d0 

dy(2) = 1.0d0 

dx(3) = -1.0d0 

dy(3) = -1.0d0 

dx(4) = 1.0d0 

dy(4) = -1.0d0 

 

  do i = 1,lx 

   do j = 1,ly 

    rho(i,j) = rhoint 

 

    if (i.eq.1) then 

     u(i,j) = 0.0 

     v(i,j) = 0.0 
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     temp(i,j) = th 

    else 

     u(i,j) = 0.0 

     v(i,j) = 0.0 

     temp(i,j) = tc 

    end if 

 

   end do 

  end do 

 

 

 

  call equilibrium 

 

  do i = 0,lx+1 

   do j = 0,ly+1 

    do k = 0,8 

     f(i,j,k) = feq(i,j,k) 

     fx(i,j,k) =0.0 

     fy(i,j,k) =0.0 

    end do 

   end do 

  end do 

 

  do i = 0,lx+1 

   do j = 0,ly+1 

    do k = 1,4 

     g(i,j,k) = geq(i,j,k) 

     gx(i,j,k) =0.0 

     gy(i,j,k) =0.0 

    end do 

   end do 

  end do 

  return 

  end 

 

 

=================================================================== 

  subroutine equilibrium 

===================================================================  

implicit real*8 (a-h,o-z) 

parameter (ij = 330, kkk = 8) 

common/var1/f(0:ij,0:ij,0:kkk),feq(0:ij,0:ij,0:kkk),g(0:ij,0:ij,0:k

kk),geq(0:ij,0:ij,0:kkk)   

common /var2/ cx(0:kkk),cy(0:kkk),dx(0:kkk),dy(0:kkk)    

common /var3/ u(ij,ij),v(ij,ij),temp(ij,ij) 

common /var4/ rho(ij,ij)    

common /var5/ tmp(0:ij,0:ij,0:kkk),ff(0:ij,0:ij,0:kkk) 

common/var6/fn(0:ij,0:ij,0:kkk),fx(0:ij,0:ij,0:kkk),fy(0:ij,0:ij,0:

kkk),fxn(0:ij,0:ij,0:kkk),fyn(0:ij,0:ij,0:kkk) 

common/var7/gn(0:ij,0:ij,0:kkk),gx(0:ij,0:ij,0:kkk),gy(0:ij,0:ij,0:

kkk),gxn(0:ij,0:ij,0:kkk),gyn(0:ij,0:ij,0:kkk) 

common /con1/ delt,ra, pr, th ,tc,gra 

common /con2/ lx,ly 

common /con3/ ntin,nstep,totalg     

common/con4/ 

pi,tauf,rhoint,delx,dely,delx2,dely2,rtauf,xnyu,chi,taug,rtaug     
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integer lx,ly,ntin,nstep,i,j,k,l 

integer ::unit, ierror 

character (len=6)::filename 

 

real u2(0:ij,0:ij) 

 

  

do i = 1,lx 

 do j = 1,ly 

  u2(i,j) = u(i,j)**2 + v(i,j)**2 

  feq(i,j,0) = rho(i,j)*(1.0 - 3.0/2.0*u2(i,j))*4.0/9.0 

 do l = 1,4 

  k = l*2    ; dir = cx(k)*u(i,j) + cy(k)*v(i,j) 

  feq(i,j,k) = rho(i,j)*(1. + 3.*dir + 9./2.*dir**2 - 

3./2.*u2(i,j))/36. 

  k = l*2 - 1; dir = cx(k)*u(i,j) + cy(k)*v(i,j) 

  feq(i,j,k) = rho(i,j)*(1. + 3.*dir + 9./2.*dir**2 - 

3./2.*u2(i,j))/9. 

     end do 

   end do 

  end do 

 

do i = 1,lx 

 do j = 1,ly 

 do k = 1,4 

  tmpg = dx(k)*u(i,j) + dy(k)*v(i,j) 

  geq(i,j,k) = rho(i,j)*temp(i,j)*(1 + tmpg )/4 

    end do 

   end do 

  end do 

  return 

  end  

 

