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Abstract: - In this paper, a mesoscale numerical method was applied to solve two dimensional, incompressible, 

thermal fluid flow problem. This study presents numerical prediction of natural convection heat transfer inside 

an inclined square cavity with perfectly conducting boundary conditions for the top and bottom walls. The 

lattice Boltzmann scheme with uniform mesh resolution was applied as a numerical research tool. The 

inclination angels were varied from 20° to 160° with 20° intervals. The results were presented in terms of 

streamlines and isotherms plots, and average Nusselt number in the system. We found that the flow structure 

together with the heat transfer mechanism are significantly dependence on the magnitude of the inclination 

angles. Good agreements were obtained when compared with the results published by other researchers in 

previous studies. 
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1 Introduction 
Flow in an enclosure driven by buoyancy force is a 

fundamental problem in fluid mechanics. This type 

of flow can be found in certain engineering 

applications within electronic cooling technologies, 

in everyday situation such as roof ventilation or in 

academic research where it may be used as a 

benchmark problem for testing newly developed 

numerical methods. A classic example is the case 

where the flow is induced by differentially heated 

walls of the cavity boundaries. Two vertical walls 

with constant hot and cold temperature is the most 

well defined geometry and was studied extensively 

in the literature. A comprehensive review was 

presented by David[1]. Other examples are the work 

by Azwadi and Tanahashi[2], Davis[3], Tric[4], 

Abdelhadi[5] and Sohrab[6]. 

The analysis of flow and heat transfer in a 

differentially heated side walls was extended to the 

inclusion of enclosure’s inclination to the direction 

of gravity by Rasoul and Prinos[7]. This study 

performed numerical investigations into two-

dimensional thermal fluid flows which are induced 

by the buoyancy force when the two facing sides of 

the cavity are heated to different temperatures. The 

cavity was inclined at angles from 40
0
 to 160

0
, 

Rayleigh numbers from 10
3
 to 10

6
 and Prandtl 

numbers from 0.02 to 4000. Their results indicated 

that the mean and local heat flux at the hot wall 

were significantly depend on the inclination angle. 

They also found that this dependence becomes 

stronger for the inclination angle greater than 90
0
. 

Hart[8] performed a theoretical and experimental 

study of thermal fluid flow in a rectangular cavity at 

small aspect ratio and investigated the stability of 

the flow inside the system. Ozoe et al [9] conducted 

numerical analysis using finite different method on 

two-dimensional natural circulation in four types of 

rectangular cavity at inclination angles from 0
0
 to 

180
0
. Kuyper et al[10] provided a wide range of 

numerical predictions of flow in an inclined square 

cavity, covered from laminar to turbulent regions of 

the flow behavior. They applied k-  turbulence 

model and performed detailed analysis for Rayleigh 

numbers from 10
6
 to 10

10
.  

A review of the available literatures shows that 

the flow behavior and heat transfer in a square 

cavity with the effect of Neumann typed boundary 

condition have not been discussed by previous 

researchers. The type of boundary condition applied 

on the bottom and top boundaries of the cavity 

strongly affects the heat transfer mechanism in the 

system[11][12]. Therefore, it is the purpose of 

present study to investigate the fluid flow behavior 

and heat transfer mechanism in an inclined square 

cavity, differentially heated sidewalls and perfectly 

conducting boundary condition for top and bottom 

walls. 
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Currently, numerical solutions to the fluid flow 

problem can be divided into three scales which are 

macro, meso and microscale solutions. Macroscale 

solution considers the Navier-Stokes equation as its 

governing equation and applies one or a 

combination of discretization methods to be solved 

using digital computer. However, due to the 

nonlinear nature of the equation, greater attention 

has to be paid during preprocessor step to determine 

suitable mesh size, criteria of computational 

stability, error propagation, etc. 

There are few numerical solutions that simulate 

the evolution of fluid flow at microscopic scale. 

Among them are direct simulation Monte Carlo[13] 

and Molecular Dynamics method[14]. In these 

methods, the trajectories of every particle together 

with their position in the system are predicted using 

the second Newton’s law. But remember, a cup of 

water contains 10
23

 number of molecules. Even 

when a gas is being considered where there are 

fewer molecules and a larger time-step can be used, 

because of the longer mean free path of the 

molecules, the number of molecules that can be 

considered is still limited. However, the question is 

do we really need to know the behavior of each 

molecule or atom? The answer is no. It is not 

important to know the behavior of each particle, it is 

important to know the function that can represent 

the behavior of many particles (mesoscale). 

