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Grinding is a material removal and surface generation 

process used to shape and finish components made of 

metals and other materials. The precision and surface 

finish obtained through grinding can be up to ten times 

better than with either turning or milli

and Sluga, 2005; Shen, Shih

employs an abrasive product, usually a rotating wheel 

brought into controlled contact with a work surface 

(Kadirgama, Rahman, Ismail and

and Kadirgama, 2014; Rahman, Kadirgama 

2014; Walsh, Baliga 

wheel is composed of abrasive grains held together in a 

binder. Heat generation is an i

grinding process. It can degrade the integrity of the wheel 

matrix and/or abrasive, reduce workpiece surface quality 

by causing thermal cracks or burning of the surface, 

introduce strength reducing tensile residual stresses, and 

creates dimensional inaccuracies 

Malkin and Guo, 2007)
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INTRODUCTION 
Grinding is a material removal and surface generation 

process used to shape and finish components made of 

metals and other materials. The precision and surface 

finish obtained through grinding can be up to ten times 

better than with either turning or milli

and Sluga, 2005; Shen, Shih

employs an abrasive product, usually a rotating wheel 

brought into controlled contact with a work surface 
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2014; Walsh, Baliga and Hodgson, 2002)
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Grinding is a material removal and surface generation 

process used to shape and finish components made of 

metals and other materials. The precision and surface 

finish obtained through grinding can be up to ten times 

better than with either turning or milling 

and Sluga, 2005; Shen, Shih and Simon, 2008)

employs an abrasive product, usually a rotating wheel 

brought into controlled contact with a work surface 

(Kadirgama, Rahman, Ismail and Bakar, 2012; Ra
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grinding process. It can degrade the integrity of the wheel 

matrix and/or abrasive, reduce workpiece surface quality 
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introduce strength reducing tensile residual stresses, and 
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to study the effects of using nanofluids as abrasive machining coolants. The objective of this 

study is to investigate the performance of grinding of ductile iron based on response surface method and to develop 

optimization model for grinding parameters using artificial neural network technique. The abrasive machining process 
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Grinding is a material removal and surface generation 

process used to shape and finish components made of 

metals and other materials. The precision and surface 

finish obtained through grinding can be up to ten times 

ng (Krajnik, Kopac 

Simon, 2008). Grinding 

employs an abrasive product, usually a rotating wheel 

brought into controlled contact with a work surface 

Bakar, 2012; Rahman 

Kadirgama, 2014; Rahman, Kadirgama and Ab Aziz, 

Hodgson, 2002). The grinding 

wheel is composed of abrasive grains held together in a 

mportant factor in the 

grinding process. It can degrade the integrity of the wheel 

matrix and/or abrasive, reduce workpiece surface quality 

by causing thermal cracks or burning of the surface, 

introduce strength reducing tensile residual stresses, and 

(Chen and Rowe, 1996; 

. Temperature may also influence 

ning the material or 

by introducing phase transformations. This is one of the 

important output parameters that will be observed where it 

will be influenced widely on the usage of nano-coolants. A 

large volume of grinding fluid is most commonly used to 

d the grinding zone, hoping to achieve tangible 

productivity targets while often neglecting the seemingly 

fewer tangible environmental safety hazards. In addition, 
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Grinding is a material removal and surface generation 

process used to shape and finish components made of 

metals and other materials. The precision and surface 

finish obtained through grinding can be up to ten times 

(Krajnik, Kopac 
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employs an abrasive product, usually a rotating wheel 

brought into controlled contact with a work surface 
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grinding process. It can degrade the integrity of the wheel 

matrix and/or abrasive, reduce workpiece surface quality 

by causing thermal cracks or burning of the surface, 

introduce strength reducing tensile residual stresses, and 

Rowe, 1996; 

. Temperature may also influence 

ning the material or 

by introducing phase transformations. This is one of the 

important output parameters that will be observed where it 

coolants. A 

large volume of grinding fluid is most commonly used to 

d the grinding zone, hoping to achieve tangible 

productivity targets while often neglecting the seemingly 

fewer tangible environmental safety hazards. In addition, 

the inherent high cost of disposal or recycling of the 

grinding fluid becomes another major 

as the environmental regulations get stricter. Minimizing 

the quantity of cutting fluid is desirable in grinding.

performance and contain lower

aluminum oxide (Al

super

high

nitride (CBN)