==================================================================

  subroutine fin 

==================================================================  

implicit real*8 (a-h,o-z) 

parameter (ij = 330, kkk = 8) 

common/var1/ 

f(0:ij,0:ij,0:kkk),feq(0:ij,0:ij,0:kkk),g(0:ij,0:ij,0:kkk),geq(0:ij

,0:ij,0:kkk)   

common /var2/ cx(0:kkk),cy(0:kkk),dx(0:kkk),dy(0:kkk)    

common /var3/ u(ij,ij),v(ij,ij),temp(ij,ij) 

common /var4/ rho(ij,ij)    

common /var5/ tmp(0:ij,0:ij,0:kkk),ff(0:ij,0:ij,0:kkk) 

common/var6/fn(0:ij,0:ij,0:kkk),fx(0:ij,0:ij,0:kkk),fy(0:ij,0:ij,0:

kkk),fxn(0:ij,0:ij,0:kkk),fyn(0:ij,0:ij,0:kkk) 

common/var7/gn(0:ij,0:ij,0:kkk),gx(0:ij,0:ij,0:kkk),gy(0:ij,0:ij,0:

kkk),gxn(0:ij,0:ij,0:kkk),gyn(0:ij,0:ij,0:kkk) 

common /con1/ delt,ra, pr, th ,tc,gra 

common /con2/ lx,ly 

common /con3/ ntin,nstep,totalg     

common/con4/ 

pi,tauf,rhoint,delx,dely,delx2,dely2,rtauf,xnyu,chi,taug,rtaug     

integer lx,ly,ntin,nstep,i,j,k,l 

integer ::unit, ierror 

character (len=6)::filename 
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totalf = 0.0 

if (nstep .ne. 1) then 

 do j = 1,ly 

  do k = 0,8 

 

  f(0,j,k) = 2.0*f(1,j,k) - f(2,j,k) 

   f(lx+1,j,k) = 2.0*f(lx,j,k) - f(lx-1,j,k) 

   end do 

  end do 

 

  do i = 1,lx 

   do k = 0,8 

   f(i,0,k) = 2.0*f(i,1,k) - f(i,2,k) 

   f(i,ly+1,k) = 2.0*f(i,ly,k) - f(i,ly-1,k) 

   end do 

  end do 

 

  do k = 0,8 

   f(0,0,k) = 2.0*f(1,1,k) - f(2,2,k) 

   f(0,ly+1,k) = 2.0*f(1,ly,k) - f(2,ly-1,k) 

   f(lx+1,0,k) = 2.0*f(lx,1,k) - f(lx-1,2,k) 

   f(lx+1,ly+1,k) = 2.0*f(lx,ly,k) - f(lx-1,ly-1,k) 

  end do 

 

  do j = 1,ly 

   do k = 0,8 

 

   fx(0,j,k) = 2.0*fx(1,j,k) - fx(2,j,k) 

   fx(lx+1,j,k) = 2.0*fx(lx,j,k) - fx(lx-1,j,k) 

   end do 

  end do 

 

  do i = 1,lx 

   do k = 0,8 

   fx(i,0,k) = 2.0*fx(i,1,k) - fx(i,2,k) 

   fx(i,ly+1,k) = 2.0*fx(i,ly,k) - fx(i,ly-1,k) 

   end do 

  end do 

 

  do k = 0,8 

   fx(0,0,k) = 2.0*fx(1,1,k) - fx(2,2,k) 

   fx(0,ly+1,k) = 2.0*fx(1,ly,k) - fx(2,ly-1,k) 

   fx(lx+1,0,k) = 2.0*fx(lx,1,k) - fx(lx-1,2,k) 

   fx(lx+1,ly+1,k = 2.0*fx(lx,ly,k) - fx(lx-1,ly-1,k) 

  end do 

 

  do j = 1,ly 

   do k = 0,8 

 

   fy(0,j,k) = 2.0*fy(1,j,k) - fy(2,j,k) 

   fy(lx+1,j,k) = 2.0*fy(lx,j,k) - fy(lx-1,j,k) 

   end do 

  end do 

 

  do i = 1,lx 

   do k = 0,8 
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   fy(i,0,k) = 2.0*fy(i,1,k) - fy(i,2,k) 

