
 Procedia Computer Science 76 (2015) 443 – 448

Available online at www.sciencedirect.com

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the 2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS 2015)
doi: 10.1016/j.procs.2015.12.291

ScienceDirect

* Corresponding author. Tel.: +60102384948

E-mail address: odili_julestyahoo.com

2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS 2015)

African Buffalo Optimization: A Swarm-Intelligence Technique

Julius Beneoluchi Odili*, Mohd Nizam Mohmad Kahar, Shahid Anwar

 Faculty of Computer Systems and Software Engineering, Univesity Malaysia Pahang, Gambang, Kuantan, Malaysia

Abstract

This paper proposes a new optimization technique called the African Buffalo Optimization. The African Buffalo Optimization
(ABO) draws its inspiration from the behavior of African buffalos in the vast African forests and savannahs. African buffalos are
a wild species of domestic cattle and are always mobile tracking the rainy seasons in different parts of Africa in search of lush
green pastures to satisfy their large appetites. Our interest is in their organizational ability through two basic sounds in search of
solutions. Experiments carried out using this novel algorithm in solving some benchmark Travelling Salesman’s Problem when
compared with the results from some popular optimization algorithms show that the ABO was not only able to obtain better
solutions but at a faster speed.

Keywords: African Buffalo Optimization, African buffalos, Optimization, Nature-inspired, Bio-inspired, Travelling Salesman’s Problem.

1. Introduction

The need for cost reduction, in a quest for profit maximization, has led researchers to investigate the possibility of
drawing inspiration from nature to attempt solutions to myriads of problems in science, engineering, technology and
industrial processes. These efforts have yielded several dividends leading to the proposal of a number of bio-
inspired algorithms such as the Ant Colony Optimization (ACO) [1, 2], Honey Bee Mating Optimization (HBMO)

[3], Particle Swarm Optimization (PSO) [4] Genetic Algorithm (GA) [5], Improved Genetic Algorithms (IGA) [6]
and so on. These algorithms have been applied to solve a number of optimization problems such as Travelling
Salesman’s Problem [1], Vehicle Routing [4], Networking and other logistic problems [2], among others, with
amazing results. In general, bio-inspired algorithms exploit the intelligent behavior of plants, animals and other
natural elements in the ecosystem in a competitive or cooperative manner in arriving at solutions. These algorithms
exploit the imprecision, haphazard and stochastic attitudes of these biological elements in arriving at marvelous
solutions. In spite of the great achievements of these scientific efforts, it has been discovered that most of these

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.12.291&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.12.291&domain=pdf

444 Julius Beneoluchi Odili et al. / Procedia Computer Science 76 (2015) 443 – 448

1. Objective function f(x)
2. Initialization: randomly place buffalos to nodes at the solution space;
3. Update the buffalos fitness values using Eq. (1)

 (1)

where w.k and m.k represents the exploration and exploitation moves respectively of the kth buffalo (k=1,2,………..N) ; and are
learning factors; is the herd’s best fitness and the individual buffalo’s best
4. Update the location of buffalo k (and) using (2)
 (2)
5. Is bgmax updating. Yes, go to 6. No, go to 2
6. If the stopping criteria is not met, go back to algorithm step 3, else go to step 7
7. Output the best solution.

algorithms require further refinements to make them faster and achieve better results as they are prone to premature
convergence, delay in arriving at solutions, inability to explore and exploit the search space, the use of several
parameters and so on [7] This is the motivation for this research.

African Buffalo Optimization (ABO) is an attempt to develop a user-friendly, robust, effective, efficient, yet,
simple-to-implement algorithm that will demonstrate exceptional capacity in the exploitation and exploration of the
search space. ABO attempts to solve the problem of pre-mature convergence or stagnation by ensuring that the
location of each buffalo is regularly updated in relation to the particular buffalo’s best previous location and the
present location of the best buffalo in the herd. In a situation, for instance, where the leading (best) buffalo’s
location is not improved in a number of iterations, the entire herd is re-initialized. Tracking the best buffalo ensures
adequate exploration of the search space and tapping into the experience of other buffalos as well as that of the best
buffalo enables the ABO to achieve adequate exploitation. Similarly ABO ensures fast convergence with its use of
very few parameters, primarily the learning parameters and . These parameters enable the movement of the
animals towards greater exploitation or exploration depending on the focus of the algorithm at a given iteration.