Vinayagam, 2010)

industries cannot achieve their productivity goals with 

conventional grinding wheels. The use of a super abrasive 

grinding wheel is prohibitively expensive

many machine shops. Therefore, a limited number of 

manufacturing companies are using super

in their grinding operations 

abrasives used in industry are synthetic. Aluminum oxide 

is used in three quarters of all grinding operations, and is 

primarily used to grind ferrous metals. Next is silicon 

carbide, which

metals and high density materials, such as cemented 

carbide or ceramics. Super abrasives, namely cubic boron 

nitride or "CBN" and diamond, are used in about five 

percent of grinding. Hard ferrous materials are grou

with "CBN" while non

are best ground with diamond. The grain size of abrasive 

materials is important to the process.
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consisting of solid nanoparticles with sizes typically 

100 nm suspended in liquid. Nanofluids have attracted 

great interest recently because of reports of greatly 

enhanced thermal properties 

Kadirgama, 2013; Mahendran, Lee, Sharma

2012; Syam Sundar 

particle

(>10%) of particles to achieve such enhancement 

Choi, Wenhua

Roetzel, 2003)

so far include thermal conductivities exceeding those of 

traditional solid/liquid suspensions; a nonlinear 

relationship between thermal conductivity and 

concentration in the case of nanofluids containing carbon 

nanotubes; strongly temperature

conductivity; and a significant increase in critical heat flux 

in boiling heat transfer

2013; Hussein, Bakar, Kadirgama

et al., 2011; Ravisankar 

Sundar 

highly desirable for thermal systems; a stable and easily 

synthesized fluid with these attributes and

viscosity would be a strong candidate for the next 

generation of liquid coolants 

Risby, 2013; Ravisankar 

increasing interest in using artificial neural networks 

(ANNs) for modelling and optimization of machining 

process 

2011; Rahman 

are developed based on many simplified assumptions. It is 

sometimes difficult to adjust the parameters of the above 

mentioned models according to the actual situation of the 

machining process. Therefore, an artificial neural 

networks

possess massive parallel computing capability, have 

attracted much attention in research on machining 

processes. ANN provides significant advantages in solving 

processing problems that require real

interpretation of relationships among variables of high

dimensional space 

2012; Rahman, 2012; Rahman, Mohyaldeen, No

Kadirgama

applied in modeling many metal

as turning, milling and drilling. The general ability of the 

network is actual

factors are the selection of the appropriate input/output 

parameters of the system, the distribution of the dataset, 

and the format of the presentation of the dataset to the 

network. The selection of the neuron number, 

layers, activation function and training algorithm are very 

important to obtain the best results. The objectives of this 

study are to investigate the effect of titanium dioxide 

(TiO

develop optimiza

multilayer perceptron technique.
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100 nm suspended in liquid. Nanofluids have attracted 

great interest recently because of reports of greatly 

enhanced thermal properties 

Kadirgama, 2013; Mahendran, Lee, Sharma

2012; Syam Sundar 

particle-liquid suspensions require high concentrations 

(>10%) of particles to achieve such enhancement 

Choi, Wenhua

Roetzel, 2003)

so far include thermal conductivities exceeding those of 

traditional solid/liquid suspensions; a nonlinear 

relationship between thermal conductivity and 

concentration in the case of nanofluids containing carbon 

nanotubes; strongly temperature

conductivity; and a significant increase in critical heat flux 

in boiling heat transfer

2013; Hussein, Bakar, Kadirgama

et al., 2011; Ravisankar 

Sundar and Sharma, 2011b)

highly desirable for thermal systems; a stable and easily 

synthesized fluid with these attributes and

viscosity would be a strong candidate for the next 

generation of liquid coolants 

Risby, 2013; Ravisankar 

increasing interest in using artificial neural networks 

(ANNs) for modelling and optimization of machining 

process (Kadirgama et al., 2012; Madic 

2011; Rahman 

are developed based on many simplified assumptions. It is 

sometimes difficult to adjust the parameters of the above 

mentioned models according to the actual situation of the 

machining process. Therefore, an artificial neural 

networks can map the input/output relationships and 

possess massive parallel computing capability, have 

attracted much attention in research on machining 

processes. ANN provides significant advantages in solving 

processing problems that require real

interpretation of relationships among variables of high

dimensional space 

2012; Rahman, 2012; Rahman, Mohyaldeen, No

Kadirgama and

applied in modeling many metal

as turning, milling and drilling. The general ability of the 

network is actual

factors are the selection of the appropriate input/output 

parameters of the system, the distribution of the dataset, 

and the format of the presentation of the dataset to the 
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consisting of solid nanoparticles with sizes typically 

