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Abstract. The cutting mechanism and residual stress profile of the micro-cutting thin 

workpiece are affected by the interaction of the thin workpiece and the fixture (substrate) 

underneath it similar to that observed in the nano-indentation and nano-scratching of thin film. 

The appropriate substrate properties are necessary especially to avoid detachment during 

machining and to minimize deformation and warping of the machined thin workpiece. Thus, 

the investigations of the influence of substrate properties on micro-cutting thin workpiece are 

essentially to be conducted. The finite element study of orthogonal micro-cutting of thin 

Al6061-T6 is presented here. The simulations were conducted to study the residual stress 

profile across the thickness of the machined thin workpiece at various workpiece thicknesses 

and various substrate (adhesive) elastic properties. Simulations results show that as the 

machined workpiece become thinner, the stress is more significant not only on the machined 

surface but also it can reach the bottom of the workpiece. The stiffer substrate produces less 

variation of the stress across the workpiece thickness while more compliant substrate produces 

broader stress variation as the workpiece become thinner. The results show the significant 

effect of the workpiece thickness and the substrate properties on the stress profiles in the 

micro-cutting of thin workpiece. 

1. Introduction 

Investigations in micro-cutting thin workpieces (i.e. where the depth of cut may be comparable to 

workpiece thickness) are rare while those in micro-cutting thick workpieces are widely reported. In the 

machining of thick workpiece, the ratio of depth of cut (t0) to the machined workpiece thickness (tw) is 

very small, and the depth of deformation beneath the tool in to the workpiece thickness is also usually 

insignificant. The deformation induced by machining process may be more significant in the thinner 

workpiece. In the thin workpiece, the ratio of t0 to tw is larger; hence the plastic deformation in the 

form of stress produced by the tool may transmit through the thin workpiece, i.e. reach the bottom of 

the workpiece and interacts with the interface of the workpiece and fixture (Figure 1). If the stress is 

high enough it can pass through the fixture (substrate) or deflect back and furthermore produce 

enhanced stresses or deformation; if the stresses are larger than the strength of the fixture it can lead to 

detachment (slip-off) of the workpiece.  
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Figure 1. Illustration of the cutting process on thick workpiece (left) and thin workpiece (right). In a 

thin workpeice tw is comparable to to. 

 

The cutting mechanism and plastic deformation of the thin workpiece is also affected by the 

interaction of the thin workpiece and the substrate underneath it similar to that observed in the nano-

indentation and nano-scratching of thin film [1]. The appropriate fixturing method and properties are 

necessary to minimize the deformation induced, to avoid detachment during machining [2] and to 

minimize warping after thin workpiece released from the fixture. Thus, the investigations of the 

influence of substrate properties in the cutting mechanism and residual stress profile especially for thin 

workpiece conditions are essentially to be conducted. The residual stress profile can be used as one of 

the parameters to study the effects of the workpiece fixture on the machining process and to indicate 

the severity of warping. However, the measurement of the residual stress profile in a free thin work 

material with the thickness of about 50 m is still a challenge because the thin workpiece is very 

delicate. Hence, finite element analysis is necessary to be conducted. The finite element model 

developed in ABAQUS 6.9-2 is utilized to study the effect of workpiece thickness and the contribution 

of the substrate properties on the residual stress profile of the machined workpiece especially in thin 

conditions. Different elastic properties of the substrate can give different stress variations across the 

workpiece which in the end can affect the shape of the workpiece when the workpiece is released from 

the fixture.  

2. Finite element model 

The three dimensional (3D) orthogonal cutting model is developed using eight-node brick trilinear 

coupled thermal-stress (C3D8RT) element and a Lagrangian method. Figure 2 shows the model setup 

and boundary conditions for 20 m workpiece thickness. Smaller element sizes are used for 10 m 

thick; starting from the top of the workpiece with a size of 0.625 m x 1.25 m, whereas the element 

size of the adhesive is 1 m x 2 m. In order to reduce the simulation time, the width of the workpiece 

is considered to be 0.5 m consisting of one element thick. The process is assumed to be plane strain 

because the width of the orthogonal process workpiece is more than 5 times of the thickness. The 

workpiece is held fixed while cutting tool moves horizontally towards the workpiece with a fixed 

depth of cut (t0) 5 m. The left and right sides are constrained in the direction perpendicular to the 

cutting speed, while the back side of the workpiece is fixed in all directions. Four final workpieces 

thickness (tw) values of 5, 10 m, 50 m, and 80 m are used in order to observe differences between 

