

LIFT STRUCTURAL FLAN AND DESIGN FOK KOLEJ KEDIAMAN TIGA UNIVERSITI MALAYSIA PAHANG

SITI NORASHIKIN BINTI YUSOFF (AA09185)

Thesis submitted in partial fulfillment of the requirements for the award of the degree of Bachelor Civil Engineering

Faculty of Civil Engineering and Earth Resources Universiti Malaysia Pahang

JANUARY 2013

ABSTRACT

In Malaysia, the lift will normally be built in the building that has five or more than five floors. Kolej KediamanTiga of Universiti Malaysia Pahang that are here are just four floors, the norm on new student registration will normally be delivery problems arise if the student can be placed in high benchmark suite. The main focus is the design of building lifts. In the design of this lift, one part to consider is the for machine room slab. Where machine room slab must be designed to carry the load right. After the need to design an appropriate wall to and also to design a suitable type of foundation based on the type of soil and the burden borne by the elevator building. All these structures are designed and analyzed using the Esteem software.

ABSTRAK

Dalam Malaysia, lif kebiasaannya akan dibina dalam bangunan yang mempunyai lima ataulebihdari lima tingkat. Di Kolej KediamanTigaUniversiti Malaysia Pahang bangunan yang terdapat di sini adalah hanya empat tingkat, kebiasaannya pada hari pendaftaran pelajar baru kebiasaannya akan timbul masalah penghantaran barang jika pelajar tersebut dapat di tempatkan di bilik yang aras tinggi. Fokus utama adalah merekabentuk bangunan lif. Dalam rekabentuk lif ini, satu bahagian yang perlu dipertimbangkan ialah lantai untuk bilik mesin lif ditempatkan. Di mana lantai bilik mesin perlu direka untuk menanggung beban yang sesuai. Selepas itu perlu merekabentuk dinding yang sesuai dan juga merekabentuk jenis asas yang sesuai berdasarkan jenis tanah dan juga beban yang ditanggung oleh bangunan lif tersebut. Semua struktur ini direka dan dianalisia dengan menggunakan software Esteem.

TABLE OF CONTENTS

ii
iii
iv
\mathbf{v}
vi
vii
х
xi
xii

CHAPTER 1 INTRODUCTION

1.1	Introduction	· 1
1.2	Problem Statement	2
1.3	Objectives	2
1.4	Scope of study	2
1.5	Expected Outcome	3
1.6	Summary	3

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	4
2.2	Literature review	5
2.3	Summary	10

CHAPTER 3 METHODOLOGY

3.1	Introduction				
3.2	Flow	of works	12		
3.3	Desig	Design criteria of plan building used			
	3.3.1	Self-Design Lift Core	13		
	3.3.2	System Considered and Motions Used in Analysis	14		
3.4	Manu	al design	14		
	3.4.1	Loading	14		
	3.4.2	Limit State	15		
	3.4.3	Design of slab for machine room	15		
	3.4.4	Design of lift core shear wall	15		
	3.4.5	Design of lift core foundation	16		
		3.4.5.1 Mackintosh Probe	16		
		3.4.5.2 Pile Foundation	16		
3.5	Esteem software design				
	3.5.1	Input of Key plan	19		
	3.5.2	All floor data complete	19		
	3.5.3	Slab analysis	19		
	3.5.4	RC wall key plan	19		
	3.5.5	Beam Analysis	19		
	3.5.6	3D Frame Element & Analysis	20		
	3.5.7	Design Beam	20		
	3.5.8	Pile Footing	20		
	3.5.9	Finalized design	20		
3.6	Flow	diagram	21		
	3.6.1	Identifying the problem statement	21		
	3.6.2	Simplifying the system	21		
	3.6.3	Choosing the best models	22		
	3.6.4	Defining the most realistic load boundaries	22		

viii

	3.6.5	Starting the calculations	22
3.7	Summ	hary	22

CHAPTER 4 RESULT AND ANALYSIS

4.1	Introduction	23		
4.2	Structural Elements			
4.3	Design criteria	24		
4.4	Design Calculation			
	4.3.1 Design of machine room slab	27		
	4.3.2 Design of shear wall	28		
	4.3.3 Foundation design	33		
	4.3.3.1 Pile footing detailed design calculation	35		
4.5	Summary	37		