   fy(i,ly+1,k) = 2.0*fy(i,ly,k) - fy(i,ly-1,k) 

   end do 

  end do 

 

  do k = 0,8 

   fy(0,0,k) = 2.0*fy(1,1,k) - fy(2,2,k) 

   fy(0,ly+1,k) = 2.0*fy(1,ly,k) - fy(2,ly-1,k) 

   fy(lx+1,0,k) = 2.0*fy(lx,1,k) - fy(lx-1,2,k) 

   fy(lx+1,ly+1,k) =2.0*fy(lx,ly,k) - fy(lx-1,ly-1,k) 

  end do 

 

  do j = 1,ly 

   do k = 0,8 

 

    feq(0,j,k) = 2.0*feq(1,j,k) - feq(2,j,k) 

    feq(lx+1,j,k)=2.0*feq(lx,j,k)- feq(lx-1,j,k) 

   end do 

  end do 

 

  do i = 1,lx 

   do k = 0,8 

    feq(i,0,k) = 2.0*feq(i,1,k) - feq(i,2,k) 

    feq(i,ly+1,k)=2.0*feq(i,ly,k) -feq(i,ly-1,k) 

   end do 

  end do 

 

  do k = 0,8 

   feq(0,0,k) = 2.0*feq(1,1,k) - feq(2,2,k) 

   feq(0,ly+1,k) = 2.0*feq(1,ly,k) - feq(2,ly-1,k) 

   feq(lx+1,0,k) = 2.0*feq(lx,1,k) - feq(lx-1,2,k) 

   feq(lx+1,ly+1,k)=2.0*feq(lx,ly,k)-feq(lx-1,ly-1,k) 

  end do 

  end if 

 

==================================================================  

 if (nstep .ne. 1) then 

  do j = 1,ly 

   do k = 1,4 

 

    g(0,j,k) = 2.0*g(1,j,k) - g(2,j,k) 

    g(lx+1,j,k) = 2.0*g(lx,j,k) - g(lx-1,j,k) 

   end do 

  end do 

 

  do i = 1,lx 

   do k = 1,4 

    g(i,0,k) = 2.0*g(i,1,k) - g(i,2,k) 

    g(i,ly+1,k) = 2.0*g(i,ly,k) - g(i,ly-1,k) 

   end do 

  end do 

 

  do k = 1,4 

   g(0,0,k) = 2.0*g(1,1,k) - g(2,2,k) 

   g(0,ly+1,k) = 2.0*g(1,ly,k) - g(2,ly-1,k) 

   g(lx+1,0,k) = 2.0*g(lx,1,k) - g(lx-1,2,k) 

   g(lx+1,ly+1,k) = 2.0*g(lx,ly,k) - g(lx-1,ly-1,k) 
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  end do 

 

  do j = 1,ly 

   do k = 1,4 

 

    gx(0,j,k) = 2.0*gx(1,j,k) - gx(2,j,k) 

    gx(lx+1,j,k) = 2.0*gx(lx,j,k) - gx(lx-1,j,k) 

   end do 

  end do 

 

  do i = 1,lx 

   do k = 1,4 

    gx(i,0,k) = 2.0*gx(i,1,k) - gx(i,2,k) 

    gx(i,ly+1,k) = 2.0*gx(i,ly,k) - gx(i,ly-1,k) 

   end do 

  end do 

 

  do k = 1,4 

   gx(0,0,k) = 2.0*gx(1,1,k) - gx(2,2,k) 

   gx(0,ly+1,k) = 2.0*gx(1,ly,k) - gx(2,ly-1,k) 

   gx(lx+1,0,k) = 2.0*gx(lx,1,k) - gx(lx-1,2,k) 

   gx(lx+1,ly+1,k)=2.0*gx(lx,ly,k) - gx(lx-1,ly-1,k) 

  end do 

 

  do j = 1,ly 

   do k = 1,4 

 

    gy(0,j,k) = 2.0*gy(1,j,k) - gy(2,j,k) 

    gy(lx+1,j,k) = 2.0*gy(lx,j,k) - gy(lx-1,j,k) 