thin and thick workpiece machining conditions. The substrate is modelled below the workpiece with 

the fixed thickness of 30 m. The interface between the metal and substrate is modelled using tie-

constraint so that the two materials are assumed to be perfectly bonded. This assumption is made 

because we have seen the detachment of the thin workpiece at the ratio of t0/tw about 0.1 in the 

incipient chip formation where sudden increase in the load occurs [2]. However in this case the 

process is assumed to be in steady state condition, where the detachment is assumed not to occur. In 

this simulation, higher cutting speed is applied similar to the experimental data (from literature) used 

in the validation of the material separation criterion for Al-6061-T6 [3]. A complete set of cutting 

parameters used is shown in the Table 1. 
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Figure 2. Element mesh and boundary conditions for 20 m workpiece thickness. 

 
Table 1. Simulation Parameters 

Workpiece Al6061-T6 

Tool Single Crystal Diamond 

Tool rake angle and clearance angle 1
0
 and 4.5

0
 

Cutting speed (m/sec) 30 

Depth of cut (t0) (m) 5 

Substrate thickness (m) 30 

Substrate Elastic Modulus (Es) (GPa)  275.6;  6.89;  2.206;  0.689  

EW/ES (Elastic Modulus ratio) 0.25, 10, 31, 100 

Machined workpiece thickness (tw) (m) 5, 10, 50, 80 

t0/tw 0.0625, 0.1, 0.5, 1 

2.1. Materials properties 

The workpiece, tool and substrate properties used are shown in Table 2, Table 3 and Table 4 

respectively. The workpiece used is Aluminium Al6061-T6, the tool used is Single Crystal Diamond 

(SCD), and the substrate is adhesive Dymax® 6-621. The application of adhesive as the fixturing 

method in the manufacturing process especially machining process has been reported in literature for 

thick and complex shape workpiece [4] as well as for thin workpiece [5]. The use of adhesive types 

can give thin, uniform bonding layer and can be removed easily after machining is completed. Here, 

the elastic modulus of the metal is fixed (the elastic modulus of Al6061-T6), while the elastic modulus 

of the substrate is varied in order to get different combination of the ratio of elastic modulus of 

workpiece (EW) and elastic modulus of substrate (ES) as shown in Table 1. Therefore the other 

substrate properties remain the same as in Table 4. The EW/ES ratios are defined to cover the stiff 

substrate (high substrate elastic modulus) for the case of EW/ES = 0.25 and flexible substrate (low 

substrate elastic modulus) for the case of EW/ES = 10, 31 and 100 respectively. The Johnson-Cook (J-

C) constitutive model is used as the workpiece material model.  

Table 2. Workpiece material properties (Al6061-T6) [6][7][8] 

Density (kg/m
3
) 2,700 

Specific heat (J/kg K) 896.0 

Thermal conductivity (W/m K) 167.0 

Coefficient of thermal expansion (
o
C

-1
) 25.2 x 10

-6
 

Young’s modulus  (Ew) (GPa) 68.9 

Poisson’s ratio 0.33 

Melting temperature (
o
C) 582 

Johnson-Cook strength model A=324.0 MPa, B=114.0 MPa, n=0.42, C=0.002, m=1.34 

Johnson-Cook failure parameters [7] d1=0.071, d2=1.248, d3=-1.142, d4=0.147, d5=0.0 
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Table 3. Tool material properties (SCD) [8] 

Density (kg/m
3
) 3,500 

Specific heat (J/kg K) 0.4715 

Thermal conductivity (W/m K) 2,000 

Coefficient of thermal expansion (
o
C

-1
) 1.18 x 10

-6
 

Young’s modulus (GPa) 850 

Poisson’s ratio 0.1 

Table 4. Adhesive material properties (Dymax® 6-621). 

Density (kg/m
3
) 1,066 

Specific heat (J/kg K) 0.263 

Coefficient of thermal expansion (
o
C

-1
) 9 x 10

-6
 

Young’s modulus (GPa) 2.206 

Poisson’s ratio 0.25 – 0.35 

Tensile Lap Shear strength (steel-steel) (MPa) 24.82 

Tensile at Break (MPa) 35.9 

Elongation at Break (%) 35 

2.2. Material separation criterion and failure model 

Johnson-Cook (J-C) shear failure model is used to model chip formation [9] and to overcome the used 

of separation criteria and predefined fracture line. The Johnson-Cook failure parameters (d1 to d5) for 

Al6061-T6 are taken from literature [7] and given in Table 2. The experimentally measured cutting 

force and thrust force values from the literature [3] of high speed cutting for Al6061-T61 are used for 

the validation of the J-C failure parameters values. The cutting conditions are shown in Table 5. 