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	38	
5.2	Recommendations	39	
REFE	REFERENCES		
APPE	NDICES		
Α	Key Plan	41	
В	Foundation Plan	42	
С	Shear Wall Plan	43	
D	Design Calculation	44	

LIST OF TABLE

Table	e No.	Page
2.1	Literature on lift slab structure instability during construction	5
2.2	Improving the safety and efficiency of materials transfer at a	
	construction site by using an elevator	6
2.3	Design of the tallest reinforced concrete structure in California	7
2.4	KONE solutions for building without an elevator	8
2.5	A composite structural steel and concrete beam for building	
	floor systems	9
3.1	Properties that Used in the Design	13
4.1	Design criteria	25
4.2	Detail design of machine room slab	27
4.3	Detail design of shear wall	28
4.4	Cut section of wall design	29
4.5	Plan of lift core structural elements	30
4.6	Elevation lift core structural elements	31
4.7	Summary of column loading	34
4.8	Summary of wall loading	34
4.9	Summary of total loading	34
4.10	Design parameter of the pile footing	35
4.11	Foundation reinforcement schedule	35
4.12	Design summary	37

LIST OF FIGURES

Figure No.

Tigu		
3.1	Project Flow Chart	12
3.2	Project Esteem software Flow Chart	18
3.3	Methodology project	21
4.1	Location of the lift core	24
4.2	Key plan using Esteem software	24
4.3	Lift mechanical structural	26
4.4	Detail of top and bottom of machine room slab	27
4.5	Mackintosh Probe result	33
4.6	Horizontal section Lift Core pile cap	36
4.7	Vertical section Lift Core pile cap	36

LIST OF ABBREVIATIONS

- SMRF Special moment resisting frames
- BS British Standard
- UBBL Uniform Building by Law
- RC Reinforcement Concrete
- 3D Three dimensions
- FEM Finite Element analysis

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

An elevator can be considering as a transport device used to move goods or goods or people vertically in a building. In British English, lifts are known more commonly as lift. Lift is a kind of system in building to move people upward and downward vertically at height building. In Malaysia, usually lifts will be built in buildings with five or more than five floors this means moving for disabled people in buildings less than five storeys is limited. With that, came the one idea to design and analyze a lift. Design structure lift is to know the suitable the material and design structures lift. The advantage concrete compare steel is the durability concrete ishigh strength, a fire barrier and resistant to abrasion.

Even though we know most of the lift core is made of steel and is easy to install ready but there are also drawbacks. Steel systems will often utilize bar joists to support the floor structure, however, they too have rather low span-to-depth ratios. One of the major deficiencies of steel structures is that they have low fire-resistance characteristics and require the use of special partitions or fireproofing methods. Steel structures typically will employ frames to resist the applied lateral loads, which allow the architect much more flexibility over a shear wall system when designing the layout and functionality of the building. Additionally, steel is much lighter than concrete and this saves on erection costs. Steel also the ration strength or weight high, weakness at high temperatures and easy to rust.

1.2 PROBLEM STATEMENT

Normally the building height of more than five levels in Malaysia has a lift system to facilitate the move of these people. However, this facility is not provided in the building with less than five stages. At University Malaysia Pahang KolejKediamanTiga(KK3) have only four levels and no lift. During the beginning of every semester, new students are struggling to carry their belongings to the upper building floors and worst disable persons have no means at all to move up and down of high storey buildings at Universiti Malaysia Pahang (UMP). The lift is for use disable people to move between the levels. It easier to use lift every time for new student registration and also at the end of the learning session.

1.3 OBJECTIVE

Below are the main purposes for conducting this study:-

- 1. To demonstrate and to verify the concept of lift core design.
- 2. To determine the fundamental aspects of lift design with case study for lift structure for KolejKediamanTiga (KK3) Universiti Malaysia Pahang.

1.4 SCOPE OF STUDY

Study scope has been set in this study as a guideline to achieve the objectives. The research scopes are:

To planning and design structure of lift or core lift as vertical transport, firstly finding detail information about studying the lift already exists in many buildings today. Then, decide the loading and design a suitable structure of lift based on the objective, which is to design structure of lift and then continue with analysison the sustainable structure of lift. The core lift is designed by using ESTEEM structural software 6.2.5.8 to select suitable slab, shear wall and foundation. The structure is analyzed dynamically only in linear range and is in the form 3-D spaced frame. The foundation is fixed to the ground and soil interaction is neglected. After that verify the result by manual calculation and lastly prepare structural layout plan.