100 nm suspended in liquid. Nanofluids have attracted 

great interest recently because of reports of greatly 

enhanced thermal properties 

Kadirgama, 2013; Mahendran, Lee, Sharma

2012; Syam Sundar and Sharma, 2011a)

liquid suspensions require high concentrations 

(>10%) of particles to achieve such enhancement 

Choi, Wenhua and Pradeep, 2008; Das, Putra, Thiesen

Roetzel, 2003). Key features of nanofluids that reported

so far include thermal conductivities exceeding those of 

traditional solid/liquid suspensions; a nonlinear 

relationship between thermal conductivity and 

concentration in the case of nanofluids containing carbon 

nanotubes; strongly temperature

conductivity; and a significant increase in critical heat flux 

in boiling heat transfer(Azmi, Sharma, Mamat

2013; Hussein, Bakar, Kadirgama

et al., 2011; Ravisankar and

Sharma, 2011b)

highly desirable for thermal systems; a stable and easily 

synthesized fluid with these attributes and

viscosity would be a strong candidate for the next 

generation of liquid coolants 

Risby, 2013; Ravisankar and

increasing interest in using artificial neural networks 

(ANNs) for modelling and optimization of machining 

(Kadirgama et al., 2012; Madic 

2011; Rahman and Kadirgama, 2014)

are developed based on many simplified assumptions. It is 

sometimes difficult to adjust the parameters of the above 

mentioned models according to the actual situation of the 

machining process. Therefore, an artificial neural 

can map the input/output relationships and 

possess massive parallel computing capability, have 

attracted much attention in research on machining 

processes. ANN provides significant advantages in solving 

processing problems that require real

interpretation of relationships among variables of high

dimensional space (Khan, Rahman, Kadirgama

2012; Rahman, 2012; Rahman, Mohyaldeen, No

and Bakar, 2011)

applied in modeling many metal

as turning, milling and drilling. The general ability of the 
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factors are the selection of the appropriate input/output 

parameters of the system, the distribution of the dataset, 

and the format of the presentation of the dataset to the 

network. The selection of the neuron number, 

layers, activation function and training algorithm are very 

important to obtain the best results. The objectives of this 

study are to investigate the effect of titanium dioxide 

) nanocoolant on precision surface grinding and to 

develop optimization model for grinding parameters using 

multilayer perceptron technique.
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consisting of solid nanoparticles with sizes typically 

100 nm suspended in liquid. Nanofluids have attracted 

great interest recently because of reports of greatly 

enhanced thermal properties (Hussein, Sharma, Bakar
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(>10%) of particles to achieve such enhancement 
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Kadirgama, 2014). A
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mentioned models according to the actual situation of the 
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can map the input/output relationships and 

possess massive parallel computing capability, have 
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processing problems that require real-time encoding 
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(Khan, Rahman, Kadirgama

2012; Rahman, 2012; Rahman, Mohyaldeen, No
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ly dependent on three factors. These 

factors are the selection of the appropriate input/output 

parameters of the system, the distribution of the dataset, 

and the format of the presentation of the dataset to the 

network. The selection of the neuron number, 

layers, activation function and training algorithm are very 

important to obtain the best results. The objectives of this 
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METHODS AND MATERIALS

Supertec precision grinding machine, model STP

102ADCII

wheel (PSA

grains was used. The workpiece material was block ductile 

iron with a carbon content of 3.5

hardness of 110

workpiece surface for grinding were 35 mm and 80 mm, 

respectively. First, the workpiece was clamped onto a 

clamper jaw since cast iron is not attracted to the magnet 

field. Then the zero point of the Z

grinding the disc slowly until

After that, the coolant was sprayed directly onto the 

workpiece to ensure the temperature of the workpiece was 

equivalent to the temperature of the coolant and as a 

precaution to achieve an exact value of rising temperature. 

Then t

tachometer. The model STP

and uses a hydraulic system to move left and right. The 

speed is controlled by a control valve; however, there is no 

speed display. So, in this research, calibra

speed using a tachometer had to be undertaken and the 

speed was set at 20 mm/min, 30 mm/min and 40 mm/min. 