The African Buffalo Optimization models the three characteristic behaviors of the African buffalos that enable their
search for pastures. First is their extensive memory capacity. This enables the buffalos to keep track of their routes
through thousands of kilometers in the African landscape. Moreover, buffalos are very cooperative. They are about
the only animal species that dare to risk their lives in order to defend one of their own in dangers, hence the second
attribute of the buffalos is their cooperative cum communicative ability whether in good or bad times. This they do
through their waaa vocalizations with which they ask the herd to keep moving because the present location is
unfavorable, lacks pasture or is dangerous. In other instances, the same ‘waaa’ sound is used to invite other buffalos
to come to the aid of other animals in danger. Basically the waaa is an alarm call. On the other hand, the maaa
vocalizations are used to signal to the buffalo herd to stay on to exploit the present location as it holds promise of
good grazing pastures and is safe. The third attribute of the buffalos is their democratic nature borne out of extreme
intelligence. In cases where there are opposing calls by members of the herd, the buffalos have a way of doing an
‘election’ where the majority decision determines the next line of action. These three characteristics mark out
African buffalos as one of the most organized and successful herbivores of all times [8].

This rest of this paper is organized this way: the second section discusses the African Buffalo Optimization (ABO)
algorithm; the third section is concerned with experiment and discussion of results; the fourth section draws
conclusions on the study and the fifth, acknowledges the support for the study.

2 African Buffalo Optimization

African Buffalo Optimization algorithm, basically models the three principal aforementioned characteristics of the
African Buffalo. The ‘maaa’ sound of buffalo k is represented by and the ‘waaa’ sound is
represented by . Mathematically, the democratic Equation (1) below determines the movement of the buffalos.

Figure 1: ABO algorithm

445 Julius Beneoluchi Odili et al. / Procedia Computer Science 76 (2015) 443 – 448

Equation (1) has three main parts, namely, the memory part () which is an indication that the animals are
aware that they have relocated from their former positions () to a new one. This is an indication of their
extensive memory capacity that is a vital tool in their migrant lifestyle. The second part represents the cooperative
attributes of the animals . The buffalos are excellent communicators and are able to track the
location of the best buffalo in each iteration. The last part of this equation brings out the
exceptional intelligence of these animals. They are able to tell their previous best productive location in comparison
to their present position. This enables them take informed decisions in their search for solutions. Eq. 2, basically,
propels the buffalos to a new location following the outcome of Eq.1.

2.1 The movement of the buffalos

Two main equations control the movement of the buffalos within the solution space. These are Equations (1) and (2)
(refer to Figure 1). The democratic Equation (1) provides the template for the movement or otherwise of the
animals. The waaa update (move on to explore, eq. 2) provides for the actual adjustment of the herd movement
given the two competing forces (waaa and maaa calls). The result is a new location for the animals.

The first equation has two major parameters, namely, the global maximum () and the personal maximum
() positions: each exercising its influence over the animal’s choices. The algorithm subtracts the waaa
element () asking the animal to explore the search space from the maximum vector (() and
then multiplies this by the learning parameters (,) usually set to between 0.1 to 0.6. Using the learning
parameters 0.1 to 0.6 has so far proved effective in obtaining fast convergence. The sum of these products is then
added to the maaa () elements (asking the animals to stay on to exploit the area) for the given dimension. The
output here is fed into Eq. 2, resulting in the movement or otherwise of the buffalos in a particular iteration.

3. Experiments and discussion of results

The experiments were performed using a desktop computer running Windows 7, 64-bit Operating System, Intel
Core [TM] , i7-3770 CPU@ 3.4GHz, 3.4GHz, 4GB RAM. In the experiments on the benchmark global optimization
functions (Section 3.5), the benchmark function equations were coded in MATLAB programming language and
were run using MATLAB 2012b tool. The data obtained from the experiment with the African Buffalo Optimization
(ABO) was compared with results obtained from similar experiments using the Particle Swarm Optimization (PSO),
Ant Colony Optimization (ACO), Ant Colony Optimization and the Genetic Algorithm (GA) [9, 10] in investigating
the Symmetric Traveling Salesman’s Problem. These algorithms chosen to compare with the ABO in this study have
posted some of the best results in literature.