1.5 Expected Outcome

This research produce how to design a structure of lift or lift core that suitable for KolejKediamanTiga (KK3) using Esteem software.

1.6 Chapter Summary

The focus of this study, the problem and the concept to solve the problem will be discussed. This chapter is all about the problem statement that want to solve the problem so before to settle this problem we must to objective. In this chapter it was proposed that scope of study to use Esteem structure software and manual calculation.

In the next chapter, a review of the literature related to this project is undertaken.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Literature review is where information on particular area was discussed. It is the summarization and also the synthesizing of research sources without adding any new ideas into these sources. Information obtained from various sources is very important for the understanding and also as groundwork of background of a conducted study. In this chapter, the planning and design core lift will be discussed using ESTEEM software. EsteemPlus (version 6.6) integrates with the advanced Finite Element auto-modeling to make 3-D analysis, design, detailing, drafting and quantity take-off for reinforced concrete building structural system. By integrating user-friendly GUI, EsteemPlus easily generates a comprehensive and accurate output of every slab, beam, column, shear wall, liftcore, pad and pile footing of the whole structure with minimum time and effort.

Problem Statement	Study/ Project Objectives	Study/Project Methodology	Data Collection / Experimental Setup	Results & Analysis	Conclusion & Recommend ation	Reference										
Lift slab structures are one of the most efficient and economic ways of construction .However, the unstable condition of such structures, during the construction stages, has caused some disasters, such as the collapse of L'Ambianee Plaza in Bridgeport, CT, which killed 28 workers.	To find a solution for the unstable condition of the structure during construction, to protect this valuable and efficient construction method from becoming extinct In t gro the pour are leve stru nee	During the construction, the slabs are lifted by hydraulic jacks, parked at intermediate positions along the height of the columns.	Case studies on previous projects.	$P_{\sigma} = \frac{\pi^2}{4h^2} \frac{\sum_{i=1}^{n} EI}{\sum_{i=1}^{n} \alpha_i \left[\frac{\pi h_i}{h} - \sin \frac{\pi h_i}{h}\right]}$ P = is the critical		M. Rusk. 2000. Lift slab structures instability during construction. United State: American Society of Civil Engineers.										
		The lower slab is usually parked at its final position, while the rest are parked above it at different locations.		Case studies on previous projects. h is the height of the columns the top of the concrete shear walls to the center of the highest parked	The formula is easy to apply numerically and accurate enough to indicate that a specific stage of construction is etable or											
		The lifting process continues while the workers work at the lower levels to fully integrate the slabs with the columns.	Carry out to develop a mathematical model it was necessary to describe the	group of slabs; hi is the height of the columns from the top of the shear walls to the center of parked												
		In the mean time at the ground level the concrete shear walls are poured, after the columns are fully integrated at one level above, to give the structure the much more needed rigidity	describe the construction process and its stages.	construction process and its stages.	describe the construction process and its stages.	describe the construction process and its stages.	describe the construction process and its stages.	describe the construction process and its stages.	describe the construction process and its stages.	describe the construction process and its stages.	describe the construction process and its stages.	describe the construction process and its stages.	describe the construction process and its stages.	describe the construction process and its stages.	describe the construction process and its stages.	describe the construction process and its stages.