The design of experiments techniques enables designers to 

determine simultaneously the individual and interactive 

effects of many f

The central composite design 

There is good commercial software available to help with 

designing and analyzing response
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The grinding process was undertaken using a 
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wheel (PSA-60JBV) with an average abrasive size of 60 

grains was used. The workpiece material was block ductile 
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respectively. First, the workpiece was clamped onto a 

clamper jaw since cast iron is not attracted to the magnet 

field. Then the zero point of the Z

grinding the disc slowly until

After that, the coolant was sprayed directly onto the 

workpiece to ensure the temperature of the workpiece was 

equivalent to the temperature of the coolant and as a 

precaution to achieve an exact value of rising temperature. 

Then the workpiece speed was calibrated using a 

tachometer. The model STP

and uses a hydraulic system to move left and right. The 

speed is controlled by a control valve; however, there is no 
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speed using a tachometer had to be undertaken and the 

speed was set at 20 mm/min, 30 mm/min and 40 mm/min. 

The design of experiments techniques enables designers to 

determine simultaneously the individual and interactive 

effects of many f

The central composite design 

There is good commercial software available to help with 

designing and analyzing response

Table 1 shows the DOE table generated using 

software.  
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tachometer. The model STP-102ADCII can be controlled 
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liquid form with a 

concentration with a 30

level and density equal to 5600 kg/m³. It is diluted to a 

0.10% volume concentration. The conversion of t

weight percent concentration to volume concentration is 

expressed

determine how much distilled water is required to dilute 

the initial 

where

ϕ
percent of nanoparticles, 

ρ

have to be faced. One of the most important issues is the 

stability of the nanofluids, and it remains a considerable 

challenge to achieve the desired stability of the 

The stability of the mixture is ensured by maintaining the 

pH of the aqueous solution of nano

sonication for about two hours resulting in no settling of 

particles observed for the machining period. 

stability in the dil

continuously for 

rpm.

of surfactants is an important technique in enhancing the 

stability of nanoparticles in fluids. However

functionality of the surfactants under high temperature is 

also a major concern, especially for high

applications. Therefore, no 

study.
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analysis method under Artificial Neural Networks. In this 

study, the analysis is performed using the Neuro Solutions 

6 software. It is done by keying the sets of the 

experimental data obtained from the experiments done in 

the lab. The columns of depth o

tagged as input while the columns of temperature rise, 

MRR and surface roughness are tagged as desired. The 

tagged input parameters to develop the MLP model. The 

hidden layer for the optimization process is set to 1. The 

processin

selected for transfer function. Momentum is selected for 

learning rule at 1.00000 value of step size and 0.7 for 

momentum value. Maximum epochs is set 30000 and 

Termination is set at MSE, minimum with Threshold 

0.000001.the data are then tested for regression for each 

training, cross validation and testing options. From then, 
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he dispersed 

liquid form with a volume 

concentration with a 30–40 

level and density equal to 5600 kg/m³. It is diluted to a 

0.10% volume concentration. The conversion of t

weight percent concentration to volume concentration is 

as equation (1). It shows the dilution formula to 

determine how much distilled water is required to dilute 

nanofluid. 
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is the initial volume concentration, 

percent of nanoparticles, ρ
is the density of the nanoparticles,

For a two-phase system, some important issues 

have to be faced. One of the most important issues is the 

stability of the nanofluids, and it remains a considerable 

challenge to achieve the desired stability of the 

The stability of the mixture is ensured by maintaining the 

pH of the aqueous solution of nano

sonication for about two hours resulting in no settling of 

particles observed for the machining period. 

stability in the dilution, the solution needs to be stirred 

continuously for two hours 

Nanoparticles have a tendency to aggregate. The use 

of surfactants is an important technique in enhancing the 

stability of nanoparticles in fluids. However

functionality of the surfactants under high temperature is 

also a major concern, especially for high

applications. Therefore, no 

Multilayer Perceptron Approach

Multilayer perceptron (MLP) approach is 

analysis method under Artificial Neural Networks. In this 

study, the analysis is performed using the Neuro Solutions 

6 software. It is done by keying the sets of the 

experimental data obtained from the experiments done in 
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Termination is set at MSE, minimum with Threshold 
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training, cross validation and testing options. From then, 
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