   end do 

  end do 

 

  do i = 1,lx 

   do k = 1,4 

    gy(i,0,k) = 2.0*gy(i,1,k) - gy(i,2,k) 

    gy(i,ly+1,k) = 2.0*gy(i,ly,k) - gy(i,ly-1,k) 

   end do 

  end do 

 

  do k = 1,4 

   gy(0,0,k) = 2.0*gy(1,1,k) - gy(2,2,k) 

   gy(0,ly+1,k) = 2.0*gy(1,ly,k) - gy(2,ly-1,k) 

   gy(lx+1,0,k) = 2.0*gy(lx,1,k) - gy(lx-1,2,k) 

   gy(lx+1,ly+1,k) =2.0*gy(lx,ly,k) - gy(lx-1,ly-1,k) 

  end do 

 

  do j = 1,ly 

   do k = 1,4 

 

    geq(0,j,k) = 2.0*geq(1,j,k) - geq(2,j,k) 

    geq(lx+1,j,k =2.0*geq(lx,j,k) -geq(lx-1,j,k) 

   end do 

  end do 

 

  do i = 1,lx 

   do k = 1,4 

    geq(i,0,k) = 2.0*geq(i,1,k) - geq(i,2,k) 
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    geq(i,ly+1,k) =2.0*geq(i,ly,k)-geq(i,ly-1,k) 

   end do 

  end do 

 

  do k = 1,4 

   geq(0,0,k) = 2.0*geq(1,1,k) - geq(2,2,k) 

   geq(0,ly+1,k) = 2.0*geq(1,ly,k) - geq(2,ly-1,k) 

   geq(lx+1,0,k) = 2.0*geq(lx,1,k) - geq(lx-1,2,k) 

   geq(lx+1,ly+1,k =2.0*geq(lx,ly,k)-geq(lx-1,ly-1,k) 

  end do 

  end if 

 

do i = 1,lx 

 do j = 1,ly 

  do k = 0,8 

  fn(i,j,k)=f(i,j,k)-delt*rtauf*(f(i,j,k)-feq(i,j,k)) 

 

  fxn(i,j,k)=fx(i,j,k)-

delt*rtauf*(fx(i,j,k)0.5*(feq(i+1,j,k)-feq(i-1,j,k))) 

 

 

  fyn(i,j,k)=fy(i,j,k)-delt*rtauf*(fy(i,j,k)- 

0.5*(feq(i,j+1,k)-feq(i,j-1,k))) 

 

    end do 

   end do 

  end do 

   

  do i = 1,lx 

   do j = 1,ly 

    do k = 0,8 

     f(i,j,k) = fn(i,j,k) 

     fx(i,j,k) = fxn(i,j,k) 

     fy(i,j,k) = fyn(i,j,k) 

    end do 

   end do 

  end do 

 

  do i = 1,lx 

   do j = 1,ly 

    do k = 1,4 

     gn(i,j,k)=g(i,j,k) 

delt*rtaug*(g(i,j,k)-geq(i,j,k)) 

     gxn(i,j,k)=gx(i,j,k)-

delt*rtaug*(gx(i,j,k)- 0.5*(geq(i+1,j,k)-geq(i-1,j,k))) 

     gyn(i,j,k)=gy(i,j,k)-

delt*rtaug*(gy(i,j,k)- 0.5*(geq(i,j+1,k)-geq(i,j-1,k))) 

    end do 

   end do 

  end do 

   

  do i = 1,lx 

   do j = 1,ly 

    do k = 1,4 

     g(i,j,k) = gn(i,j,k) 

     gx(i,j,k) = gxn(i,j,k) 

     gy(i,j,k) = gyn(i,j,k) 
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    end do 

   end do 

  end do 

 

  do i = 1,lx 

   do j = 1,ly 

  do k = 0,8 

  xx = -cx(k)*delt 

  yy = -cy(k)*delt 

 

  zx = sign(1.0,cx(k)) 

  zy = sign(1.0,cy(k)) 

 

  iup = i-int(zx) 

  jup = j-int(zy) 