3.1 Parameter setting

The parameters used in these experiments posted very good results. Further investigations are ongoing, however, to
discover the parameter settings that will yield better results. For the experiments involving the Particle Swarm
Optimization, the experimental parameters are: population size 200; iteration () 1000; intertia weight 0.85; C1
2; C2 2; rand1 (0,1); rand2(0,1).

Also, it is important to note the following vital equations for ASA-GS:

 (3)
 (4)

D* represents the number of nodes.

446 Julius Beneoluchi Odili et al. / Procedia Computer Science 76 (2015) 443 – 448

Table 1: Experimental parameters setting

ABO ACO ASA- GS HBMO GA
Parameter Values Parameters Values Parameters Values Parameters Values Parameter Values

Population 40 ants D* Population No of nodes Queen 1 Generation 100
m.k 1.0 5.0 tinitial 1000 Drones 200 2.0
bgmax/
bpmax

0.6 0.65 see Eq. 3 Spermateca 50 0.1

lp1 / lp2 0.5 1.0 Opt Tour length Mating
drones

50 Ro 0.33

w.K 1.0 � 200 tv N/10 Brood 50 Crossover
rate

1.0

N/A - qo 0.9 tcurrent tcurrent*tcool 0.9 qo 0.9
N/A - N/A - tcool See Eq.3 Mating

flights
1000 �r 0.3

N/A - N/A - tend 0.005 w1 3 � 0.2
N/A - N/A - tgreedy *N w2 4 min max/20
N/A - N/A - N/A - � 10-10

max 1-(1-)
Total no of
runs

50 50 50 50 50

3.2 Experimental data

To investigate the capacity of the ABO to solve combinatorial optimization problem, 13 benchmark Traveling
Salesman’s problem from the TSPLIB [11] ranging from 52 to 14051 cities were used. The choice of the TSP
datasets is made in such a way as to test the performance of ABO in searching routes of less than 100 cities
(Berlin52, St70, Pr76 and Rat99) to searching TSP problems of less than 200 cities (Pr107, Pr124, Ch130, Pr152
and U159) and finally to problems that run to some hundreds of cities (Tsp225, Rat575 and Brd14051). The
stopping criterion is when there is no more improvement in the best result obtained by the algorithm.

3.3 Discussions of results

In evaluating the performance of the ABO, the authors compared the results obtained from using the ABO to find
solutions to the listed benchmark TSP cases with the results obtained by using some other popular algorithms in
literature, namely, Particle Swarm Optimization, Ant Colony Optimization and the Genetic Algorithm [9, 10]. The
results are shown in Table 2.

Table 2: Comparative experimental results

Rel. Error % = Relative Error percentage; Best=Best result obtained by an algorithm

TSPLIB
Problem

TSPLIB
Values

ABO

 PSO ACO GA

 Best Rel.

Error %
Best Rel.

Error %
Best Rel.

Error
%

Best Rel.
Error %

Berlin52 7542 7542 0 7542 0 7549 0.09 7542 0
St70 675 676 0.15 717.53 6.3 696.62 3.2 710.49 5.19
Pr76 108159 108167 0.01 118028 9.13 110917 2.55 115329 6.63
Rat99 1211 1211 0 1278 5.53 1236 2.06 1269 4.79
Pr107 44303 44407 0.01 44436 0.3 44354 0.12 44417 0.26
Pr124 59030 59058 0.05 59283 0.43 59113 0.14 59247 0.37
Ch130 6110 6111 0.02 6181.4 1.15 6141 0.51 6158.3 0.79
Pr136 96772 96784 0.01 - - 96785 0.01 - -
Pr152 73682 73730 0.07 73898 0.29 73835 0.21 73872 0.26
U159 42080 42107 0.06 - 42080 0 - -
Tsp225 3916 3917 0.03 - - 4112.4 5.01 - -
Rat575 6773 6777 0.06 6910 2.02 6876 1.52 6897 1.83
Brd14051 469385 469835 0.1 477346 1.7 476949 1.61 477304 1.69