 Table 2.1:Literature on lift slab structure instability during construction

Problem Statement	Study/ Project Dbjectives	Study/Project Methodology	Data Collection / Experimental Setup	Results & Analysis	Conclusion & Recommend ation	Reference
The use of elevatorsTo elevatorsduringfrom from construction hasbeen a well- defined practicecon sitedefined practicesitein high-riserelabuildings. In high buildingseffer high buildingshigh buildingsheathe main objective forsafe objective forelevator use duringeffer well elevator useconstruction is passengermat transportation.The present study is basedin a on a new elev concept, inconcept, in which an elevator is usedfor a 	o presents me results om a site pervisor instruction is and lates the fects to ealth and fety, as ell as ficiency, hen aterials are ansferred manual rrying or an evator. om ollected the ta on the se of the evator and measured e ficiency and a safety	The observation data were gathered during 3 days. The data included information on the delivery of three different products and four different delivery processes traditional manual delivery and three advanced delivery systems using the tools developed.All measurements took place in the staircase, where the elevator was operating.	The automatic data collection system consisted of a computer linked to the network of the elevator. The trip data included the following values recorded from each trip of the elevator: • Date of the trip; • User identification card ID • Weight of load in elevator at the beginning of the trip • Waiting and loading/unloading time • Time and floor level of departure and arrival; and • Total time of trip.	First the present analysis of elevator traffic data was to locate and identify the logistic bottlenecks. Second, elevator traffic data can be used to evaluate the amounts of work needed to perform logistic phases such as transportation, handling, and storage in general.	The use of a vertical transportatio n system diminishes physical loading as well as accident risk when compared to manual material handling. The use of a permanent elevator already in the construction phase is a suitable solution for this purpose.	Perttula.P, Korhonen.P, Lehtela.J, Rasa.P- L, Kitinoja.J-P, Makimattila.S, Leskinen.T. 2006. Improving the safety and efficiency of materials transfer at a construction site by using an elevator. Journal of Structural Engineering ASCE.

Problem Statement	Study/ Project Objectives	Study/Project Methodology	Data Collection / Experimental Setup	Results & Analysis	Conclusion & Recommendation	Reference
The design of this building utilizes 10 ksi concrete, and reinforcing of grade 75. Even with these special materials, the reinforcing ratios were so dense for a project of this height that alternative systems had to be employed to allow for successful concrete placement	To study thepractical ways to reduce costs, speed construction, and simultaneoussl y achieve the goal of better consolidation.	The lateral system is comprised of a rectangular box shear wall core with concrete SMRF's located at the building perimeter.	From the construction the tower's dual lateral system is comprised of a 36-inch-thick concrete shear wall core and partial perimeter Special Moment Resisting Frames (SMRF).	Concrete spalling was observed in the test region around 0.003 in/in strain. The test specimens all showed a positive slope at the end of the test indicating that additional strength gain was probable.specimen lost their load carrying capacity The strain levels achieved in this test match well with other tests done on WRG (Giria, Saatcioglu 1996) and other tests done on conventionally reinforced high strength concrete specimens (Bing, Park, Tanaka, 2001).	While this project will be the tallest reinforced concrete building in California at the time it is completed, it is likely to be surpassed within a matter of a few years. Further research may be required in this area to reduce confinement steel requirements in order to allow the use of stronger concrete.	Roorda, D.D. and Rodrigues, N.J. 2008.Design of the tallest reinforced Concrete Structure in California – a 58-Story residential tower in San Francisco. Journal of Structural Engineering ASCE.

Literature 2.3: Design of the tallest reinforced concrete structure in California

Problem Statement	Study/ Project Objectives	Study/Project Methodology	Data Collection / Experimenta I Setup	Results & Analysis	Conclusion	Reference
Installing a lift in a building existing dwelling to make buildings safer, easier and more convenient for residents and visitors of all ages, from babies in prams to older people. Elevator to make buildings nore attractive o new esidents.	Structural and aesthetic integration Proper placement Also can install the elevator shaft attached to an outside wall of the building. In many cases the elevator shaft is built as a complete unit and then lifted into place. This can save time during construction	<i>first stage</i> investigated to made decision to install an elevator in your building. To collected information about regulations and more information. The second stage the entire process from planning The third stage the construction to installation The fourth stage the final inspections. This ensures that the project will be completed	Literature review, existing in the European Union and in Individual European countries to get started a step by step guide.	Solutions for buildings without an elevator.	This project began with a survey of the site, to determine what the best solution and the best way to implement it. Planning also includes support structure as possible and ensure wide access way enough to provide for fire- fighters in case of emergency. During the project, everything possible is done to minimize disruption to residents and ensure that no damage is done to the building.	KONE.(2008). Solutions for buildings without an elevator: A case Study. True stories about real building,PP.10.

on time and on budget.

