CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Air conditioning system is defined as the simultaneous mechanical control of temperature, humidity, and air motion [8]. Air conditioning also is the process which air is cooled or heated, cleaned or filtered, and circulated [4]. Figure 1.1 shows operation of the air conditioning system. Majority of the air conditioning in automotive used vapor compression refrigeration system in its cycle [4]. The schematics diagram in Figure 1.2 shows the schematics diagram of automotive air conditioning system.

Figure 1.1: Schematics diagram of air conditioning circuit and cycle diagram
The basic components that used in automotive air conditioning system are compressor, condenser, evaporator, expansion valve or orifice tube, and accumulator or receiver drier. The main component that acts like a heart in this system is compressor. The compressor continuously cycles on and off to meet the cooling requirements of the passenger compartment and is mounted to the engine and is belt driven and its cycling rate is directly related to the automobile vehicle speed. At the front of the compressor is the magnetic clutch which when given power engages the compressor. The condenser is usually in front of the radiator. The expansion valve controls the flow of refrigerant into the evaporator. The expansion valve has a capillary tube with a thermal bulb that controls how far open or closed it is. The thermal bulb and the internal pressure of the refrigerant balance to control just the exact amount of refrigerant needed. The thermal bulb is clamped to the output of the evaporator. If not enough refrigerant is flowing to cool the evaporator, this bulb is sense it and open more or vice versa. The evaporator is the heat exchanger that removes heat from the inside of the passenger compartment.
vehicle. It is located in or adjacent to the passenger compartment, usually mounted on
the fire wall. As the refrigerant-134a passes through the evaporator, heat transfer from the air
flowing across results in the vaporization of the refrigerant. Vapor refrigerant leaving the
 evaporator is compressed to a relatively high pressure and temperature by the compressor.
Next, the refrigerant passes through the condenser, where the refrigerant condenses and there
is heat transfer from the refrigerant to the air flow across the condenser. Finally, the
refrigerant enters the expansion valve and expands to the evaporator pressure. The
refrigerant exits the valve as a two-phase liquid-vapor mixture and gets in to the
 evaporator to begin the cycle again. The airflow across the evaporator is either re-circulated
air from the passenger compartment or fresh air drawn from the outside, or some
combination of the two.

The refrigerant system reaches to a steady-state operating condition when the
mass flow rate through the compressor is equal to the amount of vapor generated in the
 evaporator [4]. The automotive air conditioning system is designed to operate under a
wide range of heat conditions, and as such the capacity of the fixed volume compressor is
larger than needed under most operating conditions. To allow the system to function
across a wide range of environmental conditions, the compressor is cycled on and off
based on the low-side refrigerant pressure. The compressor is shut off when the
pressure in the evaporator falls below the preset value which is chosen to assure that
condensate does not freeze on the evaporator. Even after the compressor shuts off, there
will still persist a pressure imbalance across the expansion valve that will force
refrigerant to flow from condenser to the evaporator. As the evaporator fills with the
refrigerant, its pressure will increase. Once the low side refrigerant pressure reaches the
preset level, the compressor will restart. The compressor is continuously turned on and off
in this manner. Since the compressor is belt driven device coupled to the engine, when the
engine speed changes so does the compressor speed, which results in a fluctuation of the
refrigerant mass flow rate. Turning the compressor on and off position is provided by
an electro-magnetic clutch.

There are several different types of automotive air conditioning systems which are
the Receiver Drier (Filter Drier) – Expansion Valve System which uses the valve to