Therefore, in current study, we bring the so-called 

lattice Boltzmann method to analyses the case in 

hand. The evolution of two distribution functions is 

considered to predict the velocity and temperature 

fields in the system. After showing how the 

formulation of mesoscale particle fits in to the 

framework of lattice Boltzmann simulations, a 

mathematical formulation is developed in order to 

investigate the effect of buoyancy force and 

inclination angle on the flow within the solution 

manifold. 

The current study is summarized as follow: two-

dimensional fluid flow and heat transfer in an 

inclined square cavity is investigated numerically. 

The two sidewalls are maintained at different 

temperatures while the top and bottom wall are set 

as a perfectly conducting wall. In current study, we 

fix the aspect ratio to unity. The flow structures and 

heat transfer mechanism are highly dependent upon 

the inclination angle of the cavity. By also adopting 

the Rayleigh number as a continuation parameter, 

the flow structure and heat transfers mechanism 

represented by the streamlines and isotherms lines 

can be identified as function of inclination angle. 

The computed average Nusselt number is also 

plotted to demonstrate the effect of inclination on 

the thermal behavior in the system. Section two of 

this paper presents the governing equations for the 

case study in hand and introduces the numerical 

method which will be adopted for its solution. 

Meanwhile section three presents the computed 

results and provide a detailed discussion. The final 

section of this paper concludes the current study.  
 

 

2 Governing Equations and Numerical 

Method 
The physical domain of the problem is represented 
in Fig. 1. The flow is induced by the buoyancy force 
resulting from the constant heating of the right wall.  
 

 
Fig. 1 Configuration of an inclined differentially 

heated enclosure’s walls. 

 
The system consists of a square enclosure with sides 
of length L and the hot wall is inclined at an angle of 

 with the horizontal axis. The wall opposite to the 
hot wall is maintained at cold temperature while the 
other two walls are set at perfectly conducting 
boundary condition defined as 
 

                                           (1) 

 

There are two dimensionless parameters which 

govern the characteristic of thermal and fluid flow 

in the enclosure; the Prandtl and Rayleigh numbers 

defined as follow 

 

                                              (2) 

 

In present study, the Prandlt number of 0.71 was 

used to represent the circulation of air in the system. 

The Rayleigh number is set at 10
5
. The Boussinesq 

approximation was included in the buoyancy force 

term so that all densities are assumed constant in the 
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body force term except the one in the gravity term 

which changes with temperature. Therefore, the 

body force term in x and y directions becomes 

 

                                                  (3) 

 
The governing equations of the case in hand are 

the continuity, two-dimensional Navier Stokes and 
the energy equations. All of these equations are 
solved indirectly using the mesoscale numerical 
method of the lattice Boltzmann scheme. Two types 
of the evolution of particle distribution function 
[15][16][17] are brought to predict the density, 
velocity and temperature fields in the system. In the 

lattice Boltzmann scheme, it considers a fluid as an 

ensemble of artificial particles and explores the 

mesoscopic features of the fluid by using the 

propagation and collision effects among these 

particles. LBM discretizes the whole flow region 

into a number of grids and numerically solves the 

simplified Boltzmann equation on the regular 

lattices[18]. The solution to the lattice Boltzmann 

equation converged to the Navier-Stokes solution in 

continuum limit up to second order accuracy in 

space and time[19]. This method bridges the gap 

between the mesoscopic world and the macroscopic 

phenomena. LBM has emerged as a versatile nu- 

merical method for simulating various types of fluid 

flow problem including turbulent[20], 

multiphase[21], magnetohydrodynamics[22], flow 

in porous media[23], microchannel flow[24], etc.  

The two distribution functions thermal lattice 

Boltzmann model starts with the evolution function 

and can be written as 

 

            (4) 

 

                  (5) 

 

where  and  are the density and temperature 

equilibrium distribution functions, respectively. ci is 

the lattice velocity and i is the lattice direction, !t is 

the time interval, "f and "g are the relaxation times of 

the density and temperature distribution functions, 

respectively. In LBM, the magnitude of ci is set up 

so that in each time step !t, the distribution function 

propagates in a distance of lattice nodes spacing !x. 