Table 5. Cutting conditions for model validation [3] 

Tool materials Rake angle Width of cut Depth of cut Cutting speed 

D2 tool steel 5.5
o
 10.1 mm 0.25 mm 30 m/s 

 

The results of the validation using the J-C failure parameters from [7] reveal that the forces 

simulated match with the experimental results within an error, in cutting force of about 14.03% and 

thrust force of about 8.9%. However, failure is seen to occur at damage parameter (ω) value of 0.6 

(and not 1.0). Based on this comparison the model is well validated and the failure parameters are 

reasonable to be used in the simulations. 

2.3. Chip-tool interaction 

The friction conditions proposed by Zorev [10] is used in this model. The parameters for the friction 

conditions are determined to be τp=300 MPa and µ=0.25 [11].  

2.4. Heat transfer 

The thermal properties values of the Al6061-T6 and SCD tool are listed in the Table 2 and Table 3. It 

is assumed that 90% of energy dissipated by plastic deformation is converted into heat [12] and heat is 

mainly generated in an element by plastic work [13]. 
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3. Simulation results and discussion 
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Figure 3. ABAQUS simulation for the chip formation process. 

 

Figure 3 shows a steady state situation in one of the 3D orthogonal cutting condition simulated. Once 

steady state in the cutting process is achieved, the maximum deformation is seen to occur in the shear 

zone extending from the edge of the cutting tool to the junction between the undeformed workpiece 

and the deformed chip, known as the primary deformation region. As the tool move towards the 

workpiece during the cutting process, stresses in front of the tool and perpendicular with the cutting 

direction are also generated. As the tool leaves the machined area, it leaves behind a deformed zone at 

the surface and subsurface.  
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Figure 4. Cutting force (left) and thrust force (right) for various ratio of EW/ES. 

 

Force values are extracted from the simulation when the steady state cutting process is achieved 

(Figure 4). In general, the cutting force ranges between 4.07 to 4.79 N/mm and the thrust force 

between 0.94 to 1.11 N/mm. Both the cutting force and the thrust force values are widely diverged as 

the t0/tw increased especially for the t0/tw = 0.5 and 1. These force variations may occur due to the 

significant effect of the elastic modulus of the substrate especially when the workpiece becomes 

thinner. The cutting force and thrust force values are the lowest for the case of EW/ES = 100 when the 

t0/tw are 0.5 and 1. The lower substrate elastic modulus (EW/ES = 100) causing higher displacement due 

to the more compliant properties of the substrate which affect the cutting process producing low value 

of forces.  
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3.1. Loading from the tool during steady state machining 

tool

workpiece tw
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chip
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from the tool tip 
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of the workpiece.  
Figure 5. Illustration of the location where the stress is extracted from the workpiece. The stress is extracted 

across the thickness of the workpiece from below the tool tip down to the bottom of the workpiece. 

 

The stress values parallel to the cutting feed direction (S11) across the workpiece thickness of the 

machined thin workpiece may corroborates the warping to be occurred after the thin workpiece 

released from the fixture [14]. Hence this stress is extracted from the simulation across the thickness 

of the workpiece at each nodal point down to the bottom of the workpiece during steady state cutting 

condition and after the tool leaves the workpiece with the boundary conditions remained intact (Figure 

5). The stress distributions across the workpiece thickness at steady state condition for different ratio 

of depth of cut (t0) to the machined workpiece thickness (tw) are shown in Figure 6. The y axis 

representing the loading stress from the cutting tool on the workpiece is plotted using the same axis 

scale for the four graphs for ease of observations. The x-axis represents the distance from the 

machined surface (tool tip) until the bottom of the workpiece (interface with the substrate).  
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Figure 6. Stress profile parallel with the cutting direction across the workpiece thickness below the tool tip at 

steady state condition plotted for different EW/ES ratio at various t0/tw. 
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In general, the stress profiles are tensile near the tool tip for all the elastic modulus ratios and have 

the maximum value at the depth about 1 – 5 m from the tool tip for all values of t0/tw. The stress 

profile across the thickness of the workpiece is likely to have an S-shape curve that varies from tensile 

near the tool tip and turn gradually to be compressive into the bottom workpiece with the turning point 

near the middle section when t0/tw = 1 especially for EW/ES > 1 (compliant substrate) (Figure 6 (a)). 