Literature 2.4: KONE solutions for building without an elevator

Problem Statement	Study/ Project Objectives	Study/Project Methodology	Data Collection / Experimental Setup	Results & Analysis	Conclusion	Reference
The find composite structural steel and concrete for building floor systems	The primary objective of this project is to develop a composite structural steel and concrete for residential and commercial construction	The concept for the design of this system using calculation	Collect the data about design criteria, gravity loads, Lateral Analysis, deflections	The structural developed by design criteria, Gravity loads	This research has proposed, and designed a complete system for residential and commercial buildings	A composite structural steel and prestressed concrete beam for building floor systems.2012. University of Nebraska

Literature 2.5: A composite structural steel and concrete beam for building floor system

2.2 Summary

Table 2.1 to 2.5 summerized the key literature for the study. Lift slab structure are built in a method, which makes them inherently vulnerable to static and dynamic instability during the construction stages. The columns cannot be laterally braced in the areas where temporarily anchored slabs are to be lifted to higher level impossible. This situation requires the checking of the whole structure above the shear walls for its stability of such structures, based on the number of slabs, anchored temporary at different levels, the distances between those anchored groups and the rigidity of the columns.

In the next chapter, a review of the methodology related to this project is undertaken.

CHAPTER 3

METHODOLOGY

3.1 INTRODUCTION

This study was conducted to study the design and planning lift core at kolej kediamanTiga(KK3). Phases of work must be identified so that the objectives of the study can be achieved smoothly and systematically. First of all, there have been extensive meetings with supervisor to identify the title and objectives of this study. After the title and the objectives of the study were identified, literature review was conducted to collect information so that deep understandings about this study were achieved. From literature review and discussion with supervisor, scope of study was identified.

Investigation and analysis phases started with analysis loading related to this study. Data that were of this study are analysis loading using British Standard and analysis using ESTEEM software. Finally, the results from this study are appears in plan. In this chapter, the procedure of data gathering and the analysis of data will be discussed.

3.2 Flow of works

Figure 3.1 below shows the overall flow of work in this study for the design and planning lift core.

Figure 3.1: Project Flow Chart

3.3 Design criteria of Plan Building Used

The study will be carried out for a multistory building with a of 4 story height building. There reinforced concrete building which are based on a self-design plan lift core using ESTEEM. The structure will be analyzed dynamically in a three from frame analysis.

3.3.1 Self-Design Lift Core

Lift core is a vertical shaft in a building to permit the passage of a lift core consists of four levels are designed based BS8110:1997. Additionally lift core is also design using ESTEEM software. Table 3.1 shows the properties used in the design.

Structural Element	Concrete Strength	Reinforcement Bar	Cover (mm)
	(N/mm ²)	Characteristic	
		Strength (N/mm ²)	
Slab	30	460	25
Beam	30	460	25
Column	30	460	25
Core Lift	30	460	25
Pile Footing	30	460	25

Table 3.1: Properties that Used in the Design

3.3.2 System Considered and Motions Used in Analysis

The building selected for this study is four level reinforced concrete space for symmetric plan building. These self-design buildings will be analyzed as 3-D linear dynamic analysis.

3.4 Manual design

The manual design is very important to make sure that what the design using software are valid so the manual design must have the step and include overall design, stability also the structure should be so arranged that it can transmit dead, and imposed loads in a direct manner to the foundations. For the required period of fire resistance (prescribed in the Building Regulations), the structure should have adequate loadbearing capacity, limit the temperature rise on the far face by sufficient insulation.

3.4.1 Loading

The loads to be used in calculation are:

- a) Characteristic dead load, G_k the weight of the structure complete with finishes. The load from machine also must be include and bearing load cabin also to take.
- b) Characteristic imposed load, Q_k(Bs 6399) and also refer to Uniform building by law (UBBL).

3.4.2 Limit State

This manual adopts the limit-state principle and the partial factor format. For ultimate limit state the design load are obtained by multiplying the characteristic loads. For serviceability limit states provided that span/effective depth ratio and bar diameter and spacing rules are observed it will not necessary to check for serviceability limit states.

3.4.3 Design of slab for machine room

The first step in preparing the final design is to complete the design of the slabs. This is necessary in order that the final loading is determined for the design of the frame. The general procedure to be adopted is as check that the cross-section and cover comply with requirements for the fire resistance, than check that cover and concrete grade comply with requirements for durability, after that calculate bending moments and shear forces, calculate reinforcements and make final check on span/ depth ratio.

3.4.4 Design of lift core Shear Wall

This subsection describes the final design of reinforced concrete walls that may provide the lateral stability to reinforced concrete framed buildings. The general procedure to be adopted is as follows check that walls providing lateral stability, then check the slenderness of the walls within every storey height, check that cover and concrete comply with durability requirements, then calculate axial loads and moments lastly design section and reinforcement.