 

  a1 = ((fx(iup,j,k) + fx(i,j,k))*delx*zx - 2.0*(f(i,j,k) 

- f(iup,j,k)))/(delx**3*zx) 

  e1 = (3.0*(f(iup,j,k) - f(i,j,k)) + (fx(iup,j,k) + 

2.*fx(i,j,k))*delx*zx)/(delx*delx) 

  b1 = ((fy(i,jup,k) + fy(i,j,k))*dely*zy - 2.0*(f(i,j,k) 

- f(i,jup,k)))/(dely**3*zy) 

  f1 = (3.0*(f(i,jup,k) - f(i,j,k)) + (fy(i,jup,k) + 

2.0*fy(i,j,k))*dely*zy)/dely**2 

 

  d1 = ( - (f(i,j,k) - f(i,jup,k) - f(iup,j,k) + 

f(iup,jup,k)) - (fy(iup,j,k) - 

fy(i,j,k))*dely*zy)/(delx*dely**2*zx) 

  c1 = ( - (f(i,j,k) - f(i,jup,k) - f(iup,j,k) + 

f(iup,jup,k)) - (fx(i,jup,k) - 

fx(i,j,k))*delx*zx)/(delx**2*dely*zy) 

  g1 = ( - (fy(iup,j,k) - fy(i,j,k)) + 

c1*delx*delx)/(delx*zx) 

 

  fn(i,j,k) = ((a1*xx+c1*yy+e1)*xx + g1*yy + fx(i,j,k))*xx 

+ ((b1*yy+d1*xx+f1)*yy + fy(i,j,k))*yy + f(i,j,k) 

  fxn(i,j,k) = (3.0*a1*xx + 2.0*(c1*yy+e1))*xx + 

(d1*yy+g1)*yy+fx(i,j,k) 

  fyn(i,j,k) = (3.0*b1*yy + 2.0*(d1*xx+f1))*yy + 

(c1*xx+g1)*xx+fy(i,j,k) 

    end do 

   end do 

  end do 

 

  do i = 1,lx 

   do j = 1,ly 

    do k = 0,8 

     f(i,j,k) = fn(i,j,k) 

     fx(i,j,k) = fxn(i,j,k) 

     fy(i,j,k) = fyn(i,j,k) 

     if (f(i,j,k) <= 0 ) then 

     write (*,*) ' error' 

     end if 

     totalf = totalf + f(i,j,k) 

    end do 

   end do 

  end do 
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  do i = 1,lx 

   do j = 1,ly 

    do k = 1,4 

     xx = -dx(k)*delt 

     yy = -dy(k)*delt 

 

  zx = sign(1.0,dx(k)) 

  zy = sign(1.0,dy(k)) 

 

  iup = i-int(zx) 

  jup = j-int(zy) 

 

  a1 = ((gx(iup,j,k) + gx(i,j,k))*delx*zx - 2.0*(g(i,j,k) 

- g(iup,j,k)))/(delx**3*zx) 

  e1 = (3.0*(g(iup,j,k) - g(i,j,k)) + (gx(iup,j,k) + 

2.*gx(i,j,k))*delx*zx)/(delx*delx) 

  b1 = ((gy(i,jup,k) + gy(i,j,k))*dely*zy - 2.0*(g(i,j,k) 

- g(i,jup,k)))/(dely**3*zy) 

  f1 = (3.0*(g(i,jup,k) - g(i,j,k)) + (gy(i,jup,k) + 

2.0*gy(i,j,k))*dely*zy)/dely**2 

 

  d1 = ( - (g(i,j,k) - g(i,jup,k) - g(iup,j,k) + 

g(iup,jup,k)) - (gy(iup,j,k) - 

gy(i,j,k))*dely*zy)/(delx*dely**2*zx) 

  c1 = ( - (g(i,j,k) - g(i,jup,k) - g(iup,j,k) + 

g(iup,jup,k)) - (gx(i,jup,k) - 

gx(i,j,k))*delx*zx)/(delx**2*dely*zy) 

  g1 = (- (gy(iup,j,k) - gy(i,j,k)) + 

c1*delx*delx)/(delx*zx) 