447 Julius Beneoluchi Odili et al. / Procedia Computer Science 76 (2015) 443 – 448

In Table 2, Relative Error % values were obtained with the formula:

 (5)

As can be seen in Table 2, the ABO outperformed the other algorithms (PSO, ACO and GA) in realizing the closest
solution in all the test cases under investigation. Aside from getting the closest results to the optimal result, the ABO
obtained optimal results in Berlin52 and Rat99, and the ACO in u159, the PSO and the GA could only obtain optimal
result in Berlin52. Further analyses show that the cumulative relative error percentage of ABO is a mere 0.57%
compared to PSO’s 26.85%, ACO’s 17.03% and GA’s 21.81%. The outstanding performance of ABO gets rather
more glaring when one considers that the ABO and ACO solved all the problems under investigation whereas the GA
and PSO only attempted ten test cases each.

3.4. Performance cost consideration

Furthermore, the time needed to get optimal or near-optimal solution is very vital as time correlates with cost in
business and production engineering. An efficient algorithm, therefore, has to be one that obtains good solutions at a
reasonable time [12]. To achieve this, a number of experiments were done to examine the cost implication of ABO in
terms of time taken to arrive at optimal or near-optimal solutions to the benchmarked Travelling Salesman’s
Problems. The results of the best CPU time spent were compared with those obtained by Genetic Algorithm (GA) [9],
Honey Bee Mating Optimization (HBMO) [3], Ant Colony Optimization (ACO) [10], Simulated Annealing (SA) [13]
and Adaptive Simulated Annealing with Greedy Search (ASA-GS) [12]. The experiments were carried out using
benchmark TSP cities ranging from 16 to 14,051 cities. The results are presented in Table 3.

Table 3: Comparative CPU time

Table 3 shows the capacity of ABO to obtain solutions at incredibly fast rate. ABO obtained optimal solutions faster
than every other algorithm under review here in all the test cases; the only exception being in Ulysses 16 where the
SA marginally obtained a better result of 0.02 to ABO 0.03 second. The ABO’s exceptional performance becomes
more glaring when one considers that the other algorithms are among the best in literature and were published only
recently [10]. On algorithm-by-algorithm analysis, it took ABO a cumulative time of 79.7 seconds to solve all the

TSPLIB ABO GA HBMO ACO SA ASA-GS

Problem (secs) (secs) (secs) (secs) (secs) (secs)

Ulysses16 0.03 0.16 - - 0.02 -

Eil51 0.04 1.16 0.17 112.1 3.77 3.91

Berlin52 0 2.77 0.19 116.7 3.07 3.83

St70 0.08 - - 226.1 3.35 5.15

Pr76 0.08 6.73 0.53 272.4 2.63 5.49

KroA100 0.03 16.5 0.62 615.1 3.32 7.14

Tsp225 0.09 16.2 5.38 4039 - -

Ch130 0.08 14.4 1.28 - 5.29 8

Rat99 0.09 26.4 0.58 - 4.83 -

Pr107 0.11 18.2 1.01 - 2 7.78

Pr124 0.07 20.5 1.08 - 1.93 9.01

Pr136 0.08 30.5 1.35 - 7.08 9.86

Pr152 0.09 31.1 2.21 - 3.69 10.85

Rat783 0.05 26.4 71.1 0.63 3.45 78.9

Brd14051 78.9 - 902 - - 2081

448 Julius Beneoluchi Odili et al. / Procedia Computer Science 76 (2015) 443 – 448

15 TSP instances under investigation (including the most time-consuming Brd14051) to GA’s 210.81 seconds to
solve 13 instances excluding Brd14051; HBMO’s 987.87 seconds; ACO’s 5381.69 seconds for just six TSP
instances; SA’s 44.43 for 13 instances excluding the time-consuming Brd14051 and ASA-GS’s 2,229.92 seconds
for 12 TSP instances. From the foregoing analysis, it is safe to say that the ABO is at least 12 times faster than the
HMBO and 27 faster than ASA-GS. In the same vein, juxtaposing the TSP instances attempted by the other
algorithms with the results obtained by ABO in those same instances, the ABO is 59.24 faster than SA; 277.38 faster
than the GA and over 14,545 faster than ACO.