The EW/ES = 100 has the highest tensile stress at the depth of about 1.5 m and has the most 

compressive stress at the bottom of the workpiece. The EW/ES = 0.25 has lower stress value and less 

stress profile variation across the thickness compared to other EW/ES especially when t0/tw = 0.5 and 

t0/tw = 1 (Figure 6 (a) and (b)). The significant different of the stress profile for EW/ES = 0.25 

especially in t0/tw = 0.5 and t0/tw = 1 can occur due to the effect of the stiff substrate, in which the stress 

is not penetrated deeper into the substrate and eventually is dissipated. The EW/ES = 31 and 100 have 

the highest tensile stress near the tool tip but the EW/ES = 31 is the most compressive compared to 

other EW/ES especially at the bottom of workpiece (more compressive) when t0/tw = 0.5 (Figure 6 (b)). 

In the case of t0/tw = 0.1 and 0.0625, the stress values are relatively the same just below the tool tip and 

increased to be more tensile in the vicinity of the tool tip and turn gradually to be smaller toward the 

bottom of the workpiece (Figure 6 (c) and (d)). For t0/tw = 0.1 and 0.0625, the high tensile stress 

occurs down to the depth about 3 – 5 m resulting in the ratio of the depth of deformation to the 

workpiece thickness are about 0.1, and 0.0625 for t0/tw of 0.1, and 0.0625 respectively. 

3.2. Substrate effects during steady state cutting conditions 
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Figure 7. Displacement profile across the substrate at steady state cutting condition plotted for different EW/ES 

ratio at various t0/tw. 

 

The observation of the substrate displacement during steady state cutting conditions just below the tool 

tip is important in order to understand the contribution of substrate elastic properties to the cutting 

mechanisms (Figure 7). Similar with Figure 6 the four graphs shown in Figure 7 are applied using the 

same y-axis scale for the displacement while the x-axis represented the distance from the interface. 

In general, the displacement increases as the t0/tw and EW/ES increased. For the case of t0/tw = 1 and 

0.5, the displacement increases as the EW/ES increased, and it is the largest at the interface and as 
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going deeper it reduces to zero (Figure 7 (a) and (b)). In contrast, when t0/tw = 0.1 and 0.0625 the 

displacements are very small compared to t0/tw = 1 and 0.5 (Figure 7 (c) and (d)). In addition, it can be 

observed that for EW/ES = 0.25 displacement is very low compared to others especially when t0/tw = 1 

and 0.5 due to the effect of the stiff substrate. The compliant substrate is seen to produce more 

displacement and furthermore influences the forces especially for thinner workpiece conditions (t0/tw = 

1 and 0.5). This can be observed especially for the case of EW/ES = 100 where the forces are lower 

than for other elastic modulus ratios (Figure 4). While EW/ES = 0.25 (stiffer substrate) has much less 

displacement which shows no significant changes of the forces at different t0/tw ratios. The 

observations are similar to those observe in the nano-indentation of thin film where the film will sink-

in if the substrate is compliant, whereas stiffer substrates enhance the plastic flow of the film [1]. The 

substrate properties are seen to have less significant effect on the cutting mechanism in the case of 

thicker workpiece conditions (t0/tw = 0.1 and 0.0625) shown by the low displacement (Figure 7), low 

stress values near the interface of the workpiece and substrate (Figure 6) and less varied forces values 

(Figure 4). In contrast, the high displacement, more variation of stress across the thickness and more 

variation of the forces indicate the substrate properties are affected significantly to the cutting 

mechanism in thinner workpiece conditions (t0/tw = 1 and 0.5).  

3.3. Residual stress profile after the tool leaves the workpiece 
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Figure 8. Stress profile parallel with the cutting direction across the workpiece thickness after the tool leaves the 

workpiece plotted for different EW/ES ratio at various t0/tw. 

 

The analysis of the stress profiles after the tool leaves the workpiece is also conducted. Figure 8 shows 

the stress profiles across the workpiece thickness for various EW/ES at different t0/tw after the tool 

leaves the workpiece. In general, the compressive stress presents in the machined surface implies that 

the mechanical or plastic deformation is more dominant in the process [15]. The residual stress 

profiles across the thickness of the workpiece shown in this condition represent the equilibrium 

iMEC-APCOMS 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 114 (2016) 012005 doi:10.1088/1757-899X/114/1/012005

8



 

 

 

 

 

 

conditions of the workpiece due to the effect of the substrates where the change of the shapes is 

accommodated by the substrate. 