 

  gn(i,j,k) = ((a1*xx+c1*yy+e1)*xx + g1*yy + gx(i,j,k))*xx 

+ ((b1*yy+d1*xx+f1)*yy + gy(i,j,k))*yy + g(i,j,k) 

   gxn(i,j,k) = (3.0*a1*xx + 2.0*(c1*yy+e1))*xx + 

(d1*yy+g1)*yy+gx(i,j,k) 

  gyn(i,j,k) = (3.0*b1*yy + 2.0*(d1*xx+f1))*yy + 

(c1*xx+g1)*xx+gy(i,j,k) 

    end do 

   end do 

  end do 

   

  do i = 1,lx 

   do j = 1,ly 

    do k = 1,4 

     g(i,j,k) = gn(i,j,k) 

     gx(i,j,k) = gxn(i,j,k) 

     gy(i,j,k) = gyn(i,j,k) 

     if (g(i,j,k) <= -0.1 ) then 

     write (*,*) ' error',i,j,k,g(i,j,k) 

     end if 

    end do 

   end do 

  end do 

 

 

 

  if ( mod(nstep,ntin) == 0) then 
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  write (*,60) totalf 

60  format ('totalf  = ',F8.2,//) 

  write (*,70) totalg 

70  format ('totalg  = ',F8.2,//) 

  end if 

  tempor = 0.0 

  do i = 1,lx 

   do j = 1,ly 

   tempor = tempor + temp(i,j) 

   tempave = tempor/(lx*ly) 

   end do 

  end do 

 

  do i = 1,lx 

   do j = 1,ly 

    do k = 0,8 

    f(i,j,k) =  f(i,j,k)+3*delt*gra*(cy(k)-

v(i,j))*feq(i,j,k)*(temp(i,j)-tempave) 

    end do 

   end do 

  end do 

   

       

  return 

  end 

 

==================================================================  

  subroutine output 

==================================================================  

implicit real*8 (a-h,o-z) 

parameter (ij = 330, kkk = 8) 

common/var1/f(0:ij,0:ij,0:kkk),feq(0:ij,0:ij,0:kkk),g(0:ij,0:ij,0:k

kk),geq(0:ij,0:ij,0:kkk)   

common /var2/ cx(0:kkk),cy(0:kkk),dx(0:kkk),dy(0:kkk)    

common /var3/ u(ij,ij),v(ij,ij),temp(ij,ij) 

common /var4/ rho(ij,ij)    

common /var5/ tmp(0:ij,0:ij,0:kkk),ff(0:ij,0:ij,0:kkk) 

common/var6/fn(0:ij,0:ij,0:kkk),fx(0:ij,0:ij,0:kkk),fy(0:ij,0:ij,0:

kkk),fxn(0:ij,0:ij,0:kkk),fyn(0:ij,0:ij,0:kkk) 

common/var7/gn(0:ij,0:ij,0:kkk),gx(0:ij,0:ij,0:kkk),gy(0:ij,0:ij,0:

kkk),gxn(0:ij,0:ij,0:kkk),gyn(0:ij,0:ij,0:kkk) 

common /con1/ delt,ra, pr, th ,tc,gra 

common /con2/ lx,ly 

common /con3/ ntin,nstep,totalg     

common/con4/pi,tauf,rhoint,delx,dely,delx2,dely2,rtauf,xnyu,chi,tau

g,rtaug     

integer lx,ly,ntin,nstep,i,j,k,l 

integer ::unit, ierror 

character (len=6)::filename 

   

  do i = 1,lx 

   do j = 1,ly 

    rho(i,j) = 0.0 

   end do 

  end do 

   

  do i = 2,lx-1 
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   do j = 2,ly-1 

    do k = 0,8 

     rho(i,j) = rho(i,j) + f(i,j,k) 

    end do 

   end do 

  end do 

 

  do i = 2,lx-1 

   rho(i,1) = rho(i,2) 

   rho(i,ly) = rho(i,ly-1) 

  end do 

 

  do j = 2,ly-1 

   rho(1,j) = rho(2,j) 

   rho(lx,j) = rho(lx-1,j) 

  end do 

 

  rho(1,1) = rho(2,2) 

  rho(lx,1) = rho(lx-1,2) 

  rho(lx,ly) = rho(lx-1,ly-1) 

  rho(1,ly) = rho(2,ly-1) 