This will ensure that the distribution function arrives 

exactly at the lattice nodes after !t and collides 

simultaneously. The macroscopic variables such as 

the density #, fluid velocity u and temperature T can 

be computed in terms of the particle distribution 

functions as 

   

       (6)  

 

To simulate the flow and thermal processes of the 

fluid in a system, one uses the D2Q9 model[25] with 

nine velocities assigned on a two-dimensional 

square lattice. These velocities include eight moving 

velocities along the links connecting the lattice 

nodes of the square lattice and a zero velocity for 

the rest particle. The rest of the particles is defined 

by the distribution functions f0, the particles moving 

in the orthogonal direction by the function fi (i = 

1,2,3,4) and the particles moving in the diagonal 

directions by the function fi (i = 5,6,7,8) 

The equilibrium distribution functions  and 

 are given as 

 

             (7) 

 

              (8) 

 

where  is the weight function and depends on the 

direction of the lattice velocity.  

We next demonstrate the procedure to non-

dimensionalize the lattice Boltzmann equations 

(Eqs. (4) and (5)). To do this, we define the 

reference parameters as follow 

 

                       

(9) 

 

The dimensionless lattice Boltzmann equation 

can be written as 

 

 

(10)  

 

where , , , , 

 and . The parameter  

can be interpreted as either the ratio of collision 
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time to flow time or as the ratio of mean free path to 

the characteristic length. The same procedure can be 

applied to obtain the dimensionless form of 

temperature distribution function. For 

simplification, all carets will be dropped and any 

terms referred to later are understood in 

dimensionless form.  

Through a multiscaling, the mass and momentum 

equations can be derived from the evolution 

equation of Eq. (4). To see this, we first apply the 

Taylor series expansion of Eq. (4) and retaining 

terms up to second order gives 

 

       (11)  

 

In order to relate lattice Boltzmann equation with a 

macroscopic equation, it is necessary to separate 

different time scale. This is to indicate different 

scale of physical phenomena and contribute 

separately in the final macroscopic equation. To do 

this, space and time derivation are expanded in 

terms of Knudsen number  as follow [25,26] 

 

                                        (12)  

 

                                                     (13) 

 

 

Distribution function  is expanded about  

gives 

 

                                 (14) 

 

 

where  

 

 for                              (15) 

 

 

Eq. (15) implies that the non-equilibrium 

distribution function  does not contribute to the 

local values of density and momentum. 

Substituting Eq. (12), (13) and (14)  into (4) 

and regroup the equation to the first order of  gives 

 

                                      (16)  

 

The equation to order  is simplified by using Eq. 

(15) gives 

 

           (17) 

 

 

A summation of Eq. (17) with respect to i is taken to 

give the first order of continuity equation 

  

                                                   (18)  

 

Next, multiplying Eq. (5) by  and taking the 

summation as above leads to 

 

                                             (19)  

 

where 

 

                                                  (20)  

 

is the momentum flux tensor. After some simple 

mathematics manipulation to satisfy Galilean 

invariance and isotropic of tensor, the final 

expression for  is 

 

                                         (21)  

 

Substituting Eq. (34) into Eq. (32) results in 

 

                               (22)  

 

Eqs. (18) and (22) are known as Euler equation and 

the pressure is given by  

 

 

                                                                (23)  

 

Similarly, the equation for  and  can be 

obtained from equation of . Taking summation 

with respect to i of Eq. (17) gives 

  

                                                                (24)  

 

Multiplying Eq. (17) by  and taking the 

summation as above gives 

 

                               (25)  

 

where 
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          (26)  

 

Combining equations of  and  gives the 

correct form of the continuity equation 

 

                                                                (27)  

 

and the momentum equation for an incompressible 

fluid 

 

 

                                                                             (28)  

 

where ,  and the sound 

speed is given by 

 

                                                                  (29)  

 

 

From above derivations, we can see that the 

evolution equation of distribution function can lead 

to the incompressible Navier-Stokes equation 

through Chapman-Enskog expansion. 

It is well known that for the prediction at low 

and moderate Rayleigh numbers, the viscous heat 

dissipation and compression work carried out by the 

pressure are negligible. The temperature field is then 

passively advected by the fluid flow and obeys a 

simpler passive-scalar equation 

 

                                          (30) 

 

The detailed derivation of (30) from the D2Q9 

model of the temperature distribution function can 

be seen in Azwadi and Tanahashi[27]. The time 

relaxations "f and "g in mesoscopic world can be 

related to the viscosity and diffusivity in the 

macroscopic world as follow 

 

                            (31) 

 

 

4  Results and Discussion 
In the previous section, we have set up the physical 
problem and the calculation domain. We then 
derived the mathematical model to solve the natural 
convection problem in an inclined cavity and 
proceed with the choice of numerical method. 