For the compliant substrate (EW/ES > 1) when t0/tw = 1, the stress profile is appeared to be an S-

shape curve with the turning point around the middle section and the stress values are still in the 

compressive state across the thickness with the EW/ES = 100 having the largest stress range from the 

top to bottom surfaces (Figure 8 (a)). In contrast, the EW/ES = 0.25 has lowest compressive stress at the 

machined surface, turned to become more compressive toward the bottom of the workpiece. The stress 

values in the machined surface for all the EW/ES combination when t0/tw = 0.5 are higher compared to 

other combination of t0/tw. The stress gradually becomes tensile to the depth of about 2 m and turn to 

be compressive again toward to the bottom of the workpiece for EW/ES = 100 when t0/tw = 0.5. For 

EW/ES = 0.25 the stress become more compressive as deeper into the subsurface and has less stress 

variation values.  

The existence of the high compressive stress only occurs down to the depth of about 3 m for t0/tw 

= 0.1 and 0.0625 for all EW/ES, and gradually decreases to become constant which is not significant 

compared to the thickness (Figure 8 (c) and (d)). Though the stress remains constant, the values do not 

reach zero for the case of t0/tw = 0.1 because there may be minor effect from the substrate. This profile 

is similar with the typical stress profile observed in the result of machining thick workpiece when 

plastic deformation is more dominant than thermal strain [16] and also the ratio of the depth of 

deformation to the thickness is not significant. However, the workpiece still possible to experience 

shape changes in the form of warping after it is released from the substrate especially for the 

compliant substrate. This is due to the pre-stretch conditions of the machined workpiece when it is 

held by the compliant substrate. 

3.4. Substrate effects after the tool leaves the workpiece 
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Figure 9. Displacement profile across the substrate thickness after the tool leaves the workpiece plotted for 

different EW/ES ratio at various t0/tw. 
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In general, the displacements trends and values of the substrate after the tool leaves the workpiece are 

similar with those in steady state cutting conditions for all variation of t0/tw. Figure 9 shows the 

displacement profile across the substrate thickness after the tool leaves the workpiece for various t0/tw. 

3.5. Discussion 

Machining induced stress can influence the workpiece across the thickness and may reach the interface 

of the workpiece and the substrate in the thin workpiece. The high t0/tw and high EW/ES conditions 

have greatest effect on the machined workpiece especially in the combination when the t0/tw = 1 and 

the compliant substrate with the stress profile generally having wider range of stress values from the 

machined surface down to the bottom. Hence, these conditions, due to the large variation of the stress 

across the thickness, may produce larger deflection of the workpiece shape. In the case of lower 

thickness ratio, the less variation of the stress mainly due to the dissipation of the stress to other parts 

of the thicker workpiece condition. These effects are observed in both the stress at steady state cutting 

condition and the residual stress after the tool leaves the workpiece. Moreover, it can be seen from the 

simulation results that the stress is tensile in the machined surface under steady state cutting condition 

but turned to be compressive after the tool leaves the workpiece regardless the ratio of t0/tw and EW/ES. 

In the thicker workpiece, the depth of the loading from the tool is highly affected only down to about 

3-5 m below the machined surface. This is also seen in the residual stress where the high stress value 

only occurs down to the same depth which is insignificant to the thickness. The stiffer substrate (ES > 

Ew) produces less variation of the stress values across the thickness due to the stress dissipation by the 

stiff substrate. In general, the effect of the different elastic modulus is more obvious when the 

thickness ratios are 0.5 and 1. The results show a significant effect of the workpiece thickness and the 

influence of the substrate properties on the stress profile in the micro-cutting process. 

4. Summary 

The main conclusions of this paper are: 

a. The cutting force and thrust force values extracted from the simulation are relatively comparable 

for the thick and thin workpiece and for different variation of elastic modulus, although as the 

t0/tw becoming larger the forces range is broader for different elastic modulus ratio due to the 

higher displacement experienced by the substrate.  

b. The stress profile is broader when t0/tw = 0.5 and 1 in steady state cutting conditions and after the 

tool leaves the workpiece implying that as the machined workpiece become thinner, the stress is 

more significant not only on the machined surface but also it reaches the bottom of the workpiece.  

c. The stiffer substrate produces less variation of the stress across the workpiece thickness while 

more compliant substrate produces broader stress variation.  
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