 

  do i= 2,lx-1 

   do j = 2,ly-1 

    u(i,j) = 0.d0 

    v(i,j) = 0.d0 

    temp(i,j) = 0.d0 

   end do 

  end do 

 

   

  do  i = 2, lx-1 

   do j = 2, ly-1 

    do k = 0,8 

     u(i,j)=u(i,j)+ f(i,j,k)*cx(k)/rho(i,j) 

     v(i,j)=v(i,j)+ f(i,j,k)*cy(k)/rho(i,j) 

    end do 

    do k = 1,4 

     temp(i,j)=temp(i,j)+ g(i,j,k)/rho(i,j) 

    end do 

   end do 

  end do 

 

  do j = 1, ly 

  temp(1,j) = th 

  temp(lx,j) = tc 

  end do 

   

  do i = 1, lx 

  temp(i,ly) = temp(i,ly-1) 

  temp(i,1) = temp(i,2) 

  end do 

 

  return 

  end  
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APPENDIX C 

MESH FOR 2D NATURAL CONVECTION 

 

PARAMETER (NNN=230000,  chi = 0.104519187198994) 

parameter (xd = 51, yd = 51) 

IMPLICIT REAL*8(A-H,O-Z) 

integer  node,ok1,ok2 

DIMENSION U(NNN),V(NNN),temp(nnn) 

DIMENSION Uu(101,101),tempp(101,101),vv(101,101) 

open(unit=10,file='nd_number.dat',status='replace',action='write',i

ostat=ierror) 

node = 0 

do j = 1,yd 

 do i = 1,xd 

 node = node + 1 

 write(10,*) i,j,node 

  end do 

 end do 

 close(10) 

open(unit=11,file='variables.dat',status='old',action='read',iostat

=ierror) 

read(11,*) 

do n = 1,node 

read(11,*)u(n),v(n),temp(n) 

end do 

close(11) 

open(unit=11,file='variables.dat',status='old',action='read',iostat

=ierror) 

read(11,*) 

do j = 1,yd 

 do i = 1,xd 

 read(11,*)uu(i,j),vv(i,j),tempp(i,j) 

  end do 

 end do 

 close(11) 

 do j = 1,yd 

  do i = 1,xd 

   uu(i,j) =uu(i,j)*chi/(yd-1) 

  end do 

 end do 

umax = abs(u(1)) 

do i = 2, node 

  ux = abs(u(i)) 

      if(ux .gt. umax)  then 

  umax = ux 

write(*,*)'node= ',i,'umax = ',umax 

 end if 

 end do 

 write(*,*)'next for v?' 

 read (*,*) ok1 

 vmax = abs(v(1)) 

 do i = 2, node 

  uy = abs(v(i)) 

      if(uy .gt. vmax)  then 

 vmax = uy 
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      write(*,*)'node= ',i,'vmax = ',vmax 

 end if 

 end do 

 ! calculate nusselt number 

 th = 1.0d0 

 tc = 0.0d0 

  bnu = 0.0 

 do i = 1, xd 

  do j = 1,yd 

   if (i .eq. 1) then 

bnu=bnu+(((xd-1)/(chi*(th-tc)*(xd)*(yd)))*((uu(i,j)*tempp(i,j))-

(chi*(tempp(i+1,j)-tempp(i,j))))) 

  else if (i .eq. xd) then 

bnu=bnu+(((xd-1)/(chi*(thtc)*(xd)*(yd)))*((uu(i,j)*tempp(i,j))-

(chi*(tempp(i,j)-tempp(i-1,j))))) 

   else  

bnu=bnu+(((xd-1)/(chi*(thtc)*(xd)*(yd)))*((uu(i,j)*tempp(i,j))-

(chi*(0.5*(tempp(i+1,j)-tempp(i-1,j)))))) 

   end if 

   end do 

 end do 

 write(*,*) 'nusselt number = ',bnu 

    STOP 

    END 

 