4. Conclusion

In this study, a novel optimization algorithm, the African Buffalo Optimization was proposed and validated using a
number of benchmark Traveling Salesman Problems from the TSPLIB. The investigations show that the ABO has
immense capacity to solve different kinds of optimization problems, many times obtaining the optimal solutions
much faster than the popular optimization algorithms like the PSO, GA and ACO. We can safely conclude,
therefore, that the ABO is a worthy addition to Swarm Intelligence techniques and recommend the use of ABO to
solve knapsack problems, PID tuning of parameters etc.

5. Acknowledgement

The authors appreciate the contributions of the anonymous reviewers for their useful input to this study as well as
the Faculty of Computer Systems and Software Engineering, Universiti Malaysia Pahang, Kuantan, Malaysia. for
the funding of this study through Grant PGRS 1403118.

References:

[1] G. Di Caro and M. Dorigo, "AntNet: Distributed stigmergetic control for communications networks," Journal of Artificial Intelligence

Research, pp. 317-365, 1998.
[2] J. B. Odili, H. Deng, C. Yang, Y. Sun, M. C. d. E. Santo Ramos, M. C. G. Ramos, et al., "Application of Ant Colony Optimization to

Solving the Traveling Salesman's Problem," Science Journal of Electrical & Electronic Engineering, vol. 2013, 2013.
[3] Y. Marinakis, M. Marinaki, and G. Dounias, "Honey bees mating optimization algorithm for the Euclidean traveling salesman

problem," Information Sciences, vol. 181, pp. 4684-4698, 2011.
[4] F. Hui-liana and L. Xian-lib, "Discrete particle swarm optimization for TSP based on neighborhood [J]," Application Research of

Computers, vol. 2, p. 030, 2011.
[5] G. Dong, X. Fu, and H. Xue, "An Ant System-Assisted Genetic Algorithm For Solving The Traveling Salesman Problem,"

International Journal of Advancements in Computing Technology, vol. 4, 2012.
[6] R. T. Zheng, N. Ngo, P. Shum, S. Tjin, and L. Binh, "A staged continuous tabu search algorithm for the global optimization and its

applications to the design of fiber bragg gratings," Computational Optimization and Applications, vol. 30, pp. 319-335, 2005.
[7] N. Kumbharana and G. M. Pandey, "A Comparative Study of ACO, GA and SA for Solving Travelling Salesman Problem,"

International Journal of Societal Applications of Computer Science, vol. 2, pp. 224-228, 2013.
[8] D. S. Wilson, "Altruism and organism: Disentangling the themes of multilevel selection theory," The American Naturalist, vol. 150,

pp. s122-S134, 1997.
[9] F. Liu, "A dual population parallel ant colony optimization algorithm for solving the traveling salesman problem," Journal of

Convergence Information Technology, vol. 7, 2012.
[10] M. G. UZ, M. S. Kiran, and E. ÖZCEYLAN, "A hierarchic approach based on swarm intelligence to solve the traveling salesman

problem," Turkish Journal of Electrical Engineering & Computer Sciences, vol. 23, pp. 103-117, 2015.
[11] G. Reinelt, "TSPLIB—A traveling salesman problem library," ORSA journal on computing, vol. 3, pp. 376-384, 1991.
[12] B. Baritompa and E. M. Hendrix, "On the investigation of stochastic global optimization algorithms," Journal of global optimization,

vol. 31, pp. 567-578, 2005.
[13] X. Geng, Z. Chen, W. Yang, D. Shi, and K. Zhao, "Solving the traveling salesman problem based on an adaptive simulated annealing

algorithm with greedy search," Applied Soft Computing, vol. 11, pp. 3680-3689, 2011.