In this section, the predicted numerical results 
will be discussed in terms of streamlines and 
isotherms plots. Fig. 2 shows the plots of streamline 

for inclination angles from 200 to 1600. As can be 

seen from the figure, for the simulation at high 

inclination angle ( ), boundary layers are 

formed along the hot and cold walls. The air near 

the hot wall is heated and goes up due to the 

buoyancy effect before it hits the corner with the 

perfectly conducting walls and spread to a wide top 

wall. Then as it is cooled by the cold wall, the air 

gets heavier and goes downwards to complete the 

cycle.  

At low value of inclination angle ( ), two 

small vortices are formed at the upper corner and 

lower corner of the enclosure indicates high 

magnitude of flow velocity near these regions. The 

presence of these two corner vortices compressed 

the central cell to form an elongated vortex.  The 

isotherms show a good mixing occurring in the 

center and relatively small gradient indicating small 

value of the local Nusselt number along the 

differentially heated walls.  

Further increment of inclination angle ( ) 

leads to the size reduction of small corner vortices. 

At , the small corner vortices completely 

disappear and the central cell pointing towards the 

corners because high magnitude of gravity vector 

drag the outer vortex along the vertical walls of the 

enclosure. Denser isotherms lines can be seen from 

the figure indicates higher value of local and 

average Nusselt number compared to previous 

inclination angles. Further inclination of enclosure 

separates the main central vortex into two smaller 

vortices. As we increase the inclination angle, these 

two vortices grow in size indicates that some fluid 

from the hot or cold wall returns back to the same 

wall. For inclination angles of  to , 

the isotherms line are parallel to the perfectly 

conducting walls indicates that the main heat 

transfer mechanism is by convection. Denser 

isotherms lines can be seen near the bottom left and 

top right corners demonstrates high local Nusselt 

number near these regions. However, at high 

inclination angles ( ), the isotherms lines are 

equally spaced indicates low averages Nusselt 

number in the system. 
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          (a)                                               (b)  

                            

   (c)                                               (d)  

                                     

             (e)                                               (f)  
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  (g)                                                         (h)  

Fig. 2 Streamlines plots for every inclination angle. 
 

          
  (a)                                               (b)  

         
  (c)                                               (d)  
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  (e)                                               (f)  

 

         
  (g)                                               (h)  

 

Fig. 3 Isotherms plots for every inclination angle. 
 

 
 

Fig. 4 Effect of inclination angles on average Nusselt number
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The effect of the inclination angle on the average 

Nusselt number is shown in Fig. 4. For all simulated 

cases, the computed Nusselt numbers are lower than 

those for the case of adiabatic types of boundary 

condition[7] because the heat is allowed to pass 

through the top and bottom walls. The maximum 

value of average Nusselt number is determined at 

inclination angle between  to . These can be 

explained by analyzing the isotherms plots which 

demonstrating relatively denser lines near hot and 

cold walls leading to high temperature gradient near 

these regions. Lower value of average Nusselt 

number at lower inclination angle was due to the 

presence of small corner vortices which contributes 

smaller local heat transfer along the hot and cold 

walls. 

For the computation at higher inclination angles, 

where the hot wall is close to the top position, the 

magnitude of the gravity vector is reduced results in 

low magnitude of flow velocity along the hot wall. 

Due to this reason, the heat transfer rates are small 

resulted from the reduction in the driving potential 

for free convection. All of these phenomena are in 

good agreement with previous reported 

studies[7][8][9][10]. 

 

 

5  Conclusion 

The natural convection in an inclined cavity has 

been simulated using the mesoscale numerical 

scheme where the Navier Stokes equation was 

solved indirectly using the lattice Boltzmann 

method. The result of streamlines plots clearly 

depicting the flow pattern and vortex structure in the 

cavity. The primary vortex is transformed from a 

double cellular to a single cellular as the inclination 

angle decreases. These demonstrate the lattice 

Boltzmann numerical scheme the passive-scalar 

thermal lattice Boltzmann model is a very efficient 

numerical method to study flow and heat transfer in 

a differentially heated inclined enclosure. 
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